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At present, the complex and varying operating conditions of bearings make the feature extraction become di�cult and lack
adaptability. An end-to-end fault diagnosis is proposed. A convolutional neural network (CNN) is good at mining spatial features
of samples and has the advantage of “end-to-end.” Gates recurrent neural (GRU) network has good performance in processing
time-dependent characteristics of signals. We design an end-to-end adaptive 1DCNN-GRU model (i.e., one-dimensional neural
network and gated recurrent unit) which combines the advantages of CNN’s spatial processing capability and GRU’s time-
sequence processing capability. CNN is applied instead of manual feature extraction to extract e�ective features adaptively.
Moreover, GRU can learn further the features processed through the CNN and achieve the fault diagnosis. It was shown that the
proposed model could adaptively extract spatial and time-dependent features from the raw vibration signal to achieve an “end-to-
end” fault diagnosis. �e performance of the proposed method is validated using the bearing data collected by Case Western
Reserve University (CWRU), and the results showed that the proposed model had recognition accuracy higher than 99%.

1. Introduction

Bearings are vital machine components that appear in al-
most all rotating machinery, and the health status of
bearings plays a vital role in the e�ective operation of the
mechanical system [1]. Bearings in the mechanical equip-
ment must undergo lousy environments, such as high speed,
complicated structure, and high failure rate. Bearings are
also one of the vulnerable parts of rotating machinery. Most
mechanical equipment failure is caused by bearing failure;
once the bearing fails, a series of failures will be triggered,
which will directly a�ect the operation safety of the whole
equipment [2]. �erefore, real-time monitoring of the state
and diagnosing the bearing fault have a signi�cant meaning.

With the development of machine learning, intelligent
fault diagnosis methods have become the main approaches
in mechanical diagnosis. Traditional intelligent fault diag-
nosis methods mainly contain feature extraction, feature
selection, and fault classi�cation [3]. �e raw vibration
signal sampled by the sensor contains much fault infor-
mation. Extracting features related to faults from the raw

signal to diagnose bearing faults is a crucial step that a�ects
fault classi�cation directly. Some methods of feature ex-
traction include frequency domain analysis and time-fre-
quency analysis [4], Fast Fourier Transform [5], wavelet
transform [6], wavelet packet transform [7], empirical mode
decomposition [8], and so on. However, these conventional
methods have the disadvantage of relying on handcrafted
features and signal processing technologies. �e robustness
and extensibility of models need to be improved.

Recently, deep learning [9] and solutions to extract
features from raw signals have been widely paid attention to,
that combines multiple nonlinear learning layers to process
raw data layer by layer and mine the association between
data adaptively.�us, this approach possesses the capacity to
extract features end-to-end and avoids the complexity and
uncertainty often observed in traditional feature extraction
processes. �at is an end-to-end algorithm structure makes
the whole process without manual feature extraction. Hoang
et al. transform one-dimensional vibration signals into two-
dimensional images without noise reduction as the input
data of CNN to diagnosis fault, which achieves very high
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accuracy and has a strong character of robustness [10]. Chen
et al. fused the vibration signals from the horizontal and
vertical into a two-dimensional matrix and proposed a deep
CNN for extracting features automatically to identify the
health status of gearboxes [11]. All the above studies use
CNN to extract features from vibration signals, which shows
that it has excellent performance. However, vibration,
pressure and other state signals gathered during machine
operation are usually one-dimensional vectors [12, 13].
-erefore, some researchers seek to construct a 1DCNN
model for faults diagnosis. For example, Peng et al. [14]
proposed a novel deeper 1DCNN for fault diagnosis of wheel
set bearings and gained good effects. Wu et al. present a
method based on 1DCNN to realize fault diagnosis of ro-
tating machinery [15]. You et al. proposed an improved
ReLU-CNN model based on CNN to diagnosis mechanical
faults, whose model has good performance and fast con-
vergence rate [16]. Zhang et al. proposed an end-to-end
model for bearing fault diagnosis, that extracts features with
6-layer TICNN. High accuracy is achieved in a noisy en-
vironment and even under different load by this model [17].
Guo et al. built a deep convolutional transfer learning model
to diagnose bearings faults, which learns invariant features
by the 1DCNN network. -e proposed model was verified
through six transfer experiments [18].

Compared with CNN, 1DCNN uses the raw data as
input directly without processing, thus avoiding features loss
or distortion. In addition, the vibration signal is time-series
and contains abundant time-dependent properties. RNN
(recurrent neural network) has good performance in pro-
cessing time-dependent characteristics of signals. For the
networks based on RNN, LSTM (long short-term memory
network) and GRU(gated recurrent unit) have applied to
fault diagnosis. Yu et al. proposed a novel algorithm based
on stacked LSTM for bearing fault diagnosis, features
extracted automatically by LSTM. Experimental results show
that the accuracy is up to 99% [19]. Hinchi et al. constructed
lifetime a prediction model of rolling bearing, which can
reflect the degradation trend of the rolling bearing well [20].
Rui et al. designed an enhanced GRU network and applied it
on the generated sequence of local features to learn the
representation. Experiments on tool wear prediction,
gearbox fault diagnosis, and incipient bearing fault detection
verify the effectiveness of this model [21].

