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,is article investigates stabilization for a group of uncertain switched systems with frequent asynchronism. Without the
limitation of minimum residence time, the average dwell-time strategy makes it possible for switched systems with uncertain
parameters to switch frequently over successive event intervals. Since it is highbrow and expensive to obtain the whole state
information in practice, the dynamic output-feedback controller is applied. With the aid of a controller-pattern-related Lyapunov
functional and an event-triggered dynamic output-feedback controller, sufficient conditions are established to ensure the stability
of the resulting uncertain closed-loop system. To appropriately deal with the uncertain parameters, some inequalities of the linear
matrix are tactfully utilized together with the Lyapunov functional and controller gains are constructed by the strategy of the block
matrix. Furthermore, the presence of the lower boundary on adjacent event intervals is earnestly discussed to eliminate the Zeno
behavior. Eventually, the feasibility and availability of the theoretical results are illuminated by a numerical simulation.

1. Introduction

As the control objects become more and more complex, the
requirements for the control performance index become
higher and higher. At the same time, the system’s operation
mechanism is restricted by many factors. Many practical
control problems can be better solved through the switched
system theory. ,e analysis and integration of switched
systems have become a hot issue in the academic and en-
gineering research fields. ,e concept of switched systems
has been formally put forward in the earlier literature [1, 2].
Switched systems, in recent decades, have gained widespread
attention in the field of control and have achieved plenteous
accomplishments, such as [3–6] and its references. ,ere are
two leading reasons for the wide attention paid to switched
system theory. On the one hand, switched systems have an
extensive range of practical applications in numerous do-
mains, such as transportation systems, robot control

systems, power systems, and communication systems. On
the other hand, the switched systems have a certain com-
plicacy and idiosyncrasy in comparison with the traditional
unitary mode control systems. Nonetheless, it enables the
physical procedure and the considered control issues to be
more accurate. Over the past decades, a number of
achievements for multifarious switched systems have been
made in stability analysis as well as control synthesis. ,e
dynamic behavior of switched systems depends not only on
each switching subsystem but also on switching rules. An
average dwell-time-based switching rule is an effective tool
for switched system analysis and synthesis. To name a few, a
group of convex lifted conditions about the robust l2 -sta-
bility of discrete-time switched linear systems is proposed by
utilizing the switching characteristic of minimum residence
time [7]. For the sake of stabilizing the switched systems that
incorporate bounded additional perturbations, a quasi-time-
varying Lyapunov function is constructed in [8]. And to
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guarantee the exponential stabilization of switched systems
in the presence of slow and fast switching restricted to
unstable and stable subsystems severally, a multiple dis-
continuous Lyapunov functional technique is proposed in
[9].

In the wake of the rapid development of the micro-
electronic technique, it has become feasible to implement
wide-scale calculation in postmodern control theory, which
boosts the dynamic analysis of control systems with infor-
mation sampling [10, 11]. For time-triggered control and the
traditional periodic sampling, the sensor sampling systems
carry out states or measured outputs at a regular time in-
terval. In spite of this sampling method being conducive to
theoretical analysis and implementation, it generally pro-
duces vast data packets and results in the sending of re-
dundant data. At this moment, if a state-feedback controller
is utilized to feedback the system state, more resources will
be wasted. An event-triggered mechanism has been proved
to maintain the performance of a networked control system
and reduce the number of data packets. However, there is
still room for progress in reducing the number of data
packets because most of the trigger parameters are static.
,en how to further reduce the transmission rate and how to
design an adaptive event-triggered mechanism are worth
studying. Add in the fact that not all states are measurable in
practice; therefore, event-triggered strategy and dynamic
output-feedback controller attract considerable attention.
For example, on the basis of introducing internal dynamic
variables, the dynamic event-triggered approach for linear
and nonlinear systems is proposed in [12]. It is testified that
the method of dynamic event triggering has less data
transmission than the conventional static one. Nevertheless,
on account of the characteristics of switched systems, it is a
great challenge to set up event-triggered control for system
analysis and synthesis. ,e minimum commutative law is
used to design the controller of switched systems so that
system switching merely occurs at the triggered moments
[13]. In the case of ignoring asynchrony between subsystems
and their controllers and guaranteeing the Zeno behavior is
eliminated during the event-triggered course, the event-
triggered strategy-approved observer-based design of
switched linear systems is investigated [14]. Equally, by
supposing fully synchronism, the sampling time finiteness of
the switched linear systems that incorporate switching
signals of average dwell time is guaranteed by processing the
event-triggered controller [15]. It is obvious that the as-
sumption in [14, 15] is fairly strict. For the purpose of
overcoming this weakness, asynchrony can be considered
and event-triggered stability of switched linear neutral
systems may be realized in virtue of introducing a maximum
asynchrony interval and a minimum dwell time. Subse-
quently, a switched system with frequent switching between
events is investigated in [16].

,ere are many key structured subsystems in mechanical
systems, electronic circuits, robots, and other engineering
fields. Meanwhile, these subsystems are mainly composed of
core components with uncertainty. It is of great practical
significance to study the control problem of complex un-
certain dynamic systems and ensure the performance of the

system under uncertain disturbances. As is known to all,
uncertainty, one of the factors causing system instability,
exists in almost all systems. It is inevitable for the existence of
uncertainty in the model due to environmental noise, un-
certain or slowly changing parameters, and other reasons.
Without considering the uncertainty of the model, in
practice, it seems preposterous to analyze the performance of
a system like estimating the performance indexes in dynamic
and steady state. Furthermore, there is usually uncertainty
due to random disturbance, inherent variations, missing
information, human error, or measurement inaccuracies for
nonlinear and linear systems. ,e source of this uncertainty
is known as parametric uncertainty, and parametric un-
certainty is probably the most crucial source of model
uncertainty [17]. Under the effect of certain factors, in other
words, the switched systems with uncertain parameters can
depict a broader range of the linear systems. Actually, it is
still an unsolved problem to study uncertain switched sys-
tems with frequent asynchrony in event-triggered dynamic
output-feedback control, and to our astonishment, the
uncertainty of output parameters for switched linear systems
has not yet received much attention from scholars. After all,
in comparison with the traditional processing strategies, the
robust treatment of many uncertain parameters in switched
systems becomes exceedingly tricky. So far, there is no
miraculous solution for detecting the error effects of pa-
rameter uncertainty.

In the light of the foregoing discussion, this article is
devoted to investigating the exponential stabilization of a
frequently switched system which is equipped with the un-
certainty of state parameters, input parameters, andmeasured
output parameters. Primarily, some uncertain parameters are
inserted in the appropriate position according to the necessity
of the model, and some ingenious ways of dealing with them
are introduced. In addition, based on the logic mechanism
triggered by events and the switching rules of the system and
its controller, the matching situation of subsystems and
controller could be categorized into synchronous and asyn-
chronous to study the dynamic and steady state performance
of the uncertain closed-loop system. ,e solution of the
uncertain closed-loop system is globally exponential stable
and no Zeno behavior occurs during the data sampling
process, which proves that the selection of controller and
problem-resolving method is valid and reasonable. Generally
speaking, the primary contributions of this article could be
summarized into three points:

(1) Switching linear system model with uncertain pa-
rameters is established. By making use of a few in-
equalities of linear matrix and the strategy of
partitioned matrices, the values of parametric un-
certainties are legitimately estimated.

(2) Based on the approach of the average dwell time, the
co-designing of the event-triggered strategy and the
dynamic output-feedback controller, and the con-
struction of the controller-pattern-related Lyapunov
functional by adopting block matrix method, the
stability criterion of uncertain linear switching sys-
tem with frequent asynchronism is guaranteed.
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(3) In the uncertain switched system, the lower bound
criterion of successive event intervals is estab-
lished to avoid the Zeno behavior, which simul-
taneously suggests that it can be researched by
more extensible frameworks with the methods
exploited.

,e remaining layout of this article is included as fol-
lows: Section 2 furnishes the uncertain system model and
preparatory works. Section 3 puts forward the primary
theorems for exponential stabilization analysis, controller
device, and Zeno behavior elimination. Furthermore, in
Section 4, a numerical simulation is added to corroborate the
effectiveness of the derived results. Lastly, Section 5 draws a
conclusion.

