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(1) Background. �is study aims to improve the accuracy of the pricing model. (2) Methods. Heston model is combined with
ResNet50 convolutional neural network model. Based on the optimization of Heston model parameters by genetic algorithm
(GA), ResNet50 model is used to correct the deviation between market option price and Heston price, so a new hybrid option
pricing model is established based on the empirical research on the European call options of Huatai-PB CSI 300ETF (code
510300), Harvest CSI 300ETF (code 159919), and SSE 50ETF (code 510050). (3) Results. �e pricing result of the hybrid model is
better than other single models and hybridmodels.�emodel is applicable to the pricing of options with short and long remaining
terms. (4) Conclusions. It is shown that the combination of Heston model and ResNet50 model with optimized parameters can
ensure the interpretability of the model and enhance the nonlinear �tting ability of the model, which con�rms the e�ectiveness of
the hybrid model and provides a reference for investors and institutions to make scienti�c decisions.

1. Introduction

In 1973, Black, Scholes, and Merton made a major break-
through in European option pricing and developed the
classic Black-Scholes-Merton model (BSM model) [1, 2].
Aiming at the assumption that the volatility of BSMmodel is
constant, Stein et al. [3] proposed Stein-Stein stochastic
volatility model by introducing the stochastic process of the
underlying asset price volatility, where the asset price and
volatility follow their respective stochastic processes. In
1993, Heston [4] applied the mean-reversion square root
process to address the problem of negative volatility values
in Stein-Stein model. Heston model has been widely used
and studied because of the advantage of portraying a rea-
sonable implied-volatility shape and the existence of the
closed-form solution [5–7]. Up to now, the optimization of
Heston model from the mathematical perspective mainly
involves �ve directions: considering the randomness of the
constant terms [8–12], improving the geometric Brownian
motion [13, 14], adding a jump di�usion process [15, 16],
changing the power of the variance [17, 18], and considering
the roughness of the volatility [19, 20]. �e mathematical
enhancement endowed Heston models with more rigorous
�tting to real market dynamics, but two problems remain:

the lack of robustness due to insu¥cient consideration of the
factors in¦uencing the underlying asset prices and the lack of
practical usability due to the complexity of the model
structure.

�e above BSM-based models are classi�ed as para-
metric models, while the neural network (NN) option
pricing models are called nonparametric models. NN is a
nonlinear model driven by market data, whose structure and
parameters are determined from the acquired �nancial
sample data without any assumption. �is property makes
NN models more suitable for option pricing with unknown
underlying asset price dynamics and the pricing equation
without analytical solution. �e early application of NNs in
option pricing can be traced back to 1993, when the NN
model used by Malliaris et al. [21] successfully outperformed
BSMmodel. Mitra [22] improved NN’s pricing performance
from the perspective of structure optimization. According to
BSM, the input layer of the NN model was designed as 5
variables in BSM solution, the hidden layer was the two
normal distribution values of BSM, and the output layer was
the option price. Yacin et al. [23] considered volatility as a
random variable and input it into the NN model. Results
showed that the NN model was more accurate than Heston
model. In addition, many other researchers have extensively
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studied the application of NNs in options pricing [24–28].
However, due to ‘black box’ problem, constructing the
option price NN model still lacks rigorous mathematical
proof, and the constructed model can hardly be explained by
traditional financial theories.

Maciej et al. [29] found that NN models cannot adapt to
various market conditions; i.e., they are not robust, and they
proposed an idea to incorporate the NN model with BSM
model or Heston model. Combining the financial model and
the NN model to build a hybrid model can effectively
overcome the drawbacks of both, improving the nonlinear
fitting ability while enhancing the interpretability. Arin et al.
[30] used a deep multilayer perceptron to fit BSM option
price deviations where the ratio of strike price to stock price
exceeds a certain threshold and thus built a hybrid deep
neural network model. Hideharu [31] combined the ad-
vantages of AE (asymptotic expansion) and NN, used NN to
train the residual between option price C and its asymptotic
approximation 􏽥C to improve stability and approximation
accuracy, and used the hybrid model for option pricing in
both local and stochastic volatility models. Zhang et al. [32]
replaced BSM model in the traditional hybrid NN models
with Heston stochastic volatility model, and Yang et al. [33]
modified the pricing bias of Heston model using a nested
long short-term memory neural network (NLSTM). 'eir
results are all better than single models. Inspired by the
above hybrid BSM-NNs model, we optimize Heston model
from outside rather than inside, i.e., using an NN model to
correct the nonlinear deviation of Heston prices from
market prices.