-is paper presents an end-to-end adaptive framework
named 1DCNN-GRU for bearing fault diagnosis. Combine
advantages of CNN and GRU to extract features from raw
data and achieve end-to-end fault diagnosis. Extract features
by CNN to replace manual screening and characterization
and then input the features into GRU to extract temporal
characteristics further. -e features extracted jointly are used
for fault diagnosis. A series of experiments with the rolling
bearing dataset from CWRU demonstrate that the proposed
method has high accuracy, practicability, and feasibility.

2. Related Theories

2.1. Convolutional Neural Network (CNN). CNN is a typical
feed forward neural network inspired by biological neural

processes, which is powerful for processing spatial data. -e
network is structured by a convolutional layer and a pooling
layer. -e topological features embedded in the input data
are extracted, through convoluting and pooling the input
data layer by layer. A typical convolutional neural network
structure is shown in Figure 1, which can mainly divide into
five steps: input layer, convolutional layer, pooling layer,
full-connected layer, and output layer.

Generally, the convolutional layer contains a set of filters.
We can combine with each filter using the input volume to
extract the local l function from the local input area. -e
convolutional layer convolutes the input volume by the
kernel, to generate the characters of input data. We can
express the output of convolution as follows:

x
l
j � f 

i∈Mj

x
l−1
i × k

l
ij + b

l
j

⎛⎜⎝ ⎞⎟⎠, (1)

where f is an activation function, Mj is an input, xl−1
i is the

input to layer l, xl
j is the output of layer l, k is the kernel, and

b is the bias.
-e pooling layer is followed behind the convolutional

layer, also named the subsampling layer. -e feature ex-
traction is obtained by the convolution layer as the input of
the pooling layer. It is not modified by back propagation.-e
max-pooling mathematics model is described as follows:

P
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Here, (j − 1)H + 1< ty ≤ jH Pl+1
i (j) is the corre-

sponding to the neuron in layer l+ 1, Ql
i(t) is the corre-

sponding in the ith frame of a layer to the tth activations, W

denotes width, and H denotes height.

2.2. 1D Convolutional Neural Network. -e kernel of a
typical convolutional neural network is usually two-di-
mensional. Convolution operates a feature graph through a
sliding window in the width and height directions; multiply
and sum the corresponding positions. Operate a feature
signal through a sliding window in one (width or height)
direction while performing one-dimensional convolution.
-e input of one-dimensional CNN is one-dimensional
data, like some text and time series data samples usually, the
kernel is one dimensional, and the output of convolution
and pooling is also one-dimensional data. -e structure of
one-dimensional CNN is shown in Figure 1.

2.3. Gate Recurrent Unit Network. -e recurrent neural
network is a special network, which is proposed based on the
view that “human cognition is based on experiences and
memories.” Compared with CNN, there is an association
between each time step calculation in RNN, which not only
considers the input of the previous moment but also gives
the network “memory” of the previous content. So RNN is
good at capturing the long-term dependence of input se-
quences. GRU is an improved version of RNN by the gates,
which can overcome the vanishing gradient problem of
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RNN. A typical GRU consists of a hidden state, reset gate,
and update gate, and the basic structure is shown in Figure 2.

-e basic GRU process is as follows: update gate zt. -e
update gate acts on the output of the hidden layer at the
previous time ht− 1 and the input of the current time xt, and
the logical value is the state of the gate. -e calculation
process is as follows:

zt � σ Wzxt + Uzht−1 + bz(  , (3)

whereWz and Uz are all the weight matrices which can be
obtained through learning. σ is an activation function and bz

is the bias weight.
Reset gate is rt . Similarly, reset gate rt acts on the output

of the hidden layer at the previous time ht− 1 and the input of
the current time xt, and the logical value is the state of the
gate. -e calculation process is as follows:

rt � σ Wrxt + Urht−1 + br(  , (4)

whereWr and Ur are the weight matrices, br and σ are
similar with (3) and instant information of the current time
ht. After getting the state of the gate, the reset gate judges the
importance of current input and previous output, then

decides the proportion of past activation to realize infor-
mation reset. Updating the ht with the activation function
tan h.

ht � tanh Whxt + rt☉ Uhht−1(  + bh(  . (5)

Here, Wh and Uh are the weight matrices, ⊙ denotes an
elementwise multiplication, and bh is the bias.

