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'e major network design or data distributed problems may be described as constrained optimization problems. Constrained
optimization problems include restrictions imposed by the system designers. 'ese limitations are basically due to the system
design’s physical limitations or functional requirements of the network system. Constrained optimization is a computationally
challenging job whenever the constraints/limitations are nonlinear and nonconvex. Furthermore, nonlinear programming
methods can easily deal same optimization problem if somehow the constraints are nonlinear and convex. In this paper, we have
addressed a distributed network design problem involving uncertainty that transmits data across a parallel router.'is distributed
network design problem is a Jackson open-type network design problem that has been formulated based on the M/M/1 queueing
system. Because our network design problem is a nonlinear, convex optimization problem, we have employed a well-known
Kuhn–Tucker (K-T) optimality algorithm to solve the same. Here, we have used triangular fuzzy numbers to express uncertain
traffic rates and data processing rates. 'en, by applying α-level interval of fuzzy numbers and their corresponding parametric
representation of α-level intervals, the associated network design problem has been transformed to its parametric form and later
has been solved. To obtain the optimal data stream rate in terms of interval and to illustrate the applicability of the entire approach,
a hypothetical numerical example has been exhibited. Finally, the most important results have been reported.

1. Introduction

A queue is a set of individuals or things that must be handled
in a specific way. Erlang [1], a Danish engineer known as the
“Father of Queueing 'eory,” had published articles on the
study of telephone traffic congestion in 1909. A queueing
network consists of nodes, each of which represents a service
facility. In 1957, Jackson [2] found the use of queueing
networks. Jackson’s network [3] has the most significant
contributions to the queueing network service centres,
digital communications, communications infrastructure,
processing and flexible automation systems, transportation
hubs, and healthcare systems which are just a few areas of

use for queueing frameworks. Queueing networks are cat-
egorized into three types: open, closed, and mixed networks.
Users begin receiving from an external device and for-
warding to an external destination via open networks.
Closed networks have a constant majority of individuals who
stream between queues but never leave the same process.
Some working phases are created by combining networks in
order for them to be open, while others require them to be
closed, which are referred to as mixed networks. Retrial
queues or queues with frequent orders are queueing con-
cepts that are expected to arrive to the clients who find the
host engaged could sometimes retry for which service after
quite period of time. Between retrials, the stuck user needs to
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join a clientele referred as “orbit.” Kosten [4] was the first to
propose the notion of retrial queues in 1947. Retrial queues
have been used as computer simulations in a variety of
digital systems, communication networks, telephony,
wireless communications, reservation ticket bookings,
healthcare organisations, and so on. Cohen [5] explored the
fundamental issues of telephone traffic theory.'e advanced
telecommunication framework comprises personal infor-
mation, and conventional relay switched networks may not
work well with data. To address this issue, packet-switching
has been introduced. It is possible that a specific connectivity
between routers is busy in a packet-switched system; in that
case, the packet should wait until it becomes available.

A router is required to wait to transfer data through an
intermediate destination node [6]. 'rough our conceptual
scheme, we have decided to place our queueing network on
the Jackson queueing network, for each queue becoming a
single server M/M/1 queue. In M/M/1 queues, the expo-
nential distribution is used to distribute both the host time
and the processing time. 'e exponential distribution is also
the probability distribution of the time between occurrences
in a stochastic process, a process in which events take place
continuously and independently at a constant average rate
and is therefore more exact for traffic-related cross-func-
tional and cross time and processing time in a real-world
data transmission system. Queueing networks are an ef-
fective technique for studying the efficiency of ride-sharing
or vehicular applications [7–9], transportation networks
[10], communication networks [5, 11], and so on. For more
details, one may refer to the distinguished works of Kulkarni
[12], Rama and Motahar [13], Paschalidis and Tsitsiklis [14],
Sommer et al. [15], Cruz and Woensel [16], Roy [17], Kim
et al. [18], Melamed [19], Kam et al. [20], Kaul et al. [21],
Kam et al. [22], Whitt and You [23], Whitt [24], Xia and
Shihada [25], Timmer and Scheinhardt [26], Wang et al.
[27], and Alam et al. [28], etc.

2. Motivation of the Study

In conventional network routing problems, it has been
presumed that data transmission factors such as network
congestion, data transfer rate, and network throughput are
clearly recognised. 'is implies that its system’s complete
probabilistic information is known advance. In this case, it
is implied that the probability value for each probable event
is exactly predictable. Nevertheless, susceptible to equip-
ment failures, unstable power supply, unauthorised storage
facilities, and certain other matters pertaining to unusual
surroundings and all parameters relating to the commu-
nication of data network systems may not always be fixed/
precise. In this case, it is necessary to retrieve exact system
information. As a matter of fact, the performance pa-
rameters will be deemed as a reasonable approximation.
When dealing with such ambiguous figures, fuzzy set
theory helps a lot (Zadeh, 1965). Lotfi A. Zadeh developed
fuzzy set theory and logic in 1965 [29]. He extended
classical set theory concepts to account for data ambiguity
and uncertainty, laying the groundwork for modern fuzzy
set theory. Zadeh was personally responsible for the

subject’s significant and notable advancement. 'is theory
is primarily used to model uncertainty in data across a wide
range of research fields.