Notations: throughout this article, Rp×m and Rp are
severally the set of all p × m real matrices and p-di-
mensional Euclidean space. N means nonnegative set. N+

stands for the set of positive integers. I in matrices or
matrix inequalities represents an identity matrix with
matched dimensionality. 0 in matrices is a zero matrix of
appropriate dimensions. ,e superscripts −1 and T of
matrix G represent the inverse and transposition of G,
respectively. He(G) is defined as He(G) � G + GT. G> 0
represents that matrix G is positive definite and sym-
metric. λmax(G) and λmin(G) represent the maximum and
minimum eigenvalue of matrixG separately. We utilize ⋆
in a matrix to denote symmetry term. ‖G‖ is defined as the
2-norm of matrix G.

2. Preliminaries

,e switched linear system with parametric uncertainty is of
the following form:

_x(t) � Aσ(t) + ΔAσ(t)􏼐 􏼑x(t) + Bσ(t) + ΔBσ(t)􏼐 􏼑u(t),

y(t) � Cσ(t) + ΔCσ(t)􏼐 􏼑x(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rp, and y(t) ∈ Rq are the system
state, control input, and measured output, respectively.
Aσ(t), Bσ(t), and Cσ(t) are all known constant matrices, and
ΔAσ(t), ΔBσ(t), and ΔCσ(t) are the uncertain parameters.
σ(t): [0, +∞)⟶L � 1, 2, . . . ,n{ }, signifying the switch-
ing signal, is a piecewise constant functional, where n ∈ N+

represents the quantity of subsystems. σ(t) � j, j ∈L in-
dicates the j-th subsystem is active. A chronological se-
quence tq, q ∈ N􏽮 􏽯 is constructed to indicate that the
switching instant is tq.

For system (1) with parameter uncertainty and un-
known nonlinearity, how to introduce an effective control
mechanism and this control mechanism will ensure the
stability of the closed-loop system and make the system
state quickly converge to the ideal state is a difficult
research problem.

An adaptive event-triggered precept is adopted to
transmit the corresponding activated mode information

and measurement output for the continuously updated
controller at the instants sk, k ∈ N􏼈 􏼉, which is governed as

sk+1 � inf sk < t≤ sk + T|e
T
sk

(t)Ωσ sk( )esk
(t)≥ ϵyT

(t)Ωσ sk( )y(t)􏼚 􏼛,

(2)

where esk
(t) � y(sk) − y(t), ϵ> 0, T> 0 are prescribed

constants and Ωσ(sk) is a known positive definite matrix.

Remark 1. ,e argument T restricts the upper bound on
each successive event interval and the overall asyn-
chronous time. Not only is it beneficial to analyze and
synthesize the problem, but it can also prevent the
controller from not being updated for ages. One more
point needs to be noted that when the foregoing mech-
anism is not triggered, according to its conditions, the
inequation eT

sk
(t)Ωσ(sk)esk

(t)< ϵyT(t)Ωσ(sk)y(t) holds. And
we will employ it later in the proof of theorems.

For uncertain system (1), construct the following dy-
namic output-feedback control scheme:

_􏽥x(t) � 􏽥Aσ sk( )􏽥x(t) + 􏽥Bσ sk( )y sk( 􏼁,

u(t) � 􏽥Cσ sk( )􏽥x(t) + 􏽥Dσ sk( )y sk( 􏼁.
(3)

For t ∈ [sk, sk+1), in which 􏽥x(t) ∈ Rn is a controller state,
􏽥Aσ(sk), 􏽥Bσ(sk), 􏽥Cσ(sk), and 􏽥Dσ(sk), to be decided, are all constant
matrices.

Substituting (3) into (1), the following augmented system
is deduced:

_I(t) � Aσ(t)σ sk( )I(t) + Bσ(t)σ sk( )esk
(t), (4)

for t ∈ [sk, sk+1), where I(t) � [xT(t), 􏽥xT(t)]T,

Aσ(t)σ sk( ) �
Aσ(t) + Bσ(t)

􏽥Dσ sk( )Cσ(t) Bσ(t)
􏽥Cσ sk( )

􏽥Bσ sk( )Cσ(t)
􏽥Aσ sk( )

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

Bσ(t)σ sk( ) �
Bσ(t)

􏽥Dσ sk( )

􏽥Bσ sk( )

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

Aσ(t) � Aσ(t) + ΔAσ(t),

Bσ(t) � Bσ(t) + ΔBσ(t),

Cσ(σ(t)t) � Cσ(t) + ΔCσ(t).

(5)

In this article, the condition of the aforementioned
adaptive event-triggered strategy relies on the error esk

(t)

between the recently updated sampling output and the
current sampling output for transmission. When the
condition of (2) holds [sk, sk + T), the next event will be
triggered at t � sk+1; subsequently, the controller will
update its mode based on the data collected and control
system (1). ,e architecture diagram of the uncertain
closed-loop system under event-triggered dynamic out-
put-feedback control is presented in Figure 1.

Now, we hypothesize σ(sk) � i, σ(tq) � j in the chro-
nological sequence sk < tq and focus attention on a running
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interval [tq, tq+1), which indicates σ(t) � j for ∀t ∈ [tq, tq+1).
Afterward, the system dynamics of (4) can be summarized as
the following two cases:

Case (i): when mechanism (2) is not triggered in
[tq, tq+1), i.e., sk < tq < tq+1 ≤ sk+1, uncertain closed-loop
system (4) is transformed into

_I(t) � AjiI(t) + Bjie(t), (6)

where e(t)≜ esk
(t), t ∈ [tq, tq+1).

Case (ii): when mechanism (2) is triggered m(∈ N+)

times in [tq, tq+1), i.e.,
sk < tq ≤ sk+1 < · · · < sk+m ≤ tq+1 < sk+m+1, uncertain
closed-loop system (4) is converted into

_I(t) �

AjiI(t) + Bjie(t), t ∈ tq, sk+1􏽨 􏼑,

AjjI(t) + Bjje(t), t ∈ sk+1, sk+2􏼂 􏼁,

⋮

AjjI(t) + Bjje(t), t ∈ sk+m, tq+1􏽨 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where

e(t)≜

esk
(t), t ∈ tq, sk+1􏽨 􏼑,

esk+1
(t), t ∈ sk+1, sk+2􏼂 􏼁,

⋮

esk+m
(t), t ∈ sk+m, tq+1􏽨 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(8)

It is notable that the controller merely updates its state in
contrast to the subsystem, in which both modes and states
change in [tq, sk+1). Once (2) is triggered, (3) will receive
both the activated mode information and the measured
output, which will generate the synchronism with the
corresponding subsystem for t ∈ [sk+1, sk+2), . . . , [sk+m, tq+1)

in Case (ii). Notations T↑[tq, tq+1) and T↓[tq, tq+1) are in-
troduced to stand for the asynchronous and synchronous
interval of [tq, tq+1) severally, where each subsystem does not
match with their controller in intervalT↑[tq, tq+1). After that,
the aforementioned uncertain closed-loop system could be
rewritten as

_I(t) �
AjiI(t) + Bjie(t), t ∈ T↑ tq, tq+1􏽨 􏼑,

AjjI(t) + Bjje(t), t ∈ T↓ tq, tq+1􏽨 􏼑.

⎧⎪⎨

⎪⎩
(9)

As an assumption, several definitions and lemmas are
given for employing in the sequel.

Assumption 1.

ΔAσ(t) ΔBσ(t) ΔCσ(t)􏽨 􏽩 � Mσ(t)Eσ(t)(t) Fσ(t) Fσ(t)
′ Fσ(t)
″􏽨 􏽩,

(10)

where Eσ(t)(t) is the unknown time-varying matrix with
ET
σ(t)(t)Eσ(t)(t)≤ I, Fσ(t) and F′

′
σ(t) are constant matrices with

applicable dimensionality and Mσ(t) and Fσ(t)
′ are non-

singular real matrices with appropriate dimensionality.