-e output of the current hidden layer is controlled by
the update gate, which can perform two operations: for-
getting and selective memory; forgetting the output of the
previous moment; and selecting memory of instant infor-
mation of the current time. Finally, the current activation is
computed as follows:

ht � zt ⊙ ht−1 + 1 − zt( ⊙ ht. (6)

3. The Proposed 1DCNN-GRU Network

-e main framework of the proposed 1DCNN-GRU model
for bearing fault diagnosis is shown in Figure 3. -e model
which we design mainly includes four parts: data processing
with a nonoverlap sliding window; data input based on the
raw processed data; feature extraction based on 1DCNN and
GRU; faults classifier based on GRU, and sigmoid is the
activation function of the probability of classifying output.
In order to improve the adaptability and accuracy of bearing
fault diagnosis, the proposed model is designed by 1DCNN
and GRU. -e main effect of 1DCNN is to perform pre-
liminary feature extraction on the raw signal, training to
fitting, and preliminary screening score is high, so effective
features can be quickly screened from the raw signal.

-e data training process of the model is shown in
Figure 3. First, the raw signal data is obtained from the drive
end accelerometer, and then we analyzed the vibration
frequency, fluctuation amplitude, and vibration amplitude
period of the signal to acquire the ideal truncated sampling
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Figure 1: -e structure of one-dimensional convolution.
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Figure 2: -e internal structure diagram of GRU.
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window size. -rough the mechanism of the sliding window
to intercept raw acceleration signal sequence to generate
preliminary characteristics as the input of the neural net-
work. Next, the CNN network extract features from the
input data automatically without any handcrafted features,
which has the advantages of high efficiency. However, the
CNN network has a poor ability to obtain the temporal
correlation features. -en, the GRU network was subse-
quently designed to overcome the disadvantages of the CNN
network, and the high-weight features learned by CNN as
the input of the GRU network for learning and training. -e
features with correlation among vibration signal were fur-
ther learned and then perform better correlation explana-
tion. Finally, output the probability of the category through
the sigmoid function to diagnosis the health status.

In order to solve the optimization problem of the
proposed model, PMSprop, Adam, and Adadelta are used.
-e classification loss function used mean-squared-loga-
rithmic-error (MSLE). -e proposed 1DCNN-GRU model
predicts y, and the loss function is defined as follows:

L(y, y) �
1
N



N

i�0
log yi + 1(  − log yi + 1( ( 

2
. (7)

3.1. Validation of the Proposed 1DCNN-GRU Network

3.1.1. Data Description. We can obtain the raw fault data of
rolling bearing through Case Western Reserve University
(CWRU).-ere are four health types as follows: respectively,
normal (NO), rolling ball fault (BF), inner fault (IF), and
outer fault (OF).We select the raw vibration signals from the

load of 1, 2, and 3 horsepower randomly. -en, nonover-
lapping sampling was used to process the original signals,
and samples of each type are obtained, Table 1 shows some of
the experimental samples and the each health vibration
signal is shown in Figure 4.-e dataset contains 500 samples
of each type, of which 60% are randomly selected for
training, 20% for verification, and 20% for testing.

3.1.2. Model Training and Testing

(1) Optimizer and Learning Rate. Selecting different opti-
mizers and learning rates plays a vital role in improving the
training speed and classification accuracy for different
models and classification tasks. -erefore, for the model in
this paper, the alternative optimizers include RMSprop,
Adam, and Adadelta, meanwhile considering the influence
of different learning rates on the actual rate of convergence,
different learning rates are applied formodel training. To test
the performance of the proposed model, each group of
optimizers and learning rates used in training is indepen-
dent. -e accuracy with different groups is shown in Table 2.
-e loss change of different optimizers and learning rates is
shown in Figure 5.
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Figure 3: -e structure of the proposed 1DCNN-GRU model.

Table 1: Description of the experimental samples.

Fault
type

Load
(horsepower)

Sample
length

Number of
samples Label

NO 1/2/3 1024 500 0
IF 1/2/3 1024 500 1
OF 1/2/3 1024 500 2
BF 1/2/3 1024 500 3
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Table 2 shows that the experimental results of RMSprop
and Adam optimizer are similar, and the best classification
results appear when the learning rate is 0.001. With the
increase of learning rate, the classification results decreased
seriously. It is the direct opposite of the Adadelta optimizer,
and the best classification effect is achieved when the
learning rate is equal to 1. Considering the accuracy and loss,
the RMSprop optimizer is finally selected, and the learning
rate is set to 0.001.

(2) Batch Size. Before the optimizer performs a weight
update, we can obtain the batch size which is the number of
training instances through observing, which can affect the
model’s generalization performance. Compared with the
learning rate, the batch size is less sensitive to the model,
but the batch size is also a critical parameter to further
improve the performance of the model. Increasing the batch
size in an appropriate range can reduce the training time and

contribute to the stability of model convergence. However,
performance appears to have a downward trend when the
batch size is too large. Table 3 shows that themodel which we
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Figure 4: Vibration signals of bearings with different types. (a) NO. (b) IF. (c) OF. (d) BF.