Both classical option pricing models and NN models
have their own flaws: (1) the classical parametric option
pricing model must follow strict assumptions, which will
result in systematic deviation under large difference between
the initial condition and the real market. (2)'e NNmodels
have some problems such as insufficient fitness for dis-
continuous trading. So, we explore a hybrid model which
can avoid their weaknesses and make full use of their
strengths. 'e empirical results also show that hybrid NNs
models have quite adaptability to ETF options pricing. In
fact, the option price, which is affected by many factors, is
not unary time series. At present, the term of ETF option
contracts in China is up to six months, and there are several
option contracts which have different maturities and strike
prices in the market at the same time. 'erefore, it is
necessary to comprehensively consider multiple option
contracts for its pricing. Based on the above conclusion, we
choose a convolutional neural network (CNN) model, i.e.,
construct a hybrid CNN model based on Heston model for
option pricing. In our research, ResNet50 CNN model is
used to correct the pricing bias between the Heston price and
the market price. Our hybrid model gives full play to the
precision pricing performance of classical option model and
nonlinear fitting performance of deep NNs model. Fur-
thermore, our hybrid model is used to carry out empirical
research on Huatai-PB CSI 300ETF option, Harvest SCI
300ETF option, and SSE 50ETToption. Experimental results
illustrate the effectiveness and high performance of our
hybrid model.

2. Theoretical Model of Option Pricing

'e hybrid CNN model in this paper includes both Heston
option pricing model and ResNet50 CNN model. Both are
described separately, followed by an explanation of the steps
in genetic algorithm (GA) for estimating the parameters of
Heston model, and finally there is an explanation of the
overall model construction process.

2.1. HestonModel. Traditional BSM model assumes that the
volatility of underlying asset price is constant, but, in real
financial market, volatility can change and there is a “vol-
atility smile” phenomenon. For this reason, Heston used the
square root mean-reversion process [4] to describe the real-
time volatility variance, with the underlying asset price and
the volatility movement according to the following differ-
ential equation:

dSt � μStdt +
��
Vt

􏽰
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where St and Vt represent, respectively, the underlying asset
price and the variance of the asset price at time t and the
parameter μ represents the mean value of the asset price.
Vt􏼈 􏼉t≥ 0 follows a square root process. 'e parameter θ
corresponds to the long-run average of Vt and κ is the mean-
reversion speed of the volatility. 'e parameter ρ is the
correlation between the underlying asset and the volatility
while σ is the volatility of the variance of returns. Also, W1

t

and W2
t are two standard Brownian motions.

Theorem 1. Assume that the underlying asset price St and its
volatility Vt obey (1) at time t(0≤ t≤T); then the European
call option price C(St, Vt, t) satisfies the following partial
differential equation (PDE), denoting St and Vt by S and V for
simplified notation here:
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(3)

where the parameter r is the risk-free interest rate and
λ(St, Vt, t) is volatility risk premium. And, at time T, the PDE
(2) satisfies the following boundary conditions: (1)
C(S, V, T) � Max(0, S − K), (2) C(0, V, t) � 0, (3) zC

/zS(∞, V, t) � 1, and (4) (rS zC/zS(S, �, t)) +(κθ zC/zV

(S, �, t)) −rC(S, �, t) + Ct(S, �, t) � 0, (5) C(S,∞, t) � S.

Theorem 2. Based on the PDE of (3), the price C(St, Vt, t) of
a nonpaying dividend European call option with expiry dateT

and strike price K has the following closed-form solution:

C St, Vt, t( 􏼁 � StP1 St, Vt, t( 􏼁 − Ke
− r(T− t)

P2 St, Vt, t( 􏼁, (4)
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where P1 and P2 represent the probability distribution
function. >e mathematical expression is shown as follows:

Pj �
1
2

+
1
π

􏽚
+∞

0
Re

exp(−i∅ ln(K)fj x, Vt, T − t,∅( 􏼁􏼑

i∅
⎡⎣ ⎤⎦d∅, (5)

fj x, Vt, T − t,∅( 􏼁 � exp i∅x + Cj(T − t,∅) + Dj(T − t,∅)Vt􏽮 􏽯, (6)

where j � 1, 2, f1, f2 represent the characteristic functions of
P1, P2. Re(y) represents the real part of y, i is an imaginary

unit, and ∅ is the integral variable. >e expressions for each
part of (5) are shown as follows:
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where j � 1, 2, a � κθ, u1 � 1/2, u2 � −1/2, b1 � κ + λ − ρσ,
and b2 � κ + λ.

In addition, since volatility is not a tradable commodity
in the market, the volatility risk premium is an unobservable
measure. Heston assumes that λ(St, Vt, t) � kVt, which is
proportional to volatility, is independent of investors’ risk
attitudes. So, λ can be eliminated by equivalent martingale
measure and volatility risk price λ � 0 in a risk-neutral
world. 'en, the above parameters can be expressed as

κ∗ � κ + λ, θ∗ �
κθ

κ + λ
, a � κ∗θ∗, b1 � κ∗ − ρσ, b2 � κ∗. (8)

'e parameters to be estimated of Heston model also
change from κ, θ, σ, V0, ρ, λ􏼈 􏼉 to κ∗, θ∗, σ, V0, ρ􏼈 􏼉.