Remark 2. ,e uncertainties have a direct influence on the
structure and stability of switched systems due to their own
uncertainty. In order to avoid needlessly sophisticated no-
tations and suppress parameter uncertainty, we only con-
sider norm-bounded uncertainties. By utilizing subsequent
Lemma 1, the effect of the uncertainty time-varying matrix
Eσ(t)(t) could be reasonably eliminated so that the uncer-
tainties ΔAσ(t), ΔBσ(t), and ΔCσ(t) could be tactfully esti-
mated. However, when the uncertain terms also appear in
other singular structures, the results obtained by the lemma
could be extended to this case in parallel.

Definition 1. For any initial conditions and constants k> 0
and λ> 0, system (9) is said to be globally exponentially
stable under some switching signals σ(t), if the solution of
system (9) satisfies ‖I(t)‖≤ ke− λ(t− t0)‖I(t0)‖, ∀t≥ t0.

Definition 2. For the switching signal σ(t) and any
t2 ≥ t1 ≥ 0, the switching number of σ(t) labelled as nσ(t1, t2)

during the interval (t1, t2). If there exist constants n0 > 0 and
τa > 0 such that nσ(t1, t2)≤n0 + t2 − t1/τa, then τa is called
the average dwell time of σ(t) and n0 is called the chatter
bound.

Lemma 1 (see [18]). LetG,H, andJ be constant matrices of
suitable dimensionality and F(t) be a matrix function.

(1) For any ε> 0 and FT(t)F(t)≤ I, then

Event-triggered
mechanism Plant

Network

Output-feedback
controller

u (t)y (t)

y (Sk+1) y (Sk+1)

Sk+1

Figure 1: Diagram of the uncertain closed-loop system.
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HF(t)J + J
T
F

T
(t)H

T ≤
1
ε
HH

T
+ εJT

J. (11)

(2) For any ε> 0 such that εJTJ< I andFT(t)F(t)≤ I,
then

(G + HF(t)J)(G + HF(t)J)
T ≤G I − εJT

J􏼐 􏼑
− 1
G

T

+
1
ε
HH

T
.

(12)

Especially, when G ≡ 0, we get

HF(t)J(HF(t)J)
T ≤

1
ε
HH

T
. (13)

Lemma 2. Given constant matrices M1,M2,M3, where
M1 � MT

1 and M2 > 0, then

M1 + M
T
3M

−1
2 M3 < 0, (14)

if

M1 M
T
3

M3 −M2

⎡⎣ ⎤⎦< 0 or
−M2 M3

M
T
3 M1

􏼢 􏼣< 0. (15)

Lemma 3 (see [19]). 7e following representations are
equivalent:

(1) 7ere exist constant matrices N, V, W, and Z and
real scalar ς such that

N ⋆

W − ς ςZ + ςZT
􏼢 􏼣< 0. (16)

(2) 7ere exist constant matricesN,V, andW such that

N< 0

N + V
T
W + W

T
V< 0.

(17)

Lemma 4 (see [16]). Define S1(t), S2(t), and G(t, ·) as
continuous functions for any t≥ 0; in particular, G(t, ·) is
differentiable. If S2(t0)≤S1(t0) and

_S1(t) � G t,S1(t)( 􏼁,

_S2(t)≤G t,S2(t)( 􏼁,
(18)

then S2(t)≤S1(t), ∀t≥ t0.

3. Main Results

In this section, the event-triggered mechanism and the
dynamic output-feedback controller will be jointly devised
to investigate the exponential stability of the switched linear
system with uncertainties under the asynchrony phenom-
enon. In addition, we exclude Zeno’s behavior by proving
the existence of the lower boundary of the interevent
intervals.

3.1. Stability Analysis. ,is section aims at the stability
criterion for uncertain systems (9) with the adhibition of the
average dwell-time switching approach and a controller-
pattern-dependent Lyapunov functional.

Theorem 1. With regard to given scalars c> 0, δ > 0, η≥ 1,
T> 0, and ϵ> 0, if Assumption 1 holds and there exist ma-
trices Pi > 0, Ωi > 0, ∃hiab > 0 (a � 1, 2, . . . , 7; b � 1, 2),
∃hi8 > 0, and ∀i ∈L such that

Ψji � Ψ1ji PiBji ⋆Zi􏼔 􏼕< 0, ∀i≠ j ∈L, (19)

Ψjj � Ψ1jj PjBjj ⋆Zj􏼔 􏼕< 0, ∀j ∈L, (20)

Pj ≤ ηPi, ∀i≠ j ∈L, (21)

I Fj
′ 􏽥DiMj

M
T
j

􏽥D
T

i F
′T
j

1
hi8

I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0, ∀i≠ j ∈L, (22)

I Fj
′ 􏽥DjMj

M
T
j

􏽥D
T

j F
′T
j

1
hj8

I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0, ∀j ∈L, (23)

where
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Ψ1ji � He PiAji􏼒 􏼓 + Qi − δPi,

Ψ1jj � He PjAjj􏼒 􏼓 + Qj + cPj,

􏽥Ai �

Aj + Bj
􏽥DiCj Bj

􏽥Ci

􏽥BiCj
􏽥Ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

􏽥Bi �

Bj
􏽥Di

􏽥Bi

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

Qi �
Qi1 Qi2

Qi3 Qi4

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Pi �

Pi1 Pi2

P
T
i2 Pi3

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

Qi1 � hi11 + hi21 + hi71 + hi41( 􏼁Pi1MjM
T
j Pi1

+ hi31Pi1Bj
􏽥DiMjM

T
j

􏽥D
T

i B
T
j Pi1 + hi51Pi2

􏽥BiMjM
T
j

􏽥B
T

i P
T
i2

+
1

hi11
F

T
j Fj +

1
hi31

+
1

hi51
+

1
hi41hi8

􏼠 􏼡F″Tj Fj
″

+
1

hi21
C

T
j

􏽥D
T

i F′Tj Fj
′ 􏽥DiCj + ϵCT

jΩiCj,

Qi3 � hi12 + hi22 + hi42( 􏼁P
T
i2MjM

T
j Pi2 + hi32P

T
i2Bj

􏽥DiMjM
T
j

􏽥D
T

i B
T
j Pi2

+ hi52Pi3
􏽥BiMjM

T
j

􏽥B
T

i Pi3 +
1

hi12
F

T
j Fj +

1
hi32

+
1

hi52
+

1
hi42hi8

􏼠 􏼡F
″T
j Fj
″

+
1

hi22
C

T
j

􏽥D
T

i F
′T
j Fj
′ 􏽥DiCj,

Qi2 �
1

hi61

􏽥C
T

i F′Tj Fj
′􏽥Ci + hi61Pi1MjM

T
j Pi1,

Qi4 �
1

hi62

􏽥C
T

i F
′T
j Fj
′􏽥Ci + hi62 + hi72( 􏼁P

T
i2MjM

T
j Pi2,

Zi �
1

hi71
+

1
hi72

􏼠 􏼡 􏽥D
T

i F
′T
j Fj
′ 􏽥Di −Ωi,

(24)

then uncertain system (9) is globally exponentially stable with
the average dwell time τa satisfying

τa ≥
ln η +(c + δ)T

c
. (25)

Proof. Construct the controller-pattern-related Lyapunov
function V(I(t))IT(t)Pσ(sk)I(t) by the strategy of the
block matrix. It is evident that V(I(t)), except for a limited
number of discontinuities, remains continuous. ,en, in
accordance with the cases in the hereinabove section, the
stabilization analysis can be accordingly carried out from the
two standpoints as follows:

Case (i): when mechanism (2) is not triggered during
[tq, tq+1), the uncertain closed-loop system is AjiI(t) +

Bjie(t) with the Lyapunov function
V(I(t)) � IT(t)PiI(t).
By means of taking the derivative with respect to
V(I(t)) along the system trajectory and exploiting the
mechanism (2), we get

_V(I(t)) − δV(I(t)) � 2IT
(t)Pi

_I(t) − δIT
(t)PiI(t)

≤ 2IT
(t)Pi AjiI(t) + Bjie(t)􏼐 􏼑

− δIT
(t)PiI(t) − e(t)

TΩie(t) + εxT
(t)C

T
jΩiCjx(t).