In this study, we took into account fuzzy values and their
corresponding α-level interval numbers while attempting to
deal with ambiguous parameters. As a consequence, the
fuzzy valued data distributed network system presents a
viable conceptual model for addressing the network opti-
mization model of a multifaceted distributed data network
with a fuzzy valued parametric arrangement.'e parameters
associated with this problem have always been considered
fuzzy numbers, and the respective problem has been solved
using the interval parametric technique. For interval para-
metric technique, interval arithmetic [30] and a very well
parametric representation of α-level interval studied by
Sahoo [31] have been used. 'roughout this paper, we
considered a distributed network design problem with
uncertainty which also transmits data over a parallel gate-
way. 'is network design problem is a Jackson open-type
network problem with a M/M/1 queueing system that has
been formed. Even though our network design problem is
nonlinear and convex, the authors used well-known
Kuhn–Tucker (K-T) optimality techniques [32] to solve it. In
this paper, we consider and solve a data-distributed network
system under uncertainty. Finally, the most important re-
sults were reported.

2.1. Contributions and Objectives. 'e following are the
contributions and objectives of the proposed research work:

(1) We developed and solved data distributed network
systems in the presence of uncertainty

(2) Jackson open-type network has been used to for-
mulate the network design optimization problems
based on the M/M/1 queueing system

(3) We used fuzzy sets/fuzzy numbers to convey
uncertainty

(4) To express all of the parameters, such as data traffic
rates and data processing rates to send data in a
whole network, we used triangular fuzzy numbers
(TFNs)

(5) Interval parametric representation of fuzzy param-
eters has been accomplished using a parametric
representation of interval numbers

(6) For determining the optimal data stream rate over
the routers, a well-known Kuhn–Tucker (K-T) op-
timality technique has been implemented

(7) In an uncertainty context, Kuhn–Tucker (K-T) op-
timality technique has been described

(8) Using Little’s formula and interval arithmetic, we
have estimated the data stream rate, expected a
number of packets, expected waiting time, mean
processing time, and expected number of packets in
the router in terms of interval uncertainty

(9) Concluding remarks have been presented, along with
the future direction of the proposed research work
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Most of the work done in this study can be summarized
in the following way:

(i) Jackson open-type network has been used to for-
mulate the network design optimization problems
based on the M/M/1 queueing system

(ii) In a data distributed network, all the parameters,
such as data traffic rates and data processing rates to
send data in a whole network, we have used tri-
angular fuzzy numbers (TFNs)

(iii) Interval parametric representation of fuzzy pa-
rameters has been accomplished using a parametric
representation of interval numbers

(iv) Kuhn–Tucker (K-T) optimality technique has been
described to find optimal data stream rates under
uncertain situations

(v) Little’s formula has been used to estimate the data
stream rate, expected number of packets, expected
waiting time, mean processing time, and expected
number of packets in the router in terms of interval
uncertainty

'e rest of the paper is organized as follows: Section 2
gives some basic mathematical foundations to develop the
paper. Section 3 presents a problem description in an un-
certain environment. Section 4 gives an analytical solution of
the problem in terms of interval uncertainty with a nu-
merical illustration. Finally, the concluding remark has been
presented in Section 5.

3. Mathematical Background

'is section describes essential terms and concepts related to
fuzzy sets, fuzzy numbers, and parametric representation of
interval numbers which will be used in this study.

3.1. ExpectedNumber of Packets in(M/M/1): (∞/FCFS/∞)

Queueing System. Let N be the number of packets in the
system. If λ and μ be the arrival rate and processing rate, then
according to (M/M/1): (∞/FCFS/∞) queueing system,
Ls � expected no. of packets in the system, i.e., average no. of
the packet in a system� 􏽐

∞
N�0 NPN � 􏽐

∞
N�0

N(1 − ρ)ρN� ρ/1 − ρ� λ/μ − λ, where ρ � λ/μ

3.2. KKT Optimality Conditions. Let us consider a mini-
mization problem as follows:

Minimumf(x) � f(x1, x2, . . . , xn)

Subject to

gi x1, x2, · · · , xn( 􏼁≤ 0, i � 1, 2, 3 . . . , m. (1)

'e necessary conditions for a solution x∗ to be the local
optimal for problem (1) are as follows:

∇f x
∗

( 􏼁 + 􏽘
m

i�1
λ∗i ∇gi x

∗
( 􏼁 � 0, (2)

λi
∗
gi x
∗

( 􏼁 � 0, for i � 1, 2, . . . , m. (3)

gi x
∗

( 􏼁≤ 0, for i � 1, 2, . . . , m. (4)

λ∗i〉 0, for i � 1, 2, . . . , m. (5)

where ∇f(x) � (zf(x)/zx1, zf(x)/zx2, . . . , zf(x)/zxn)T

and ∇gi(x) � (zgi(x)/zx1, zgi(x)/zx2, . . . , zgi(x)/zxn)T.
Equations (2)–(5) are the Kuhn–Tucker (K-T) condi-

tions and point (x∗, λ∗) is the K-Tpoint. It is to be noted that
one of the best approaches to solve a nonlinear program-
ming problem (NLP) is to find (K-T) point (x∗, λ∗) and
consider x∗ as the optimal solution of problem (1). Again, if
the function f(x) is convex and the feasible region is a
convex set, then x∗ is also the global minimum of problem
(1).