2.2. Convolutional Neural Network Model: ResNet50.
Convolutional neural network is a deep neural network
model of multilayer supervised learning, with the con-
volutional layer and the sampling layer being the core
modules that implement feature extraction. 'e convolu-
tional layer performs local connectivity and weight sharing
between neurons for feature extraction, and the sampling
layer extracts the most representative features to achieve
dimensionality reduction. Since Fukushima [34] first pro-
posed convolutional neural network (CNN) in 1980, CNN

has been widely used in machine learning tasks such as
image recognition, face verification, speech recognition, and
text classification. Classical models include LeNet, AlexNet,
VGG, ResNet, and DenseNet. CNN, as the most repre-
sentative network model in deep learning, was initially
applied to image recognition, while option data has similar
characteristics to image data, such as high dimensionality
and local clustering, that is, multiple influencing factors, self-
similarity, and memory of its own price movement process.
Additionally, with the deepening of neural network layers,
the accuracy of the model can be effectively improved, but
the gradient disappearance and network degradation
problems will also arise. Taking all factors into consider-
ation, ResNet50 model is chosen in this paper to correct the
deviation caused by Heston model.

ResNet model is a residual network with modular
thinking [35]. 'e key idea is shortcut connection; that is,
the input of the residual module is directly added to the
output of the module through identity mapping. 'e basic
structure of the residual module is shown in Figure 1, and its
mathematical expression is

F(x) � W2σ W1x( 􏼁,

y � F x, Wi􏼈 􏼉 + x( 􏼁, i � 1, 2,
(9)

where x is the input of the residual module, W1 and W2 are
the weight matrix of the two-layer convolution layer, σ is the

Discrete Dynamics in Nature and Society 3



ReLu nonlinear activation function, and yis the output of the
residual module.

ResNet50 consists of 16 residual modules, each of which
has three convolutional layers. Since the dimensions of input
and output are inconsistent in some ResNet50 residual
modules, it is necessary to change the dimensions of input
and then add it to the output, usually by adding a convo-
lution process. To facilitate differentiation, the module
whose input is mapped through the identity mapping is
called Identity Block, and themodule whose input is mapped
through the convolution layer is called Conv Block. 'e
structure diagrams of Identity Block and Conv Block of
ResNet50 are shown in Figure 2, where batch norm rep-
resents the batch normalization layer and 1∗ 1 and 3∗ 3
represent the size of convolution kernel.

ResNet50 original model was made up of 49 convolu-
tional layers and 1 fully connected layer (excluding pooling
layer, batch normalization layer, and activation function
layer). When He et al. [35] proposed this model, colour
images with size of 224∗ 224 pixels were taken as input data.
After feature extraction by one convolutional layer and one
pooling layer, the image was flattened by entering a 16-
residual module convolution operation and finally output-
ting a 1000-dimensional vector through a fully connected
layer. 'erefore, when ResNet50 model is applied to option
pricing, it is necessary to construct data input in the form of
images, that is, two-dimensional (k � 1) or three-dimen-
sional (k≥ 2) data form of m∗ n∗ k. 'ese data can be
composed of several options with certain characteristics
(such as the same expiration month). Specific data include
factors affecting the option price, such as strike price,
remaining term, and underlying asset price. 'e ZeroPad-
ding layer, pooling layer, and activation function are also
adapted to actual input data size and output data type.

2.3. Genetic Algorithm. Option pricing with Heston model
requires estimation of the model parameters firstly, which
have five parameters to be estimated through an equivalent
martingale measure transformation. In this paper, genetic
algorithm is used to estimate parameters of Heston model
[36]. Genetic algorithm is a random global search and
optimization method based on biological genetic and evo-
lutionary mechanism created by Professor Holland at the
University of Michigan, inspired by biosimulation tech-
niques, which overcomes the disadvantage of traditional
algorithms that are prone to fall into local extremums.
Genetic algorithm obeys the law of survival of the fittest in
nature and simulates the phenomena of inheritance,
crossover, and mutation that occur during the biological

evolution. Starting from a randomly generated generation of
populations, the optimal solution to the problem is obtained
through the selection of fitness functions and the generation
after generation of individuals that are best adapted to their
environment through selection, crossover, and mutation.
'e basic flow of genetic algorithm is shown in Figure 3.

'e specific steps of the algorithm to estimate Heston
model parameters are as follows.

2.3.1. Step 1. Population Initialization. Encoding methods
can be divided into three main categories: binary encoding,
symbol encoding, and floating-point encoding, where we
adopt binary encoding. 'e binary encoding method uses a
fixed-length string of binary symbols to represent an indi-
vidual. If there are multiple parameters, the binary strings
corresponding to each parameter are concatenated as an
individual. 'e binary string length of each parameter is
determined according to the value interval and required
precision. Suppose that the value interval of parameter xj is
[aj, bj] and the required precision is k, then the calculation
formula of binary string length mj is

2mj−1 < bj − aj􏼐 􏼑 × 10k ≤ 2mj − 1. (10)