(26)
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On account of Lemma 1 (1), (2), Lemma 2, and (22), we
get

He

Pi1ΔAj

P
T
i2ΔAj

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠≤

1
hi11

F
T
j Fj + hi11Pi1MjM

T
j Pi1

1
hi12

F
T
j Fj + hi12P

T
i2MjM

T
j Pi2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

He

Pi1ΔBj
􏽥DiCj

P
T
i2ΔBj

􏽥DiCj

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠≤

1
hi21

C
T
j

􏽥D
T

i F
′T
j Fj
′ 􏽥DiCj + hi21Pi1MjM

T
j Pi1

1
hi22

C
T
j

􏽥D
T

i F
′T
j Fj
′ 􏽥DiCj + hi22P

T
i2MjM

T
j Pi2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

He

Pi1Bj
􏽥DiΔCj

P
T
i2Bj

􏽥DiΔCj

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠≤

1
hi31

F
′T
j Fj
′hi31Pi1Bj

􏽥DiMjM
T
j

􏽥D
T

i B
T
j Pi1

1
hi32

F
′T
j Fj
′ + hi32P

T
i2Bj

􏽥DiMjM
T
j

􏽥D
T

i B
T
j Pi2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

He

Pi1ΔBj
􏽥DiΔCj

P
T
i2ΔBj

􏽥DiΔCj

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠≤

1
hi41

F
″T
j E

T
j M

T
j

􏽥D
T

i F
′T
j Fj
′ 􏽥DiMjEjFj

″

1
hi42

F
″T
j E

T
j M

T
j

􏽥D
T

i F
′T
j Fj
′ 􏽥DiMjEjFj

″

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
hi41Pi1MjM

T
j Pi1

hi42P
T
i2MjM

T
j Pi2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦≤

1
hi41 · hi8

F
″T
j Fj
″ + hi41Pi1MjM

T
j Pi1

1
hi42 · hi8

F
″T
j Fj
″ + hi42P

T
i2MjM

T
j Pi2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

He
Pi2

􏽥BiΔCj

Pi3
􏽥BiΔCj

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠≤

1
hi51

F
″T
j Fj
″ + hi51Pi2

􏽥BiMjM
T
j

􏽥B
T

i P
T
i2

1
hi52

F
″T
j Fj
″ + hi52Pi3

􏽥BiMjM
T
j

􏽥B
T

i Pi3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

He

Pi1ΔBj
􏽥Ci

P
T
i2ΔBj

􏽥Ci

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠≤

1
hi61

􏽥C
T

i F
′T
j Fj
′􏽥Ci + hi61Pi1MjM

T
j Pi1

1
hi62

􏽥C
T

i F′Tj Fj
′􏽥Ci + hi62P

T
i2MjM

T
j Pi2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

He
x

T
(t)Pi1ΔBj

􏽥Die(t)

􏽥x
T
(t)P

T
i2ΔBj

􏽥Diie(t)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠≤

1
hi71

e
T
(t) 􏽥D

T

ii F
′T
j Fj
′ 􏽥Die(t)

1
hi72

e
T
(t) 􏽥D

T

ii F
′T
j Fj
′ 􏽥Diie(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

hi71x
T
(t)Pi1MjM

T
j Pi1x(t)

hi72􏽥x
T
(t)P

T
i2MjM

T
j Pi2􏽥x(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(27)

,en, it holds that
_V(I(t)) − δV(I(t)) � I

T
1 (t)ΨjiI1(t), (28)

where I1(t) � [IT(t), eT(t)]T. It is apparent that
_V(I(t)) ≤ δV(I(t)) from (19) for ∀t ∈ [tq, tq+1).

Combining the property of V(I(t)) at the instant
t � tq+1, it could be calculated that

V I tq+1􏼐 􏼑􏼐 􏼑 � V I t
−
q+1􏼐 􏼑􏼐 􏼑≤ e

δ tq+1− tq( 􏼁
V I tq􏼐 􏼑􏼐 􏼑. (29)

Discrete Dynamics in Nature and Society 7



Case (ii): when mechanism (2) is triggered m(∈ N+)

times during [tq, tq+1), the uncertain closed-loop sys-
tem is converted into

_I(t) �
AjiI(t) + Bjie(t), t ∈ tq, sk+1􏽨 􏼑,

AjjI(t) + Bjje(t), t ∈ sk+1, tq+1􏽨 􏼑,

⎧⎪⎨

⎪⎩
(30)

with the Lyapunov functional

V(I(t)) �
I

T
(t)PiI(t), t ∈ tq, sk+1􏽨 􏼑,

I
T
(t)PjI(t), t ∈ tq, sk+1􏽨 􏼑.

⎧⎪⎨

⎪⎩
(31)

Executing the same procedure in Case (i) and employing
condition (21), it could be obtained that

V I sk+1( 􏼁( 􏼁 � V I s
−
k+1( 􏼁( 􏼁≤ ηe

δ sk+1− tq( 􏼁
V I tq􏼐 􏼑􏼐 􏼑. (32)

For t ∈ [sk+1, tq+1), by virtue of Lemma 1 (1), (2), Lemma
2, and (23), we have

He

Pj1ΔAj

P
T
j2ΔAj

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠≤

1
hj11

F
T
j Fj + hj11Pj1MjM

T
j Pj1

1
hj12

F
T
j Fj + hj12P

T
j2MjM

T
j Pj2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

He

Pj1ΔBj
􏽥DjCj

P
T
j2ΔBj

􏽥DjCj

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠≤

1
hj21

C
T
j

􏽥D
T

j F
′T
j Fj
′ 􏽥DjCj + hj21Pj1MjM

T
j Pj1

1
hj22

C
T
j

􏽥D
T

j F
′T
j Fj
′ 􏽥DjCj + hj22P

T
j2MjM

T
j Pj2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

He

Pj1Bj
􏽥DjΔCj

P
T
j2Bj

􏽥DjΔCj

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠≤

1
hj31

F
″T
j Fj
″ + hj31Pj1Bj

􏽥DjMjM
T
j

􏽥D
T

j B
T
j Pj1

1
hj32

F
″T
j Fj
″ + hj32P

T
j2Bj

􏽥DjMjM
T
j

􏽥D
T

j B
T
j Pj2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

He

Pj1ΔBj
􏽥DjΔCj

P
T
j2ΔBj

􏽥DjΔCj

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠≤

1
hj41 · hj8

F
″T
j Fj
″ + hj41Pj1MjM

T
j Pj1

1
hj42 · hj8

F
″T
j Fj
″ + hj42P

T
j2MjM

T
j Pj2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

He
Pj2

􏽥BjΔCj

Pj3
􏽥BjΔCj

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠≤

1
hj51

F
″T
j Fj
″ + hj51Pj2

􏽥BjMjM
T
j

􏽥B
T

j P
T
j2

1
hj52

F
″T
j Fj
″ + hj52Pj3

􏽥BjMjM
T
j

􏽥B
T

j Pj3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

He

Pj1ΔBj
􏽥Cj

P
T
j2ΔBj

􏽥Cj

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠≤

1
hj61

􏽥C
T

j F′Tj Fj
′􏽥Cj + hi61Pj1MjM

T
j Pj1

1
hj62

􏽥C
T

j F
′T
j Fj
′􏽥Cj + hj62P

T
j2MjM

T
j Pj2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

He
x

T
(t)Pj1ΔBj

􏽥Dje(t)

􏽥x
T
(t)P

T
j2ΔBj

􏽥Dje(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠≤

1
hj71

e
T
(t) 􏽥D

T

j F
′T
j Fj
′ 􏽥Dje(t)

1
hj72

e
T
(t) 􏽥D

T

j F′Tj Fj
′ 􏽥Dje(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

hj71x
T
(t)Pj1MjM

T
j Pj1x(t)

hj72􏽥x
T
(t)P

T
j2MjM

T
j Pj2􏽥x(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(33)
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,en, we derive

_V(I(t)) + cV(I(t)) � 2IT
(t)Pj

_I(t) + cI
T

(t)PjI(t)

≤ 2IT
(t)Pj Aj,jI(t) + Bj,je(t)􏼐 􏼑 + cI

T
(t)PjI(t)

− e(t)
TΩje(t) + εxT

(t)C
T
jΩjCjx(t)

� I
T
1 (t)ΨjjI1(t).