3.3.ConceptofFuzzySet. Amembership function μ􏽥A
(x) that

maps to each element x in X to a real number in the interval
0≤x≤ 1 forms a fuzzy set.'e function μ􏽥A

(x) represents the
degree of membership of x in the fuzzy set 􏽥A.

Definition 1. 'e α-cut of a fuzzy set 􏽥A is a crisp subset of X

and is denoted by Aα � x ∈ X: μ􏽥A
(x)≥ α􏽮 􏽯, where μ􏽥A

(x) is
the membership function of 􏽥A and α ∈ [0, 1].

Definition 2. A fuzzy set 􏽥A is called a normal fuzzy set if
there exists at least one x ∈ X such that μ􏽥A

(x) � 1.

Definition 3. A fuzzy set 􏽥A is called convex iff for every pair
of x1, x2 ∈ X, the membership function of 􏽥A satisfies
μ􏽥A

(λx1 + (1 − λ)x2)≥min μ􏽥A
(x1), μ􏽥A

(x2)􏽮 􏽯, where
λ ∈ [0, 1].

Definition 4. A fuzzy number 􏽥A is a fuzzy set that is both
convex and normal.

Definition 5. 'e triangular fuzzy number (TFN) is a
normal fuzzy number denoted as 􏽥A � (al, am, ar), where
al ≤ am ≤ ar and its membership function
μ􏽥A

(x): X⟶ [0, 1] is defined by

μ􏽥A
(x) �

x − al

am − al

if al ≤x≤ am,

1 if x � am,

ar − x

ar − am

if am ≤ x≤ ar.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

3.3.1. α-Level Set of Triangular Fuzzy Numbers. Let
􏽥A � (al, am, ar) be a triangular fuzzy number, then α-level
set of the triangular fuzzy number 􏽥A � (al, am, ar) is
Aα � x ∈ X: μ􏽥A

(x)≥ α􏽮 􏽯 � [A−
α , A+

α], where A−
α � al + (am−

al)α and A+
α � ar − (ar − am)α, α ∈ [0, 1].
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3.4. Parametric representation of Interval number. Let A �

[a− , a+] be an interval number. According to Sahoo [22],
parametric representation of interval numberA � [a− , a+] is
denoted by HA(p), which is defined as follows:

HA(p) �
a

−
( )

1− p
a

+
( 􏼁

p if a
−
〉 0 and 0≤p≤ 1,

− a
−

| |( )
1− p

a
+

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

p
if a

+
〈 0 and 0≤p≤ 1.

⎧⎪⎨

⎪⎩
(7)

If 0 ∈ [a− , a+], i.e., if a− 〈 0 and a+〉 0, then

HA(p) �
− a

−
| |( )

1− p
(|θ|)

p
, θ⟶ 0− if a

+
− a

−
| |( 􏼁〈 0 and 0≤p≤ 1,

(θ)
1− p

a
+

( 􏼁
p
, θ⟶ 0+ if a

+
− a

−
| |( 􏼁〉 0 and 0≤p≤ 1.

⎧⎨

⎩ (8)

3.4.1. Interval Parametric Representation of Triangular Fuzzy
Number. Let 􏽥A � (al, am, ar) be a triangular fuzzy number
and Aα � [A−

α , A+
α] be the corresponding α− level interval,

where A−
α � al + (am − al)α and A+

α � ar − (ar − am)α,
α ∈ [0, 1], then according to Section 3.4, HAα

(p) be its
corresponding parametric representation of Aα � [A−

α , A+
α].

4. Problem Formulation

We have considered the following assumptions and nota-
tions to develop the entire paper.

4.1. Assumptions

(i) 'e processor can process only one packet at a time
(ii) Packets arrival process is memoryless (M): no

matter what, each seemed of a time a new packet
arrives with probability λ

(iii) Processing of packets is memoryless (M): if the
queue is not empty, in each seemed if a time the
server/processor complete processing a packet with
probability μ

(iv) Average number of packets P waiting in queue is
given by P � λ/μ − λ

(v) Data rate, additional traffic rate, and processing rate
of the traffic network are fuzzy valued

4.2. Notations

􏽥rj: additional traffic rate of j-th server which is fuzzy
valued
􏽥Cj: processing rate of j-th server which is fuzzy valued
􏽥xj: datastream rate of j-th server which is uncertain
􏽥R: data rate of the network which is fuzzy valued

Let us assume that a network sends data of rate 􏽥R over a n

parallel routers which are n parallel queues. Let the pro-
cessing rate of j − th router is 􏽥Cj. Let us suppose that the data
be distributed over separate streams of rates 􏽥x1,􏽥x2, 􏽥x3, ..., 􏽥xn,
where data 􏽥xj is sent into j-th queue. Furthermore, assume
that the j − th queue serves an additional traffic stream of
rate 􏽥rj (see Figure 1). According to
(M/M/1): (∞/FCFS/∞) queueing model, the average
number of data packets in j − th queue is
􏽥xj + 􏽥rj/􏽥Cj − (􏽥xj + 􏽥rj). 'erefore, for all the queues, we want
to find 􏽥x1,􏽥x2, 􏽥x3, ..., 􏽥xn in such a way that the total average no.
of packets in the entire n-queue network is to be minimized.
'erefore, the corresponding optimization problem be-
comes as follows:

minimize 􏽥P 􏽥x1,􏽥x2, 􏽥x3, . . . , 􏽥xn􏼐 􏼑 � 􏽘
n

j�1

􏽥xj + 􏽥rj

􏽥Cj − 􏽥xj + 􏽥rj􏼐 􏼑
,

subject to 􏽥g 􏽥x1,􏽥x2, 􏽥x3, . . . , 􏽥xn􏼐 􏼑 � − 􏽘
n

j�1
􏽥xj − 􏽥R≤ 0,

􏽘

n

j�1
􏽥rj + 􏽥R≤ 􏽘

n

j�1

􏽥Cj,

􏽥xj ∈ 􏽥0, 􏽥Cj − 􏽥rj􏽨 􏽩and 􏽥Cj〉 􏽥1, for j � 1, 2, . . . , n. (9)
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As the optimization problem (9) is related to fuzzy
valued objective function as well as fuzzy valued constraints,
for solution purposes we have used a parametric

representation of the fuzzy number. Now, using Prometric
representation, problem (9) reduces to the following:

minimizeH􏽥P 􏽥x1,􏽥x2 ,􏽥x3 ,...,􏽥xn( )
(p) � 􏽘

n

j�1

􏽥xj + H􏽥rj
(p)

H􏽥Cj

(p) − 􏽥xj + H􏽥rj
(p)􏼒 􏼓􏼒

,

subject to − 􏽘
n

j�1
􏽥xj − H􏽥R(p)≤ 0,

􏽘

n

j�1
H􏽥rj

(p) + H􏽥R(p)≤ 􏽘
n

j�1
H􏽥Cj

(p),

􏽥xj ∈ 0, H􏽥Cj

(p) − H􏽥rj
(p)􏼔 􏼕andH􏽥Cj

(p)〉 1, for j � 1, 2, . . . , n. (10)

Problem (10) is a nonlinear and convex optimization
problem.'erefore, to find out the optimal solution, we have
used widely known K-T optimality criteria mentioned in
equations (2)–(5).

Deduction 1. Average number of packets in the j − th queue
is 􏽥xj + 􏽥rj/􏽥Cj − (xj + 􏽥rj).

Proof. From Figure 1, it has been observed that the arrival
rate is 􏽥xj + 􏽥rj at j − th server/router and service (processing)
rate is 􏽥Cj .'erefore, 􏽥ρj � (􏽥xj + 􏽥rj/􏽥Cj). Hence, the expected
number of packets in the j − th server/router, i.e., an average
number of packets in a system, is

􏽥Ls �
􏽥ρj

1 − 􏽥ρj

� 􏽥xj + 􏽥rj/􏽥Cj − 􏽥xj + 􏽥rj􏼐 􏼑.

(11)

□

Theorem 1. ?e optimization problem (9) is convex.

Proof. Problem (9) is convex if ∇2P as well as ∇2g is positive
definite.

Now,

∇2P �

z
2
P

zx
2
1

z
2
P

zx1zx2
· · ·

z
2
P

zx1zxn

z
2
P

zx2zx1

z
2
P

zx
2
2

· · ·
z
2
P

zx2zxn

⋮ ⋮ ⋮ ⋮

z
2
P

zxnzx1

z
2
P

zxnzx2
· · ·

z
2
P

zx
2
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

1

2

j

n–1

n

xn–1

xj

xn

x2

x1

rj
~

Cj
~

r2
~

C2
~

C1
~r1

~

rn–1
~ Cn–1

~

Cn
~

rn
~

R~

Figure 1: Jackson open-type data sending network over n parallel router.
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where z2P/zxizxj � 2Cj/ Cj − (xj + rj)􏽮 􏽯
3

if i � j

0 if i≠ j
􏼨

Here, 2Cj/ Cj − (xj + rj)􏽮 􏽯
3
is always positive and hence

∇2P is positive definite. Similarly, ∇2g is also positive def-
inite, where g � x1 + x2 + x3 + · · · + xn − R≥ 0. □

Theorem 2. If x∗ is a local optimizer of (9), then x∗ is also a
global optimizer of (9).

Proof. As the optimization problem (9) is convex, also if x∗

is a local optimizer of (9) then x∗ is also a global optimizer of
(9). □

5. Analytical Solution of Problem with
Numerical Illustration

Using KKT conditions (2)–(5), analytical solution of
problem (10) is as follows:

λ �

􏽐
n
j�1

�������
H􏽥Cj

(p)
􏽱

􏽐
n
j�1 H􏽥Cj

(p) − 􏽐
n
j�1 H􏽥rj

(p) − H􏽥R(p)
⎛⎜⎜⎝ ⎞⎟⎟⎠

2

, (13)

􏽥xj � H􏽥Cj

(p) − H􏽥rj
(p) −

�������
H􏽥Cj

(p)

λ

􏽳

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (14)

Table 1: Additional traffic (􏽥rj) and processing rate (􏽥Cj) of each server.