Table 2: Accuracy of different optimizers and learning rates.

Learning rates 0.001 0.01 0.1
Optimizers Train Test Train Test Train Test

Accuracy (%)
RMSprop 0.998 0.992 0.987 0.965 0.241 0.237
Adam 0.993 0.992 0.995 0.985 0.432 0.487
Adadelta 0.312 0.237 0.723 0.715 0.992 0.986
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Figure 5: Loss change of different optimizers and learning rates.
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design can achieve the best classification and the shortest
training time when batch size equals 200.

(3) Dropout. Dropout is one of the forms for regularization.
We can verify the influence in the different dropout values;
we further experiment on the bearing data. Table 4 shows
that the different dropout values have a weakly influence on
the converge time and accuracy of the proposed model.
Finally, the dropout value is set to 0.5, because the model has
the highest accuracy when dropout equals to 0.5.

3.1.3. Results Analysis. Keras framework is selected to train
the data after building the fault diagnosis model using
1DCNN-GRU.-e iterations, batch size, learning rate of the
PMSprop algorithm, and dropout value are set at 50, 200,
and 0.01 to training.-e accuracy and loss of training set and
testing set change with training epochs are shown in Fig-
ures 6 and 7.

According to Figures 6 and 7, the proposed model has
high accuracy stability. After the first eight training epochs,
the loss value of the testing data decreased rapidly, and the
model fitted quickly. After the 8th training, the loss value
decreased slowly, the slope of the losing curve was close to 0,
and the model can complete convergence. -e accuracy of
the training set and testing set increased rapidly in the first
four training epochs, which reached 1.0 nearly after the 30th
training iteration.With increasing the number of epochs, the
accuracy curve is very smooth, and the curves of the training
set and testing set tend to coincide.

In order to compare the diagnosis results of the proposed
model with the current mainstream intelligent fault diag-
nosis algorithms, this paper experimented based on the
representative traditional machine learning methods SVM
and Bayesian and the deep learning methods CNN and
LSTM. -e time and frequency domain feature parameters
include mean, variance, standard deviation, maximum,
minimum, RMS, absolute mean, root mean square, wave-
form factor, kurtosis factor, pulse factor, margin factor,
skewness, and kurtosis as the input of SVM and Bayesian for
fault diagnosis. -e input of CNN and LSTM is the same as
the proposed method to perform the end-to-end fault di-
agnosis. -e accuracy of different methods is presented in
Table 5. -e accuracy of 1DCNN-GRU is higher than other
methods.

Table 3: Performance of model w.r.t different batch size.

Batch size Converge time (s) Training accuracy Testing
accuracy

50 41.9s 1 0.9850
100 29.3 1 0.9775
200 24.9 1 0.9850
300 25.9 0.9987 0.9725

Table 4: Performance of model w.r.t different dropout value.

Dropout Converge time (s) Training accuracy Testing
accuracy

0.1 25.5 0.9981 0.9775
0.2 24.9 0.9981 0.9700
0.3 25.4 0.9956 0.9750
0.4 25 0.9987 0.9825
0.5 25.4 0.9987 0.9850
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Figure 6: Accuracy change of training and testing data.
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Figure 7: Loss change of training and testing data.

Table 5: Accuracy of classification models.

Methods Average training accuracy (%) Average testing
accuracy (%)

SVM 79.61 69.29
Bayesian 68.93 70.10
CNN 97.86 95.76
LSTM 98.35 96.67
1DCNN-GRU 99.98 98.96
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4. Conclusions

In this paper, an end-to-end bearing diagnosis classification
model based on 1DCNN and GRU are proposed. We test
and verify the following four types of faults experiments:

(1) -e proposed model avoided the dependence of
traditional feature extraction methods on profes-
sional knowledge and realized the end-to-end
bearing fault diagnosis, which reduced the com-
plexity of the diagnosis process.

(2) GRU was applied in tandem with 1DCNN, it can not
only extract spatial features of vibration signal but
also further learn the characteristics of time-se-
quenced, so that have better data expression ability.
Meanwhile, it avoids the dependence of traditional
feature extraction methods on professional knowl-
edge and reduces the complexity of the diagnosis
process.

(3) -e experiments on the CWRU dataset show that the
average diagnosis accuracy of the proposed model is
higher than SVM, Bayesian, CNN, and LSTM, and it
is suitable for the accurate diagnosis of rolling
bearing faults.

In future work, in order to avoid the influence of the
overfitting phenomenon on the accuracy of fault diagnosis,
we will study the optimization of model parameters.
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