(34)

,is shadows
_V(I(t))≤ − cV(I(t)), ∀t ∈ [sk+1, tq+1), (35)

because of (20). ,en, the following inequation can be
guaranteed with the nature ofV(I(t)) at the instant t � tq+1:

V I tq+1􏼐 􏼑􏼐 􏼑 � V I t
−
q+1􏼐 􏼑􏼐 􏼑

≤ e
− c tq+1− sk+1( 􏼁

V I sk+1( 􏼁( 􏼁

≤ ηe
− c tq+1− sk+1( 􏼁

V I s
−
k+1( 􏼁( 􏼁

≤ ηe
− c tq+1− sk+1( 􏼁+δ sk+1− tq( 􏼁

V I tq􏼐 􏼑􏼐 􏼑.

(36)

As a consequence, it can be summarized from (29) and
(36) that

V I tq+1􏼐 􏼑􏼐 􏼑≤ ηe
− cT↓ tq,tq+1( 􏼁+δT↑ tq,tq+1( 􏼁

V I tq􏼐 􏼑􏼐 􏼑. (37)

Define 􏽢nσ(0, t) as the switch time of controller in [0, t),
which is not more than the switch time of system nσ(0, t).
Accordingly for ∀t> 0,

V(I(t))≤ η􏽢nσ(0,t)
e

− cT↓(0,t)+δT↑(0,t)
V(I(0))

≤ ηnσ(0,t)
e

− ct
e

(c+δ)Tnσ(0,t)
V(I(0))

≤ η n0+t/τa( )e
− ct

e
(c+δ)T n0+t/τa( )V(I(0))

� ηe
(c+δ)T

􏼐 􏼑
n0

e
ln μ+(c+δ)T/τa− c( )t

V(I(0)).

(38)

According to condition (25), there must exist a constant
λ> 0 such that V(I(t)) ≤ ce− 2λ(t− 0)V(I(0)). Considering
inequalities V(I(t)) ≥ λ1‖I(t)‖2 and V(I(0))≤ λ2‖I(0)‖2,
we can derive ‖I(t)‖≤ κe− λ(t− 0)‖I(0)‖, where c �

(ηe(c+δ)T)n0 , λ1 � min
i∈L

λmin(Pi), λ2 � max
i∈L

λmax(Pi), and

κ �
�����
cλ2/λ1

􏽰
. Combined with Definition 1, system (9) is

exponentially stable, which accomplishes the proof.

Remark 3. Motivated by the analysis of Case (ii), apart from
a limited number of discontinuities, the error e(t) remains
continuous. To be specific, e(t) could be piecewise con-
tinuous and bounded over a subinterval [sk+1, tq+1) provided
that the lower bound exists on T, which would be clarified in
,eorem 3. Furthermore, the Lyapunov function V(I(t)),
whose structure determines that it has the property of global
decay, is also continuous except for a limited number of
discontinuities.

Remark 4. For t ∈ (t−
q , t+

q+1), the inequality
􏽢nσ(t−

q , t+
q+1)≤nσ(t−

q , t+
q+1) can be illuminated in three cases

as indicated in Figure 2. Case (a), Case (b), and Case (c)
correspond to the above Case (i), Case (ii) with m � 1, and
Case (ii) with m> 1, respectively. As for Case (i), it is
obvious that 􏽢nσ(t−

q , t+
q+1) � 0≤nσ(t−

q , t+
q+1) � 2. Case (b)

owns one triggered moment sk+1 ∈ [tq, tq+1), at which (3)
receives the measurement date to change its pattern,
meanwhile updating its input. Hence,
􏽢nσ(t−

q , t+
q+1) � 1≤nσ(t−

q , t+
q+1) � 2. Although m triggered

moments in Case (c) over the interval [tq, tq+1), the con-
troller pattern at the first triggered instant sk+1 is switched
only once and the control input of the controller is only
updated without switching its pattern at the other m − 1
triggered moments. ,us, 􏽢nσ(t−

q , t+
q+1) � 1≤nσ(t−

q , t+
q+1) � 2

is still valid. In other words, the controller can be perceived
as a postponed version of the uncertain system, more or
less, in terms of switching. ,e switch time of the con-
troller, consequently, will not surpass the switch time of the
uncertain system.

3.2. Controller Design. In this section, the event-triggered
scheme and the dynamic output-feedback controller for
uncertain system (9) are codesigned by combining the above
stability analysis. To calculate the control gains, we introduce
notations as follows:

Aj �
Aj 0

0 0
⎡⎢⎣ ⎤⎥⎦,

Bj �
0 Bj

I 0
⎡⎢⎣ ⎤⎥⎦,

Cj �
0 I

Cj 0
⎡⎢⎢⎣ ⎤⎥⎥⎦,

Ε �
0

I

⎡⎢⎣ ⎤⎥⎦,

Ki �

􏽥Ai
􏽥Bi

􏽥Ci
􏽥Di

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(39)

which implies

􏽥Ai � Aj + BjKiCj,

􏽥Bi � BjKiE, ∀i, j ∈L.
(40)

Theorem 2. Given scalars c> 0, δ > 0, η≥ 1, T> 0, ϵ> 0, and
ς> 0, uncertain system (9) is globally exponentially stable for
any σ(t) if Assumption 1 holds and there exist matrices Pi > 0,
Ωi > 0, Ri, Si, Tic, ∃hiab > 0 (a � 1, 2, . . .∞, 7; b �

1, 2; c � 1, 2, 3, 4), ∃hi8 > 0, and ∀i ∈L such that (21)–(25)
and
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Φji �

Φ1ji BjSiE 0 PjBj − BjRi + ςCT
j S

T
i

⋆ −Ωi T
T
i3 ςET

S
T
i

⋆ ⋆ −
hi71 · hi72

hi71 + hi72
􏼠 􏼡I 0

⋆ ⋆ ⋆ −ςRi − ςRT
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, ∀i≠ j ∈L, (41)

Φjj �

Φ1jj BjSjE 0 PjBj − BjRj + ςCT
j S

T
j

⋆ −Ωj T
T
j3 ςET

S
T
j

⋆ ⋆ −
hj71 · hj72

hj71 + hj72
􏼠 􏼡I 0

⋆ ⋆ ⋆ −ςRj − ςRT
j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, ∀j ∈L, (42)

where

Φ1ji � He PiAj + BjSiCj􏼐 􏼑 + Qi − δPi,

Φ1jj � He PiAj + BjSiCj􏼐 􏼑 + Qj + cPj,

Qi �
Qi1 Qi2

Qi3 Qi4

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, ∀i ∈L,

Qi1 � hi11 + hi21 + hi71 + hi41( 􏼁Pi1MjM
T
j Pi1 + hi31Pi1BjTi4T

T
i4B

T
j Pi1 + hi51Pi2Ti1T

T
i1P

T
i2

+
1

hi11
F

T
j Fj +

1
hi31

+
1

hi51
+

1
hi41hi8

􏼠 􏼡F
″T
j Fj
″ +

1
hi21

C
T
j T

T
i3Ti3Cj + ϵCT

jΩiCj,

Qi3 � hi12 + hi22 + hi42( 􏼁P
T
i2MjM

T
j Pi2 + hi32P

T
i2BjTi4T

T
i4B

T
j Pi2 + hi52Pi3Ti1T

T
i1Pi3

+
1

hi12
F

T
j Fj +

1
hi32

+
1

hi52
+

1
hi42hi8

􏼠 􏼡F
″T
j Fj
″ +

1
hi22

C
T
j T

T
i3Ti3Cj,

Qi2 �
1

hi61
T

T
i2Ti2 + hi61Pi1MjM

T
j Pi1,

Qi4 �
1

hi62
T

T
i2Ti2 + hi62 + hi72( 􏼁P

T
i2MjM

T
j Pi2.