Router (j) Additional traffic (􏽥rj) (in kbps) Processing rate (􏽥Cj) (in kbps)

1 (1.0, 2.0, 2.5) (55, 60, 62)
2 (1.5, 3.0, 4.0) (60, 62, 63)
3 (4.0, 5.0, 6.0) (59, 63, 64)
4 (1.0, 2.0, 3.0) (57, 60, 64)
5 (4.0, 6.0, 6.5) (58, 60, 63)
6 (3.0, 4.0, 5.0) (61, 64, 66)
7 (6.0, 8.0, 9.0) (69, 70, 72)
8 (2.0, 3.5, 4.0) (59, 61, 63)
9 (4.5, 5.0, 6.0) (63, 65, 66)
10 (0.5,1.0, 2.0) (57, 60, 63)

Table 2: Additional traffic and processing rate of each server in terms of α-level interval.

Router (j) Additional traffic (in kbps) Processing rate (in kbps)
1 [1.0 + α, 2.5 − 0.5α] [55 + 5α, 62 − 2α]

2 [1.5 + 1.5α, 4.0 − α] [60 + 2α, 63 − α]

3 [4.0 + α, 6.0 − α] [59 + 4α, 64 − α]

4 [1.0 + α, 3.0 − α] [57 + 3α, 64 − 4α]

5 [4.0 + 2α, 6.5 − 0.5α] [58 + 2α, 63 − 3α]

6 [3.0 + α, 5.0 − α] [61 + 3α, 66 − 2α]

7 [6.0 + 2α, 9.0 − α] [69 + α, 72 − 2α]

8 [2.0 + 1.5α, 4.0 − 0.5α] [59 + 2α, 63 − 2α]

9 [4.5 + 0.5α, 6.0 − α] [63 + 2α, 66 − α]

10 [0.5 + 0.5α, 2.0 − α] [57 + 3α, 63 − 3α]

Table 3: Additional traffic and processing rate of each server in terms of parametric representation.

Router (j) Additional traffic (in kbps) Processing rate (in kbps)
1 (1.0 + α)1− p(2.5 − 0.5α)p (55 + 5α)1− p(62 − 2α)p

2 (1.5 + 1.5α)1− p(4.0 − α)p (60 + 2α)1− p(63 − α)p

3 (4.0 + α)1− p(6.0 − α)p (59 + 4α)1− p(64 − α)p

4 (1.0 + α)1− p(3.0 − α)p (57 + 3α)1− p(64 − 4α)p

5 (4.0 + 2α)1− p(6.5 − 0.5α)p (58 + 2α)1− p(63 − 3α)p

6 (3.0 + α)1− p(5.0 − α)p (61 + 3α)1− p(66 − 2α)p

7 (6.0 + 2α)1− p(9.0 − α)p (69 + α)1− p(72 − 2α)p

8 (2.0 + 1.5α)1− p(4.0 − 0.5α)p (59 + 2α)1− p(63 − 2α)p

9 (4.5 + 0.5α)1− p(6.0 − α)p (63 + 2α)1− p(66 − α)p

10 (0.5 + 0.5α)1− p(2.0 − α)p (57 + 3α)1− p(63 − 3α)p
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􏽘

n

j�1
􏽥xj � H􏽥R(p). (15)

Using (13)–(15), we obtain

􏽥xj � H􏽥Cj

(p) − H􏽥rj
(p)

−

�������
H􏽥Cj

(p)
􏽱

􏽐
n
j�1 H􏽥Cj

(p) − 􏽐
n
j�1 H􏽥rj

(p) − H􏽥R(p)􏼒 􏼓

􏽐
n
j�1

�������
H􏽥Cj

(p)
􏽱 ,

j � 1, 2, . . . , n.

(16)

Case 1. If H􏽥r1
(p) � H􏽥r2

(p) � ..... � H􏽥rn
(p) � H􏽥r(p) and

H􏽥C1
(p) � H􏽥C2

(p) � ..... � H􏽥Cn

(p) � H􏽥C
(p), then 􏽥xj �

H􏽥R(p)/n.

Case 2. If H􏽥r1
(p) � H􏽥r2

(p) � ..... � H􏽥rn
(p) � 0 and

H􏽥C1
(p) � H􏽥C2

(p) � ..... � H􏽥Cn

(p) � H􏽥C
(p), then 􏽥xj �

H􏽥R(p)

Case 3. If H􏽥r1
(p) � H􏽥r2

(p) � ..... � H􏽥rn
(p) � H􏽥r(p) and

H􏽥C1
(p) � H􏽥C2

(p) � ..... � H􏽥Cn

(p) � 0, then 􏽥xj � H􏽥R(p)/n.

Case 4. If H􏽥r1
(p) � H􏽥r2

(p) � ..... � H􏽥rn
(p) � 0 and

H􏽥C1
(p) � H􏽥C2

(p) � ..... � H􏽥Cn

(p) � 0, then xj � H􏽥R(p).

Table 4: Data stream rate for different values of p and α � 0.