Set the binary string as U1U2U3 . . . Umj
, Ui � 0 or 1; then

the binary string is converted to the actual value of the
corresponding parameter; i.e., the decoding formula is

weight layer weight layer
Relu

x identity

Relu

F (x)+x
F (x)

x

Figure 1: Basic structure of residual module.
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xj � aj + 􏽘
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Ui · 2i−1⎛⎝ ⎞⎠ ·

bj − aj

2mj−1 . (11)

2.3.2. Step 2. Calculate the Fitness Value. Fitness is a
function calculated to evaluate the fitness of each individual
according to the optimization objective. In this paper, the
optimization objective and the fitness function are given by
the following equations, respectively:

min
Ω

S(Ω) �
1
n

􏽘

n

i�1
C

H
i (Ω) − C

M
i (Ω)􏽨 􏽩

2
, (12)

where Ω � V0, κ∗, θ
∗, σ, ρ􏼈 􏼉, CH

i (Ω) and CM
i (Ω) represent

the Heston model price and the market price of the i th
option, the market price of the option is the closing price,
and n is the sample size.

Fj � e
− fj , (13)

where fj � 1/n 􏽐
n
i�1 [CH

i (Ωj) − CM
i (Ωj)]

2 and Ωj repre-
sents the group j parameter in the population.

2.3.3. Step 3. Select Operation. 'e selection is made
according to the fitness value. 'e higher the fitness value,
the greater the probability of being inherited to the next
generation. Selection methods include roulette selection,
random competition selection, and optimal reservation
selection. In this paper, we use the roulette selectionmethod.
Each individual divides a disk into M sectors according to
the probability Pj � Fj/􏽐

M
k�1 Fk, where M is the population

size. Rotating the disk randomly, we select the individual at
which the disk stops where the pointer falls.

2.3.4. Step 4. Crossover Operation. Crossover operation
refers to two paired chromosomes (individuals) exchange
part of genes with each other in a certain way; the main
methods are single point crossover, uniform crossover,
multipoint crossover, and so on. Due to the quantity of 5
parameters and high precision of Heston model, we choose

three-point crossover operation. Figure 4 is an operation
diagram, where the cross point is randomly generated
according to the crossover probability.

2.3.5. Step 5. Mutation Operation. Mutation refers to a
change in the value of a bit or bits on an individual coding
string. 'e main methods include basic position mutation,
uniform mutation, and boundary mutation. In this paper,
we adopt basic position mutation. 'e specific operation
method is to randomly determine the gene sites to be
mutated in each individual according to the mutation
probability and then change the “1” in binary code into “0”
or “0” into “1.”

2.3.6. Step 6. Determine If Evolution is Over. In this paper,
the judgment criterion is whether the initial set of evolution
algebra has been reached. If not, go back to Step (2). If so, the
algorithm will be terminated.

2.4. Hybrid Modelling Framework. In summary, the model
framework of hybrid CNN based on Heston model estab-
lished in this paper is shown in Figure 5. 'e key steps of the
modelling process are as follows.

2.4.1. Step 1. Parameter Estimation of Heston Model.
Taking the mean square error between Heston prices and
market prices as the optimization objective, the genetic
algorithm is used to estimate the five parameters
V0, κ∗, θ

∗, σ, ρ􏼈 􏼉 of Heston model.

2.4.2. Step 2. Extract the Deviation Sequence. Combining the
parameters obtained by genetic algorithm, the option price
CH was obtained by Heston model, and the deviation se-
quence y was obtained by subtracting the model price CH

from the market price CM.

2.4.3. Step 3. Build the ResNet50 Model. Taking y as the
expected output and the option sample information as the
input data, the training sets and test sets are divided

Encoding
Individual

Fitness
Are termination 

satisfied? OutputYes

No

Selection
Genetic

Operators Crossover Mutation

Figure 3: Basic flowchart of genetic algorithm.
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according to the obtained deviation sequence y and the
corresponding option sample information, and then
ResNet50 can be trained.

2.4.4. Step 4. Correct Pricing Deviations. 'erefore, the
trained hybrid model is used for data fitting or extrapolation
analysis, and the option pricing result of Heston model after
parameter optimization is integrated with the prediction
result of ResNet50 deviation to complete the correction of
pricing deviation, so the option pricing result of the hybrid
model can be obtained as 􏽢C.

3. Empirical Analysis

3.1. Data Selection and Preprocessing. 'is paper studies the
call options of Huatai-PB CSI 300ETF, Harvest CSI 300ETF,
and SSE 50ETF. 'e expiration months of the three options
are the current month, the next month, and the following
two quarterly months, and the expiration date is the fourth
Wednesday of the expiration month. According to the above
contract provisions and to reflect the integrity of data
characteristics, the daily data from February 19 to December
31, 2021 are selected as model fitting samples and training
samples in this paper. 'e daily data from January 4 to
January 14, 2022 are selected as the prediction samples to
conduct extrapolation analysis for each model. 'e daily
data on February 19 and February 20, 2021 are selected as the
parameter estimation data of Heston model. 'e above data
are all from Wind database.