(43)

Sk+1Sk

tq+1tq

(a)

Sk+2Sk+1Sk

tq+1tq

(b)

Sk+1Sk
Sk+m+1Sk+m

tq+1tq

…

(c)

Figure 2: Moments of event triggering and system switching. (a) Case (i), (b) Case (ii), m� 1, (c) Case (ii), m> 1.
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Furthermore, the controller gain matrices are devised as
Ki � R−1

i Si,∀i ∈L.

Proof. On the grounds of ,eorem 1 and supposing that
􏽥Bi � Ti1M

−1
j , 􏽥Ci � F′j−1Ti2,

􏽥Di � F′j−1Ti3 � Ti4M
−1
j ,

such that the controller gains are presented as

Ki � R
−1
i S,

�
􏽥Ai Ti1M

−1
j

F′j−1Ti2 F′j−1Ti3

⎡⎢⎣ ⎤⎥⎦, ∀i ∈L.
(44)

define

Xji � R
−1
i

SiCj SiE 0􏽨 􏽩,

Yji � B
T
j Pi − R

T
i B

T
j 0 0􏽨 􏽩.

(45)

,en,

X
T
jiYji �

R
−1
i SiCj􏼐 􏼑

T
B

T
j Pi − SiCj􏼐 􏼑

T
B

T
j 0 0

R
−1
i SiE􏼐 􏼑

T
B

T
j Pi − SiE( 􏼁

T
B

T
j 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Y
T
jiXji �

PiBjR
−1
i SiCj − BjSiCj PiBjR

−1
i SiE − BjSiE 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(46)

Combining with Lemma 3 and (41), one derives

Φ1ji BjSiE 0

⋆ −Ωi T
T
i3

⋆ ⋆ −
hi71 · hi72

hi71 + hi72
􏼠 􏼡I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ X
T
jiYji + Y

T
jiXji < 0, (47)

which is of equivalence to

He PiAj + BjKiCj􏼐 􏼑 + Qi − δPi PiBjKiE 0

⋆ −Ωi T
T
i3

⋆ ⋆ −
hi71 · hi72

hi71 + hi72
􏼠 􏼡I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (48)

In accordance with (40) and above definition, one
obtains

Ψ1ji PiB ji 0

⋆ −Ωi
􏽥D

T

i F
′T
j

⋆ ⋆ −
hi71 · hi72

hi71 + hi72
􏼠 􏼡I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (49)

On the basis of Lemma 2, one realizes that (41) ensures
condition (19). Under the same technique as above, (20) is
guaranteed by condition (42). In consequence, the con-
clusion can be obtained by ,eorem 1.

Remark 5. By comparison with [14], the average dwell-time
switching signals can be used to handle quick switching
issues and are more widespread and pragmatic without

minimum dwell-time restrictions [16]. And it is necessary to
point out that the related works investigate the asynchro-
nous stabilization via the strategy of multiple Lyapunov
function. For instance, the Lyapunov function is delegated as
V(x(t)) � xT(t)Pjx(t) for the synchronous course as well
as V(x(t)) � xT(t)Pjix(t) for the asynchronous period.,e
variable number deduced by the multiple Lyapunov func-
tional matrices is n(n + 1)/2n + n(n + 1)/2n(n − 1), wheren
represents the quantity of the Lyapunov functional matrix.
Difference in these works, a piecewise Lyapunov functional,
is constructed in this article, which only rests with the
controller pattern. Under this choice, what delighted us is
that the variable number is n(n + 1)/2n. It is evident that the
computation complexity can be effectually decreased, spe-
cifically for systems with a large dimensionality or plenty of
modes. Most recently, great achievements have been dedi-
cated to inquiry into the switched systems of state param-
eters uncertainty and input parameters uncertainty.
However, as yet, little attention has been attracted to the
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stabilization of frequently switched systems that are
equipped with state, input, and especially measured output
parameter uncertainties, which motivates this work.

In recent years, with the rise of large-scale networks, the
calculation of performance criteria described by matrix
equations or matrix inequalities has attracted much atten-
tion. In fact, in control systems, the investigation of many
important characteristics such as stability and controllability
can be transformed into the exploration of the constrained
solution of the corresponding nonlinear matrix equation.
,e traditional method of solving matrix equations or
matrix inequality is based on an iterative numerical algo-
rithm. ,is kind of algorithm may meet the requirements of
real-time for matrix equations or matrix inequality with
small dimensions. Once the matrix dimension reaches a
certain order of magnitude, it is generally difficult to find a
solution method suitable for real-time large-scale applica-
tions. ,eorems 1 and 2 in this paper are in the form of
matrix inequalities, and how to systematically work out the
problem of solving a high-dimensional matrix caused by the
huge dimension of the network determines the scope of
application of ,eorems 1 and 2 to a certain extent.

3.3. Excluding the Zeno Behavior. In this section, the exis-
tence of T’s lower definite bound is demonstrated, which
thus eliminates Zeno behavior. Combining with (1) and (3)
under event-triggered strategy (2), the uncertain closed-loop
system is inferred as

_x(t) � Aσ(t) + ΔAσ(t)􏼐 􏼑x(t) + Bσ(t) + ΔBσ(t)􏼐 􏼑

􏽥Dσ sk( ) y(t) + esk
(t)􏼐 􏼑

+ Bσ(t) + ΔBσ(t)􏼐 􏼑􏽥Cσ sk( )􏽥x(t), t ∈ [sk, sk+1).

(50)

Theorem 3. For system (50), suppose Assumption 1 holds.
Given a scalar β(> 0) satisfying
max ‖x(t)‖, ‖􏽥x(t)‖{ }≤ β‖y(t)‖, the adjacent event interval
would be lower bounded via constant T1(> 0) conforming to

T1 � min T,
1
Λ − 􏽢Λ

ln 1 +
(Λ − 􏽢Λ)

�
ϵ

√

Λ + 􏽢Λ
�
ϵ

√􏼠 􏼡􏼨 􏼩, (51)

where T and ϵ are specified in (2) and

Λ � max
i,j∈L

1
λmin

��
Ωi

􏽰

��
Ωi

􏽰
CjAj

�����

����� +
��
Ωi

􏽰
CjMj

�����

����� · Fj

�����

����� +
��
Ωi

􏽰
Mj

�����

����� · Fj
″Aj

�����

�����

+
��
Ωi

􏽰
Mj

�����

����� · Fj
″Mj

�����

����� · Fj

�����

����� +
��
Ωi

􏽰
CjBj

􏽥Ci

�����

�����

+
��
Ωi

􏽰
CjMj

�����

����� · Fj
′􏽥Ci

�����

����� +
��
Ωi

􏽰
Mj

�����

����� · Fj
″Bj

􏽥Ci

�����

�����

+
��
Ωi

􏽰
Mj

�����

����� · Fj
″Mj

�����

����� · Fj
′􏽥Ci

�����

�����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
��
Ωi

􏽰
CjBj

􏽥Di

�����

����� +
��
Ωi

􏽰
CjMj

�����

����� · Fj
′ 􏽥Di

�����

����� +
��
Ωi

􏽰
Mj

�����

����� · Fj
″Bj

􏽥Di

�����

�����

+
��
Ωi

􏽰
Mj

�����

����� · Fj
″Mj

�����

����� · Fj
′Dj

�����

�����

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

β,

􏽢Λ � max
i,j∈L

��
Ωi

􏽰
CjBj

􏽥Di

��
Ωi

􏽰
− 1

�����

����� +
��
Ωi

􏽰
CjMj

�����

����� · Fj
′ 􏽥Di

��
Ωi

􏽰
− 1

�����

�����

+
��
Ωi

􏽰
Mj

�����

����� · Fj
″Bj

􏽥Di

��
Ωi

􏽰
− 1

�����

����� +
��
Ωi

􏽰
Mj

�����

����� · Fj
″Mj

�����

����� · Fj
″Bj

􏽥Di

��
Ωi

􏽰
− 1

�����

�����.

(52)

Proof. Suppose that σ(sk) � i, and construct an auxiliary
function R(t) � ‖

��
Ωi

􏽰
esk

(t)‖/‖
��
Ωi

􏽰
y(t)‖ for t ∈ [sk, sk+1).