Router (j)
Data stream rate when α � 0

p � 0 p � 0.1 p � 0.2 p � 0.3 p � 0.4 p � 0.5 p � 0.6 p � 0.7 p � 0.8 p � 0.9 p � 1
1 45.32 46.02 46.73 47.45 48.19 48.93 49.69 50.46 51.24 52.03 52.84
2 49.43 49.71 49.99 50.27 50.55 50.84 51.12 51.41 51.70 51.99 52.28
3 46.01 46.50 47.01 47.52 48.03 48.55 49.07 49.60 50.14 50.68 51.23
4 47.16 47.82 48.50 49.18 49.87 50.57 51.28 52.00 52.74 53.48 54.23
5 45.08 45.53 45.99 46.44 46.91 47.37 47.85 48.32 48.81 49.29 49.78
6 48.86 49.36 49.87 50.38 50.90 51.42 51.95 52.49 53.03 53.57 54.13
7 53.27 53.52 53.77 54.03 54.28 54.53 54.79 55.04 55.30 55.56 55.82
8 48.01 48.42 48.83 49.25 49.67 50.10 50.53 50.96 51.40 51.84 52.28
9 49.21 49.59 49.97 50.35 50.74 51.13 51.52 51.92 52.32 52.72 53.13
10 47.66 48.28 48.92 49.56 50.21 50.86 51.53 52.21 52.89 53.58 54.28

Table 5: Data stream rate for different values of p and α � 0.2.

Router (j)
Data stream rate when α � 0.2

p � 0 p � 0.1 p � 0.2 p � 0.3 p � 0.4 p � 0.5 p � 0.6 p � 0.7 p � 0.8 p � 0.9 p � 1
1 46.17 46.74 47.32 47.90 48.49 49.09 49.70 50.31 50.93 51.56 52.19
2 49.64 49.87 50.09 50.32 50.54 50.77 51.00 51.23 51.46 51.69 51.93
3 46.69 47.09 47.49 47.90 48.32 48.73 49.15 49.58 50.00 50.43 50.87
4 47.65 48.19 48.73 49.28 49.84 50.40 50.97 51.54 52.12 52.71 53.30
5 45.19 45.55 45.92 46.29 46.66 47.03 47.41 47.79 48.17 48.56 48.95
6 49.35 49.76 50.17 50.58 51.00 51.42 51.84 52.27 52.70 53.13 53.57
7 53.21 53.41 53.61 53.81 54.02 54.22 54.42 54.63 54.83 55.04 55.25
8 48.22 48.55 48.88 49.22 49.56 49.90 50.24 50.59 50.93 51.28 51.64
9 49.62 49.93 50.23 50.54 50.85 51.17 51.48 51.80 52.12 52.44 52.76
10 48.25 48.76 49.27 49.78 50.30 50.83 51.36 51.90 52.44 52.99 53.55

Table 6: Data stream rate for different values of p and α � 0.4.

Router (j)
Data stream rate when α � 0.4

p � 0 p � 0.1 p � 0.2 p � 0.3 p � 0.4 p � 0.5 p � 0.6 p � 0.7 p � 0.8 p � 0.9 p � 1
1 47.03 47.47 47.90 48.35 48.79 49.24 49.69 50.15 50.61 51.08 51.55
2 49.85 50.02 50.19 50.36 50.53 50.70 50.87 51.05 51.22 51.39 51.57
3 47.37 47.67 47.98 48.29 48.60 48.91 49.23 49.54 49.86 50.18 50.51
4 48.14 48.55 48.96 49.38 49.79 50.22 50.64 51.07 51.50 51.94 52.38
5 45.30 45.57 45.85 46.13 46.40 46.69 46.97 47.25 47.54 47.83 48.11
6 49.85 50.16 50.47 50.78 51.09 51.41 51.73 52.04 52.37 52.69 53.01
7 53.15 53.30 53.45 53.60 53.75 53.90 54.06 54.21 54.36 54.52 54.67
8 48.43 48.68 48.93 49.18 49.44 49.69 49.95 50.21 50.47 50.73 50.99
9 50.04 50.27 50.50 50.73 50.97 51.20 51.44 51.67 51.91 52.15 52.39
10 48.84 49.23 49.61 50.00 50.39 50.79 51.19 51.59 52.00 52.40 52.81
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Table 8: Data stream rate for different values of p and α � 0.8.

Router (j)
Data stream rate when α � 0.8

p � 0 p � 0.1 p � 0.2 p � 0.3 p � 0.4 p � 0.5 p � 0.6 p � 0.7 p � 0.8 p � 0.9 p � 1
1 48.76 48.91 49.05 49.20 49.35 49.50 49.66 49.81 49.96 50.11 50.26
2 50.27 50.33 50.39 50.44 50.50 50.56 50.62 50.67 50.73 50.79 50.84
3 48.73 48.83 48.94 49.04 49.15 49.25 49.36 49.46 49.57 49.67 49.78
4 49.13 49.27 49.41 49.55 49.69 49.83 49.97 50.11 50.25 50.39 50.54
5 45.51 45.61 45.70 45.79 45.89 45.98 46.07 46.17 46.26 46.36 46.45
6 50.85 50.95 51.06 51.16 51.27 51.37 51.48 51.58 51.69 51.80 51.90
7 53.02 53.07 53.12 53.17 53.22 53.27 53.32 53.37 53.42 53.47 53.52
8 48.84 48.93 49.01 49.10 49.18 49.27 49.35 49.44 49.53 49.61 49.70
9 50.86 50.94 51.02 51.10 51.18 51.26 51.33 51.41 51.49 51.57 51.65
10 50.03 50.16 50.29 50.42 50.55 50.68 50.82 50.95 51.08 51.22 51.35

Table 7: Data stream rate for different values of p and α � 0.6.