Data variables selected according to the model include
strike price (K), remaining term (T − t, unit: year), closing
price of the underlying asset (S), closing price of the option,
risk-free interest rate (r), and historical volatility of the
underlying asset price. In this paper, Shanghai Interbank
Offered Rate (SHIBOR) is selected as the risk-free interest
rate, with maturities of 3months, 6months, 9months, and
1 year. 'e risk-free interest rate for the remaining matu-
rities is calculated using linear interpolation of rates for
adjacent maturities. 'e historical volatility of the under-
lying asset price is calculated using the volatility of the
previous 30 trading days, a total of 250 trading days in a year.
'e specific calculation formula is S �

���������������

1/29􏽐
29
i�1(xi − x)2

􏽱

;
then σ � S

���
250

√
, where xi � lnPi+1/Pi, x � 1/30􏽐

30
i�1xi, Pi is

the closing price of the underlying asset in the previous
trading day, and Pi+1 is the closing price of the underlying
asset in the current trading day.

Original data needs to be preprocessed, excluding
nontrading day data, data of nonstandard contracts, data of
option bid or offer price with null value and value less than
0.001, and data of underlying asset price with null value. 'e
sample data table of the three ETF options is shown in
Table 1.

3.2. Pricing Error Measure. In this paper, the mean squared
error (MSE), mean absolute percentage error (MAPE), and
mean absolute error (MAE) are selected to evaluate the
model performance by referring to the comparative mea-
sures of Zhang et al. [32] and Yang et al. [33].

K, T–t, S, r

CM

Data
Cleaning

Parameter
Estimation

Option
Pricing

Deviation
Extraction

Deviation
Estimation

GA

Heston

ResNet50

Price 
Correction

V0, κ*, θ*, σ, ρ

CM

CH y ŷ

Ĉ

y = CM–CH Ĉ = ŷ + CH

K, T–t, S, r,
sigma

Figure 5: Modelling framework diagram. Modelling in left-to-right order.
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Point1 Point2 Point3 Point1 Point2 Point3
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Figure 4: Schematic diagram of three-point crossover operation.
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MSE �
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C
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,

MAE �
1
n

􏽘 C
M

− 􏽢C
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(14)

where CM is the market price of the option and 􏽢C is the
estimated price of the option model.

3.3. Parameter Setting and ResNet50 Model Adjustment

3.3.1. Parameter Estimation of Heston Model.
Considering the precision and efficiency of parameter esti-
mation, the parameters of genetic algorithm are set as pop-
ulation size 20, parameter precision 6 (retaining six decimal
places), selection probability pc � 0.6, mutation probability
pm � 0.1, evolutionary generation 500, and parameter value
ranges κ∗: [0, 2], θ∗: [0, 20],{ σ: [0, 1], V0: [0, 5], ρ: [−1, 1]}.
An initial population is randomly generated and converges to
an optimal individual after 500 iterations. 'e parameter
results of Heston model are shown in Table 2, which will also
be used in hybrid modelling.

3.3.2. ResNet50 Model Adjustment. When different types of
options are applied to ResNet50, the input data in line with
the actual situation should be constructed, and the Zer-
oPadding layer and pooling layer should be adjusted ac-
cordingly.'is paper empirically selects the call ETF options
in China and makes the following adjustments to ResNet50
model. 'e adjusted structure is shown in Figure 6.

(1) Adjustment of input size: the input sample point
consists of 9 options with the same expiration month
at time t: 1 at-the-money options, 4 in-the-money
options, and 4 out-of-the-money options stipulated
in the contract. Each option includes the data of five
variables: strike price K, remaining maturity time
T − t, underlying asset price S at time t, risk-free
interest rate r, and historical volatility of the un-
derlying asset. 'erefore, the size of the input data is
9∗ 5∗ 1.

(2) Add a ZeroPadding layer before the initial con-
volutional layer to make the data size 9∗ 9∗ 1.

(3) Due to the small data size, the pooling layer of the
original model is removed.

(4) 'e output data is the expected pricing deviation of
the Heston model optimized by the genetic

algorithm for 9 options; i.e., the output is a 9-di-
mensional vector.

(5) 'e pricing deviation is positive or negative, so the
activation function of the whole connection layer is
adjusted from softmax to tanh.

(6) ResNet50 model is used for regression problems, so
the loss function is adjusted to mse.