Event scheme (2) would be triggered only if R(t) �
�
ϵ

√
or

t � sk + T. When the latter holds, sk+1 − sk � T≥T1. Obvi-
ously, that is a bromidic case. Next, we will be dedicated to
testify that sk+1 − sk ≥T1 holds when sk+1 meets regulation
R(t) �

�
ϵ

√
.,e proof is segmented into two steps as follows.

Step 1. When the system does not switch between the
successive triggering moments sk and sk+1, σ(t) � σ(sk) � i,
∀t ∈ [sk, sk+1), correspondingly, uncertain system (50) could
be transformed into

_x(t) � Ai + ΔAi( 􏼁x(t) + Bi + ΔBi( 􏼁 􏽥Di y(t) + esk
(t)􏼐 􏼑

+ Bi + ΔBi( 􏼁􏽥Ci􏽥x(t), t ∈ [sk, sk+1).
(53)
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Differentiating the function R(t), one gets

_R(t)≤

��
Ωi

􏽰
_esk

(t)
�����

�����
��
Ωi

􏽰
_y(t)

����
����

+

��
Ωi

􏽰
_y(t)

����
���� ·

��
Ωi

􏽰
_esk

(t)
�����

�����
��
Ωi

􏽰
_y(t)

����
����
2

� (1 + R(t))

��
Ωi

􏽰
Ci + ΔCi( 􏼁 _x(t)

����
����

��
Ωi

􏽰
_y(t)

����
����
≤

1 + R(t)
��
Ωi

􏽰
_y(t)

����
����

��
Ωi

􏽰
Ci + ΔCi( 􏼁 Ai + ΔAi( 􏼁

����
���� · ‖x(t)‖

+
��
Ωi

􏽰
Ci + ΔCi( 􏼁 Bi + ΔBi( 􏼁􏽥Ci

����
���� · ‖􏽥x(t)‖

+
��
Ωi

􏽰
Ci + ΔCi( 􏼁 Bi + ΔBi( 􏼁 􏽥Di

����
���� · ‖y(t)‖

+
��
Ωi

􏽰
Ci + ΔCi( 􏼁 Bi + ΔBi( 􏼁 􏽥Diesk

(t)
�����

�����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(54)

Since

Ei

����
���� �

����������

λmax E
T
i Ei􏼐 􏼑

􏽱

≤
�������

λmax(I)

􏽱

� 1 (55)

‖x(t)‖, ‖􏽥x(t)‖≤ ‖βy(t)‖, (56)

it satisfies

_R(t)≤ (1 + R(t))

1
λmin

��
Ωi

􏽰

��
Ωi

􏽰
CiAi

����
���� +

��
Ωi

􏽰
CiMi

����
���� · ‖F‖i +⌊

��
Ωi

􏽰
Mi⌋ · Fj

′Ai

�����

�����

+
��
Ωi

􏽰
Mi

����
���� · Fj
″Mi

�����

����� · Fi

����
���� +

��
Ωi

􏽰
CiBi

􏽥Ci

����
����

+
��
Ωi

􏽰
CiMi

����
���� · Fj
′􏽥Ci

�����

����� +
��
Ωi

􏽰
Mi

����
���� · Fj
″Bi

􏽥Ci

�����

����� +
��
Ωi

􏽰
Mi

����
���� · Fj
″Mi

�����

����� · Fj
′􏽥Ci

�����

�����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

β

+
��
Ωi

􏽰
CiBi

􏽥Di

����
���� +

��
Ωi

􏽰
CiMi

����
���� · Fj
′ 􏽥Di

�����

����� +
��
Ωi

􏽰
Mi

����
���� · Fj
″Bi

􏽥Di

�����

����� +
��
Ωi

􏽰
Mi

����
���� · Fj
″Mi

�����

����� · Fj
′ 􏽥Di

�����

�����

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
��
Ωi

􏽰
CiBi

􏽥Di

��
Ωi

􏽰
− 1����

���� +
��
Ωi

􏽰
CiMi

����
���� · Fj
′ 􏽥Di

��
Ωi

􏽰
− 1

�����

�����

+
��
Ωi

􏽰
Mi

����
���� · Fj
″Bi

􏽥Di

��
Ωi

􏽰
− 1

�����

����� +
��
Ωi

􏽰
Mi

����
���� · Fj
″Mi

�����

����� · Fj
′ 􏽥Di

��
Ωi

􏽰
− 1

�����

����� · R(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ (1 + R(t)) Λa + ΛbR(t)( 􏼁≤ (1 + R(t))(Λ + 􏽢ΛR(t)),

(57)

where

Λa � max
i∈L

1
λmin

��
Ωi

􏽰

��
Ωi

􏽰
CiAi

����
���� +

��
Ωi

􏽰
CiMi

����
���� · ‖F‖i +

��
Ωi

􏽰
CiMi

����
���� · Fj
″Ai

�����

�����

+
��
Ωi

􏽰
Mi

����
���� · Fj
″Mi

�����

����� · Fi

����
���� +

��
Ωi

􏽰
CiBi

􏽥Ci

����
���� +

��
Ωi

􏽰
CiMi

����
���� · Fi
′􏽥Ci

����
����

+
��
Ωi

􏽰
Mi

����
���� · Fj
″Bi

􏽥Ci

�����

����� +
��
Ωi

􏽰
Mi

����
���� · Fj
″Mi

�����

����� · Fi
′􏽥Ci

����
����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

β

+
��
Ωi

􏽰
CiBi

􏽥Di

����
���� +

��
Ωi

􏽰
CiMi

����
���� · Fi
′ 􏽥Di

����
���� +

��
Ωi

􏽰
Mi

����
���� · Fj
″Bi

􏽥Di

�����

����� +
��
Ωi

􏽰
Mi

����
���� · Fj
″Mi

�����

����� · Fi
′ 􏽥Di

����
����

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Λb � max
i∈L

�
��
Ωi

􏽰
CiBi

􏽥Di

��
Ωi

􏽰
− 1����

���� +
��
Ωi

􏽰
CiMi

����
���� · Fi
′ 􏽥Di

��
Ωi

􏽰
− 1����

����

+
��
Ωi

􏽰
Mi

����
���� · Fj
″Bi

􏽥Di

��
Ωi

􏽰
− 1

�����

����� +
��
Ωi

􏽰
Mi

����
���� · Fi
″Mi

����
���� · Fi
′ 􏽥Di

��
Ωi

􏽰
− 1����

����.

(58)
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By introducing

_](t) � (1 + ](t))(Λ + 􏽢Λ](t)), (59)

inequality R(t)≤ ](t) holds apparently for the initial value
R(sk) � ](sk) � 0 from comparison Lemma 4.

As t adds from sk to sk+1,R(t) varies and increases from
0 to

�
ϵ

√
. By integrating both sides of (59) and supposing (2)

is triggered at t � T1 + sk, the inequality ](T1 + sk)≥
�
ϵ

√
can

be derived. Subsequently, the lower bound of sk+1 − sk can be
calculated to be 1/Λ − 􏽢Λ ln (1 + ((Λ − 􏽢Λ)

�
ϵ

√
/Λ + 􏽢Λ

�
ϵ

√
)),

which yields expressions (51).