Router (j)
Data stream rate when α � 0.6

p � 0 p � 0.1 p � 0.2 p � 0.3 p � 0.4 p � 0.5 p � 0.6 p � 0.7 p � 0.8 p � 0.9 p � 1
1 47.89 48.19 48.48 48.78 49.08 49.38 49.68 49.98 50.29 50.60 50.91
2 50.06 50.18 50.29 50.40 50.52 50.63 50.75 50.86 50.98 51.09 51.21
3 48.05 48.25 48.46 48.67 48.88 49.09 49.30 49.51 49.72 49.93 50.14
4 48.64 48.91 49.19 49.47 49.75 50.03 50.31 50.59 50.88 51.17 51.46
5 45.41 45.59 45.78 45.96 46.15 46.33 46.52 46.71 46.90 47.09 47.28
6 50.35 50.56 50.76 50.97 51.18 51.39 51.60 51.82 52.03 52.24 52.46
7 53.08 53.18 53.28 53.39 53.49 53.59 53.69 53.79 53.89 54.00 54.10
8 48.63 48.80 48.97 49.14 49.31 49.48 49.65 49.82 50.00 50.17 50.34
9 50.45 50.61 50.76 50.92 51.07 51.23 51.39 51.55 51.70 51.86 52.02
10 49.44 49.69 49.95 50.22 50.48 50.74 51.01 51.27 51.54 51.81 52.08

Table 9: Data stream rate for different values of p and α � 1.0.

Router (j)
Data stream rate when α � 1.0

p � 0 p � 0.1 p � 0.2 p � 0.3 p � 0.4 p � 0.5 p � 0.6 p � 0.7 p � 0.8 p � 0.9 p � 1
1 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62
2 50.48 50.48 50.48 50.48 50.48 50.48 50.48 50.48 50.48 50.48 50.48
3 49.41 49.41 49.41 49.41 49.41 49.41 49.41 49.41 49.41 49.41 49.41
4 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62 49.62
5 45.62 45.62 45.62 45.62 45.62 45.62 45.62 45.62 45.62 45.62 45.62
6 51.35 51.35 51.35 51.35 51.35 51.35 51.35 51.35 51.35 51.35 51.35
7 52.95 52.95 52.95 52.95 52.95 52.95 52.95 52.95 52.95 52.95 52.95
8 49.05 49.05 49.05 49.05 49.05 49.05 49.05 49.05 49.05 49.05 49.05
9 51.28 51.28 51.28 51.28 51.28 51.28 51.28 51.28 51.28 51.28 51.28
10 50.62 50.62 50.62 50.62 50.62 50.62 50.62 50.62 50.62 50.62 50.62
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Figure 2: Graphical representation of change of data stream (􏽥x1) for server/router 1 when α � 0.6.
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FromCase 1, it is observed that 􏽥R amount of data packets
are equally distributed over n parallel queues. If the pro-
cessing rate of each server is equal and there is no traffic rate,
then 􏽥R amount of data packets remain stored which have
been observed from Case 2. If there is no processing rate,
then 􏽥R amount of data packets are equally distributed over n
parallel queue and they are waiting for processing which has
been depicted in Case 3. From Case 4, it has also been
observed that 􏽥R amount of data packets are always stored
without processing. For the numerical purpose, we have
considered the following example.

Let us assume there is a data network with 10 parallel
routers and (480, 500, and 530) kbps data has been sent over
the 10 routers. Additional traffic (􏽥rj) and processing rate
(􏽥Cj) of each server are given in Table 1.

Table 2 provides the additional traffic and processing rate
of each server in terms of α-level interval. Additional traffic
and processing rate of each server in terms of parametric
representation have been provided in Table 3.

Using (16), we have obtained data stream rate for dif-
ferent values of α and p (see Table 4–9). For illustration
purpose, graphical representation of the change of data

Table 10: Data stream rate in terms of interval for different values of α.

Router
(j)

α � 0 α � 0.2 α � 0.4 α � 0.6 α � 0.8 α � 1.0
xj � [x−

j , x+
j ]

(in kbps)
xj � [x−

j , x+
j ]

(in kbps)
xj � [x−

j , x+
j ]

(in kbps)
xj � [x−

j , x+
j ]

(in kbps)
xj � [x−

j , x+
j ]

(in kbps)
xj � [x−

j , x+
j ]

(in kbps)

1 [45.32, 52.84] [46.17, 52.19] [47.03, 51.55] [47.89, 50.91] [48.76, 50.26] [49.62, 49.62]
2 [49.43, 52.28] [49.64, 51.93] [49.85, 51.57] [50.06, 51.21] [50.27, 50.84] [50.48, 50.48]
3 [46.01, 51.23] [46.69, 50.87] [47.37, 50.51] [48.05, 50.14] [48.73, 49.78] [49.41, 49.41]
4 [47.16, 54.23] [47.65, 53.30] [48.14, 52.38] [48.64, 51.46] [49.13, 50.54] [49.62, 49.62]
5 [45.08, 49.78] [45.19, 48.95] [45.30, 48.11] [45.41, 47.28] [45.51,46.45] [45.62, 45.62]
6 [48.86, 54.13] [49.35, 53.57] [49.85, 53.01] [50.35, 52.46] [50.85, 51.90] [51.35, 51.35]
7 [53.27, 55.82] [53.21, 55.25] [53.15, 54.67] [53.08, 54.10] [53.02, 53.52] [52.95, 52.95]
8 [48.01, 52.28] [48.22, 51.64] [48.43, 50.99] [48.63, 50.34] [48.84, 49.70] [49.05, 49.05]
9 [49.21, 53.13] [49.62, 52.76] [50.04, 52.39] [50.45, 52.02] [50.86, 51.65] [51.28, 51.28]
10 [47.66, 54.28] [48.25, 53.55] [48.84, 52.81] [49.44, 52.08] [50.03, 51.35] [50.62, 50.62]
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Figure 3: Graphical representation of change of data stream (􏽥x1) for server/router 1 when α � 1.