3.3.3. Hyperparameter Setting of Neural Networks. In this
paper, we use BP neural network model to make a com-
parison to the performance of ResNet50 model in correcting
the option price deviation of Heston model. BP model
consists of three layers, and the number of neurons in the
hidden layer is calculated according to formula

�����
m + n

√
+ a,

where m and n are the number of neurons in the input layer
and output layer, respectively, and a is an integer between
[0, 10]. In the empirical trial by trial, the error and training
time are compared, and finally the hidden layer of 6 layers is
determined to be the optimal number of layers. In order to
improve the accuracy of the model and ensure the speed of
training convergence, the batch size is 64, the sample data
training times (Epoch) is 500, and the ratio of training set to
test set is 4 :1. ResNet50 model is different from BP model in
the selection of learning rate. Learning rate is tested and
selected from 0.01, 0.001, and 0.0001. 'e results show that
the respective loss functions of ResNet50 model and BP
model change at reasonable rates for learning rates of 0.0001
and 0.01, respectively. Figure 7 shows the change in loss for
ResNet50 model training option deviation data. 'e hori-
zontal coordinate is Epoch value and the vertical coordinate
is loss/val_loss value. In addition, due to the large number of
ResNet50model parameters, in order to increase the amount
of training data, when constructing input samples as de-
scribed previously, the row data of each sample is rearranged
into 9 different sample points, and the output results were
averaged. 'e rearrangement is shown in Figure 8, where
each number represents a row of option data.

3.4. Model Comparison. In order to test the accuracy of
Heston-GA-ResNet50 pricing model, BSMmodel, ResNet50
model, Heston-CIR model, nonaffine Heston model, Hes-
ton-GA model, and Heston-GA-BP hybrid model are
established at the same time. Among them, Heston-CIR
model and nonaffine Heston model, whose parameters are
estimated by genetic algorithm, are computed by Monte
Carlo. 'e results of the parameter estimation are shown in
Tables 5 and 6 in the Appendix. 'erefore, the fitting and
prediction effects of each model have been analysed and
compared as follows.

Table 1: Options sample data size.

Option Parameter estimation data size Fitting data size Prediction data size Total size
510300 ETF 62 8752 372 9186
159919 ETF 62 5887 373 6322
510050 ETF 82 7023 368 7473

Discrete Dynamics in Nature and Society 7



Table 2: Heston parameters of ETF options.

Option
Parameters

κ∗ θ∗ σ V0 ρ

510300 ETF 14.495668 0.016163 0.404808 0.020398 0.908735
159919 ETF 0.0960471 0.0853677 0.090974 0.015918 −0.7
510050 ETF 0.030086 4.962398 0.698335 0.03 0

feature maps 
1@9*9

Input
9*5*1

...

C1:feature map
64@8*8

ResNet

Output
9*1*1

ZeroPadding tanh

Figure 6: Adjusted ResNet structure diagram.
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Figure 7: Changes in loss of training set of Heston-GA-ResNet50 hybrid model. (a) 510300 ETF, (b) 159919 ETF, and (c) 510500 ETF.
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Table 3: Comparison of fitting errors of different models for different ETF options.

Model
Error measure

MSE (E) MAPE MAE
(a) 510300
BSM 2.3158–3 0.3747 0.0308
ResNet50 4.8249–3 1.2926 0.0337
Heston-CIR 1.5582–3 0.3007 0.0278
Non-affine Heston 1.8931–3 0.3264 0.0309
Heston-GA 7.2447–4 0.2831 0.0193
Heston-GA-BP 4.2495–4 0.2788 0.0151
Heston-GA-ResNet50 4.3194–4 0.2724 0.0152
(b) 159919
BSM 9.5349–4 0.3143 0.0210
ResNet50 9.6927–3 0.6950 0.0353
Heston-CIR 5.0487–4 0.2208 0.0155
Non-affine Heston 6.8583–4 0.2905 0.0194
Heston-GA 6.8167–4 0.3614 0.0191
Heston-GA-BP 4.7389–4 0.4480 0.0157
Heston-GA-ResNet50 3.2724–4 0.2303 0.0126
(c) 510050
BSM 5.4316–4 0.3316 0.0151
ResNet50 4.4120–3 0.3065 0.0259
Heston-CIR 4.6814–4 0.3791 0.0158
Non-affine Heston 3.9161–4 0.2740 0.0135
Heston-GA 4.6465–4 0.2303 0.0132
Heston-GA-BP 4.0417–4 0.4231 0.0135
Heston-GA-ResNet50 3.1185–4 0.2387 0.0112

Table 4: Comparison of prediction errors of different models for different ETF options.