Table 11: Different characteristics of the proposed data network for α � 0.8.

Router
(j)

Traffic
intensity

Expected number of
packets in the queue

Expected
waiting time

Expected number of
packets in the system

Mean
processing time

Expected number of packets in
the router that from time to

time
1 [0.84, 0.89] [4.30, 7.00] [0.08, 0.14] [5.14, 7.89] [0.10, 0.16] [6.14, 8.89]
2 [0.85, 0.88] [4.89, 6.28] [0.09, 0.12] [5.74, 7.15] [0.11, 0.13] [6.74, 8.15]
3 [0.85, 0.88] [4.69, 6.73] [0.09, 0.13] [5.54, 7.61] [0.10, 0.14] [6.54, 8.61]
4 [0.84, 0.89] [4.32, 7.03] [0.08, 0.14] [5.16, 7.92] [0.10, 0.15] [6.16, 8.92]
5 [0.84, 0.88] [4.54, 6.57] [0.09, 0.13] [5.39, 7.45] [0.10, 0.15] [6.39, 8.45]
6 [0.85, 0.88] [4.75, 6.80] [0.08, 0.12] [5.60, 7.69] [0.10, 0.14] [6.60, 8.69]
7 [0.86, 0.88] [5.33, 6.76] [0.09, 0.11] [6.20, 7.64] [0.10, 0.13] [7.20, 8.64]
8 [0.85, 0.88] [4.71, 6.42] [0.09, 0.12] [5.56, 7.30] [0.10, 0.14] [6.56, 8.30]
9 [0.86, 0.88] [5.06, 6.46] [0.09, 0.12] [5.91, 7.34] [0.10, 0.13] [6.91, 8.34]
10 [0/84, 0.88] [4.43, 6.79] [0.08, 0.13] [5.27, 7.67] [0.10, 0.15] [6.27, 8.67]
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stream (􏽥x1) for server/router 1 when α � 0.6 and α � 1 have
been depicted in Figures 2 and 3. From Figure 2, it has been
observed that the data stream rate varies from 47.89 to 50.91.
Hence, we may conclude that 􏽥x1 ∈ [47.89, 50.91]. Again,

from Figure 2, it is seen that the data stream rate varies from
49.62 to 49.62. So, we may claim that, for α � 1, the entire
setup is precise valued but in terms of interval uncertainty
we write 􏽥x1 ∈ [49.62, 49.62]. Employing these two
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Figure 4: Graphical representation of data stream rate when α � 0.
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Figure 5: Graphical representation of data stream rate when α � 0.2.
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arguments, we have obtained 􏽥xj, j � 1, 2, ..., 10, in terms of
interval uncertainty for different values of p and α. Table 10
provides the data stream rate in terms of interval for dif-
ferent values of α. Different numerical characteristics of the
proposed data network in terms of interval uncertainty have
been presented in Table 11 when α � 0.8. Graphical rep-
resentation of data stream for α � 0, α � 0.2, and α � 0.4
has been depicted in Figures 4, 5 and 6 respectively.

6. Concluding remarks

In this paper, first time a data distributed network optimal
design problem under uncertainty that sends data over a
sequential access point has been solved. 'is data network
design optimization problem is a Jackson open-type network
problem based on the M/M/1 queueing system. Because of
the uncertainty, the performance parameters involved with
the same have also been considered imprecise valued. 'is
impreciseness can be represented in several ways. 'is
imprecision is represented here by a triangular fuzzy number
(TFN), and the fuzzy number has been converted into a crisp
number using interval parametric technique. 'e problem
was then converted into a crisp nonlinear programming
problem and solved by well-known Kuhn–Tucker (K-T)
optimality techniques. As the network design optimization
problem is nonlinear and convex, Kuhn–Tucker (K-T)
optimality techniques provide the best optimal solutions.
Using the interval parametric technique, we have obtained
an optimal data stream in terms of interval uncertainty.
Again, using Little’s formula and interval arithmetic, we
have estimated the data stream rate, expected number of
packets, expected waiting time, mean processing time, and
expected number of packets in the router in terms of interval
uncertainty that is used from time to time in the distributed
data network system. For further findings, numerous dif-
ferent optimization techniques, like meta-heuristic

algorithms and evolutionary computation, could be used to
solve the problem presented in this paper.

6.1. Future Scope of Research. 'e solution methodology
described here is simple and easy to implement. From a
computational perspective, we can surmise that the entire
procedure used here will be helpful to address other network
design optimization problems with uncertain parameters in
the near future, such as analysis and design of service
processes, manufacturing assembly lines, wireless commu-
nication networks, multitasking computers, transportation/
traffic maintenance systems, and routing in wireless sensor
networks.
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