Model
Error measure

MSE (E) MAPE MAE
(a) 510300
BSM 7.2966–4 0.4240 0.0219
ResNet50 5.1112–3 0.7137 0.0487
Heston-CIR 4.3061–4 0.2601 0.0155
Non-affine Heston 6.9010–4 0.3135 0.0200
Heston-GA 7.7971–4 0.3581 0.0222
Heston-GA-BP 4.8228–4 0.3478 0.0167
Heston-GA-ResNet50 6.2385–4 0.3110 0.0194
(b) 159919
BSM 8.5637–4 0.4131 0.0240
ResNet50 5.5807–3 0.9124 0.0525
Heston-CIR 1.5082–4 0.2069 0.0089
Non-affine Heston 4.0113–4 0.2708 0.0160
Heston-GA 9.3303–4 0.4452 0.0251
Heston-GA-BP 5.8388–4 0.5907 0.0197
Heston-GA-ResNet50 5.5141–4 0.3050 0.0187
(c) 510050
BSM 7.9299–4 0.4409 0.0231
ResNet50 1.8546–3 1.1366 0.0297
Heston-CIR 3.0460–4 0.3703 0.0143
Non-affine Heston 1.8652–4 0.2306 0.0106
Heston-GA 1.9828–4 0.1892 0.0095
Heston-GA-BP 2.0192–4 0.3287 0.0109
Heston-GA-ResNet50 1.5690–4 0.2407 0.0087
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Figure 9: Continued.
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Table 3 lists the fitting results of six differentmodels applied
to data sets of three listed ETF options in China. MSE, MAPE,
and MAE of Heston-GA model are basically lower than those
of BSM model, indicating that Heston model will be closer to
the actual market situation after relaxing the BSM model’s
assumption that volatility is constant. In the comparison of
three option fits, it can be concluded that the ResNet50 model
does not outperform the other four parametric models, i.e.,
BSM, Heston, Heston-CIR, and nonaffine Heston. 'is sup-
ports that the ResNet50 model indeed lacks an explanation for
the factors affecting option prices, leading to a large deviation
in option pricing. 'e above conclusions confirm the necessity
of hybrid modelling. Table 3 demonstrates the basic reduction
in three measures for two hybrid models over five single
models, with the ResNet50 hybrid model offering a modelling
advantage over the BP hybrid model.

To validate the marketability of the model developed in
this paper and to show that the trained ResNet50 model does
not suffer from overfitting problems, an extrapolation
analysis is performed on the model. We perform model
pricing error analysis with data not involved in NNs
training, i.e., out-of-sample predictive analysis. Table 4 il-
lustrates the prediction errors of each model. 'e relative
prediction error of each model is basically similar to the
fitting error in Table 3, where three measures of Heston-GA-
ResNet50 model of three ETF options all decrease. In
particular, it can be argued from the empirical evidence on
510300 ETF options that if the hybrid model performs
poorly in the fitting experiment, it will perform similarly in
the prediction. 'erefore, if the NNs models are to be ap-
plied to the real market, the training of themodel determines
the quality of the model.
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Figure 9: Option price prediction of different models with different remaining terms (510300). (a) Pricing comparison of Heston-GA-
ResNet50 model with BSM model and Heston model for 510300 ETF options. (b) Pricing comparison of Heston-GA-ResNet50 model with
nonaffine model and Heston-CIR model for 510300 ETF options.
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Figure 10: Continued.
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In general, an important observation can be derived
from Tables 3 and 4, i.e., on three options data, MSE, MAPE,
and MAE of Heston-GA-ResNet50, which are commonly
smaller than those of the other six comparison models. 'is
implies that correcting Heston price bias with ResNet50
gives more accurate results. As for the Heston optimization
models, i.e., Heston-CIR and nonaffine Heston in this paper,
they do perform relatively not badly for 510300 and 159919
ETF options in Table 4 empirically. But the combined in-
formation in Tables 3 and 4 demonstrates that their pricing
effects are uncontrollable, which are limited by the market
factors and the accuracy of the parameter estimates. 'is
validates the previous statement that parametric option
pricing models lack the ability of capturing nonlinear fac-
tors, i.e., robustness, to a certain extent compared to non-
parametric models. To sum up, Heston-GA-ResNet50model

has the highest accuracy and robustness and better pricing
performance, which has certain application significance in
the option market. 'is point will also be demonstrated in
the following empirical analysis.

To better illustrate the applicability of the Heston-
GA-ResNet50 model, the option contracts for January 5,
2022, including the four maturity months of January,
February, March, and June, are chosen as examples.
Figures 9–11 depict the pricing for different model for
different remaining terms and the comparison with real
market prices. For clarity of comparison, we divide
models into two groups a and b. Group a includes BSM
model, Heston model, and Heston-GA-ResNet50 model,
and group b includes Heston-CIR model, nonaffine
Heston model, and Heston-GA-ResNet50 model. In
Figures 9–11, the pricing curves of the model in this paper

–0.02

0.08

0.18

0.28

0.38

0.48

0.58

4.4 4.5 4.6 4.7 4.8 4.9 5 5.25 5.5 5.75 6

O
pt

io
n 

Pr
ic

e

Strike Price

(b.1) Option Remaining Term:21 days

market price
Heston-GA-
ResNet50 price

non-affine Heston price
Heston-CIR price

market price
Heston-GA-
ResNet50 price

non-affine Heston price
Heston-CIR price

market price
Heston-GA-
ResNet50 price

non-affine Heston price
Heston-CIR price

market price
Heston-GA-
ResNet50 price

non-affine Heston price
Heston-CIR price

–0.01
0.04
0.09
0.14
0.19
0.24
0.29
0.34
0.39
0.44

4.5 4.6 4.7 4.8 4.9 5 5.25 5.5 5.75 6

O
pt

io
n 

Pr
ic

e

Strike Price

(b.2) Option Remaining Term:49 days

0

0.1

0.2

0.3

0.4

0.5

0.6

4.4 4.5 4.6 4.7 4.8 4.9 5 5.25 5.5 5.75 6

O
pt

io
n 

Pr
ic

e

Strike Price

(b.3) Option Remaining Term:77 days

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4.4 4.5 4.6 4.7 4.8 4.9 5 5.25 5.5 5.75 6

O
pt

io
n 

Pr
ic

e

Strike Price

(b.4) Option Remaining Term:168 days

(b)

Figure 10: Option price prediction of different models with different remaining terms (159919). (a) Pricing comparison of Heston-GA-
ResNet50 model with BSM model and Heston model for 159919 ETF options. (b) Pricing comparison of Heston-GA-ResNet50 model with
nonaffine model and Heston-CIR model for 159919 ETF options.
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Figure 11: Continued.
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are essentially closer to the actual market price curves for
both short and long remaining terms of the options, for
which the conclusion further confirms the superiority of
Heston-GA-ResNet50 model consistently with the pre-
vious empirical findings.

4. Conclusions

In this paper, we propose a new hybrid neural network
option pricing model Heston-GA-ResNet50 combining
traditional Heston model with ResNet50 model, where the
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Figure 11: Option price prediction of different models with different remaining terms (510050). (a) Pricing comparison of Heston-GA-
ResNet50 model with BSM model and Heston model for 510050 ETF options. (b) Pricing comparison of Heston-GA-ResNet50 model with
non–affine model and Heston-CIR model for 510050 ETF options.

Table 5: 'e parameters of Heston-CIR model.

Option
Parameters

κ∗ θ∗ σ V0 ρ α β η

510300 ETF 0.29599 0.03604 0.04210 0.04700 −0.4 0.14506 0.02487 0.04506
159919 ETF 0.06208 0.03646 0.06224 0.03644 −0.6 0.05343 0.04537 0.06016
510050 ETF 0.05441 0.04355 0.0436 0.06456 −0.5 0.05432 0.04361 0.03472

Table 6: 'e parameters of nonaffine Heston model.

Option
Parameters

κ∗ θ∗ σ V0 σ c

510300 ETF 0.050145 0.051107 0.039328 0.051053 −0.6354 0.6675
159919 ETF 0.058008 0.058008 0.061538 0.057898 −0.7 0.478984
510050 ETF 0.049317 0.772893 0.045445 0.049504 −0.4937 0.755048
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parameters of Heston model are optimized through genetic
algorithm. In particular, we propose a new way of con-
structing data facets by combining data from several option
contracts according to some criteria. 'is image-like data is
suitable as input data for CNN, as it is in this paper for the
adjusted ResNet50 model. Our approach provides a reference
for the application of CNN models or existing classical CNN
models to options pricing, which has profound theoretical
implications. 'en, the empirical study on three kinds of
listed ETF call options shows that our hybrid model is su-
perior to other models in both terms of fitting and prediction.
For the comparison, we not only use BSMmodel and Heston
model, but also add BP hybrid model and two Heston op-
timization models, namely, Heston-CIR model and nonaffine
Heston model. 'e more outstanding performance of our
model compared to these excellent models confirms the
validity of the modelling ideas in our research. Further
analysis of the applicable scope of model pricing shows that
Heston-GA-ResNet50 model has a high accuracy for both
short and long maturities. And, compared with other models,
Heston-GA-ResNet50 model has a stronger applicability for
long maturities. 'erefore, the modelling process of our
hybrid model is effective, in which the parametric pricing
model ensures the interpretability of the hybridmodel and the
nonparametric model enhances the nonlinear fitting ability of
the hybrid model, making our Heston-GA-ResNet50 model
more accurate and robust. In summary, the model proposed
in this paper is of both theoretical and practical significance,
which will provide a reference for academics and investors.

In the future research, we will extend our model to the
pricing application of other kinds of options. Besides, we will
also concern how to establish a hybrid model with low
complexity, fast training speed, high accuracy, and strong
applicability in future improvement.

Appendix

In the risk-neutral setting, Heston-CIR and nonaffine
Heston have the following mathematical expressions,
respectively.

Heston-CIR model [9] is

dSt � rtStdt + St

��
vt

√
dW1,t,

dvt � κ θ − vt( 􏼁dt − σ
��
vt

√
ρdW1,t +

�����

1 − ρ2
􏽱

dW2,t􏼒 􏼓,

drt � αβ − α + Bη2􏽨 􏽩r􏽮 􏽯dt + η
��
rt

√
dW3,t,

(A.1)

where B � 2(em(T− t) − 1)/2m + (α + m) (em(T−t) − 1)

m �
�������
α2 + 2η2

􏽰
。

Nonaffine Heston model [37] is

dSt � rStdt +
��
vt

√
StdW1,t,

dvt � κ θ − vt( 􏼁dt + σv
c/2
t ρdW1,t +

�����

1 − ρ2
􏽱

dW2,t􏼒 􏼓,
(A.2)

where c is a nonaffine parameter.
In this paper, the parameters of above two models

are estimated by GA. 'e results are shown in Tables 5
and 6.
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