Step 2. When the system switches n(∈ N+) between the
successive triggering moments sk and sk+1, one could sup-
pose that sk < tq+1 < · · · < tq+n ≤ sk+1. Considering the

subinterval [sk, tq+1), system (50) has the identical form as
(53); hence, the following inequality is deduced for
t ∈ [sk, tq+1):

_](t)≤ (1 + R(t))(Λ + 􏽢ΛR(t)). (60)

For the subinterval [tq+1, tq+2), uncertain system (50)
could be expressed by

_x(t) � Aj + ΔAj􏼐 􏼑x(t) + Bj + ΔBj􏼐 􏼑 􏽥Di y(t) + esk
(t)􏼐 􏼑

+ (Bj + ΔBj)
􏽥Ci􏽥x(t), t ∈ [tq+1, tq+2),

(61)

with σ(tq+1) � j ∈L. Parallelling to the deduction of Step 1,
one derives

_R(t)≤
1 + R(t)

��
Ωi

􏽰
y(t)

����
����

��
Ωi

􏽰
Cj + ΔCj􏼐 􏼑 Aj + ΔAj􏼐 􏼑

�����

����� · ‖x(t)‖

+
��
Ωi

􏽰
Cj + ΔCj􏼐 􏼑 Bj + ΔBj􏼐 􏼑􏽥Ci

�����

����� · ‖􏽥x(t)‖

+
��
Ωi

􏽰
Cj + ΔCj􏼐 􏼑 Bj + ΔBj􏼐 􏼑 􏽥Di

�����

����� · ‖y(t)‖

+
��
Ωi

􏽰
Cj + ΔCj􏼐 􏼑 Bj + ΔBj􏼐 􏼑 􏽥Diesk

(t)
�����

�����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ (1 + R(t)) Λc + ΛdR(t)( 􏼁≤ (1 + R(t))(Λ + 􏽢ΛR(t)),

(62)

where

Λc � max
i≠j∈L

1
λmin

��
Ωi

􏽰

��
Ωi

􏽰
CjAj

�����

����� +
��
Ωi

􏽰
CjMj·

�����

����� Fj

�����

����� +
��
Ωi

􏽰
Mj

�����

����� · Fj
″Aj

�����

�����

+
��
Ωi

􏽰
Mj

�����

����� · Fj
″Mj

�����

����� · Fj

�����

����� +
��
Ωi

􏽰
CjBj

􏽥Ci

�����

����� +
��
Ωi

􏽰
CjMj

�����

����� · Fj
′􏽥Ci

�����

�����

+
��
Ωi

􏽰
Mj

�����

����� · Fj
″Bj

􏽥Ci

�����

����� +
��
Ωi

􏽰
Mj

�����

����� · Fj
″Mj

�����

����� · Fj
′􏽥Ci

�����

�����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

β

+
��
Ωi

􏽰
CjBj

􏽥Di

�����

����� +
��
Ωi

􏽰
CjMj

�����

����� · Fj
′ 􏽥Di

�����

�����

+
��
Ωi

􏽰
Mj

�����

����� · Fj
″Bj

􏽥Di

�����

����� +
��
Ωi

􏽰
Mj

�����

����� · Fj
″Mj

�����

����� · Fj
′ 􏽥Di

�����

�����

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Λd � max
i≠j∈L

��
Ωi

􏽰
CjBj

􏽥Di

��
Ωi

􏽰
− 1

�����

����� +
��
Ωi

􏽰
CjMj

�����

����� · Fj
′ 􏽥Di

��
Ωi

􏽰
− 1

�����

�����

+
��
Ωi

􏽰
Mj

�����

����� · Fj
″Bj

􏽥Di

��
Ωi

􏽰
− 1

�����

����� +
��
Ωi

􏽰
Mj

�����

����� · Fj
″Mj

�����

����� · Fj
′ 􏽥Di

��
Ωi

􏽰
− 1

�����

�����.

(63)

Based on the analysis above, inequality (60) is guaran-
teed for all subintervals
[sk, tq+1)t, n[qtq+1, tq+2h),x . . . 7, C[; tq+n, sk+1). Defining
ϖ(t) � _](t) � (1 + ](t))(Λ + 􏽢Λ](t)), we could derive from

_R(t)≤ϖ(t) and R(sk) � ](sk) � 0 that R(tq+1)≤ ](tq+1).
By repetitively applying Lemma 4, we deduce
R(tq+2)≤ ](tq+2), . . . ,R(tq+n)≤ ](tq+n). ,en, for
t ∈ [tq+n, sk+1),
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R(t)≤ ](t) � 􏽚
t

tq+n

ϖ(ι)dι + ] tq+n􏼐 􏼑

� 􏽚
t

tq+n

ϖ(ι)dι + 􏽚
tq+n

tq+n−1

ϖ(ι)dι + · · · + 􏽚
tq

sk

ϖ(ι)dι + ] sk( 􏼁

� 􏽚
t

sk

ϖ(ι)dι.

(64)

Due to Step 1, the lower bound of sk+1 − sk can be de-
duced to be 1/Λ − 􏽢Λln(1 + (Λ − 􏽢Λ)

�
ϵ

√
/Λ + 􏽢Λ

�
ϵ

√
). Conse-

quently, the presence of the lower boundary on adjacent
event intervals is ultimately demonstrated. Based on (51), we
could reason out the following relationship:

􏽢Λ � max
i,j∈L

��
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􏽰
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􏽥Di
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��������

��������
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠<Λ,

(65)

which symbolizes that the lower boundary T1 is positive
invariably; therefore, the Zeno behavior could be eliminated.

,e systems in the real world havemore or less nonlinear
characteristics, so the nonlinear switched systems have a
wide range of practicability. However, due to the complexity
of nonlinear systems, there are still many problems to be
solved in the analysis and control of nonlinear switched
systems. ,e system considered in this paper is a linear
switched system, but the analysis framework and
analytical method can be extended to the nonlinear switched
system.

Time delay is a common phenomenon in the estab-
lishment of a mathematical model of control systems. It is
one of the key factors leading to the performance degra-
dation of the systems. ,erefore, the analysis and design of
time-delay switched systems are an important research field
in control theory. How to extend the results of this paper to
time-delayed switched systems is not only a more general
problem but also a more complex problem.

4. Simulation Results

To verify the availability of the derived results, in this section,
uncertain switched linear system (1) that incorporates two
subsystems is considered, whose parameters are as follows:

A1 �
−4.5 0

0 −4.4
􏼢 􏼣,

A2 �
−4 0

0 −4
􏼢 􏼣,

B1 �
−4.5 −2

1.5 5
􏼢 􏼣,

B2 �
−5 −2

1 5
􏼢 􏼣,

C1 � −1.5 1.5􏼂 􏼃,

C2 � −1 1􏼂 􏼃,

M1 � M2 � 0.05,

F1 � F2 �
−0.3 0

0 0.1
􏼢 􏼣,

F1 � F2 �
−0.3 0

0 0.1
􏼢 􏼣,

F1′ � F2′ �
−1 0.01

0 −0.1
􏼢 􏼣,

F1″ � F2″ � −1 1􏼂 􏼃.

(66)

,e resultant uncertain closed-loop system form can be
described by
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􏽥A1 �
−20 −0.1

0.4 −4
􏼢 􏼣,

􏽥A2 �
−15 −0.01

0.3 −4
􏼢 􏼣,

T11 �
0.001

0.0025
􏼢 􏼣,

T21 �
0.0015

0.002
􏼢 􏼣,

T12 �
−0.1 −0.4998

0 −0.002
􏼢 􏼣,

T22 �
−0.2 −0.0496

0 −0.004
􏼢 􏼣,

T13 �
0.003

0.002
􏼢 􏼣,

T23 �
0.004

−0.002
􏼢 􏼣,

T14 �
−0.00016

−0.001
􏼢 􏼣,

T24 �
−0.00019

0.001
􏼢 􏼣.

(67)

Obviously, the controller gains can be calculated as
Setting c � δ � 0.1, η � 1.3, T � 4, ϵ � 0.5, ς � 1,

K1 �

−20 −0.1 0.02

0.4 −4 0.05

0.2 0.5 −0.0032

0 0.02 −0.02

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K2 �

−15 −0.01 0.03

0.3 −4 0.04

0.2 0.05 −0.0038

0 0.04 0.02

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(68)

by employing the aforementioned event-triggered strategy
and controller gains, the state trajectory of the resultant
uncertain closed-loop system can be clearly portrayed in
Figures 3-4. Since the system remains stable and converges
to its original point, it follows that ,eorem 2 is effective.
Moreover, Figure 5 exhibits the dynamics of the corre-
sponding controller. Some release instants and release in-
tervals, which are yielded by the above-mentioned adaptive
event generator, are illustrated in Figure 6. Meanwhile,
viewed from the curve trend of Figure 5 and the triggered
dynamics of Figure 6, the event-triggered dynamic output-
feedback controller adopted by us can monitor the uncertain
switched system in real time and reduce unnecessary data
sampling, thus achieving the effect of resource-saving.

h111 � h121 � h131 � h141 � h151 � h161 � h211 � h221

� h231 � h241 � h251 � h261 � h112 � h122 � h132

� h142 � h152 � h162 � h212 � h222 � h232 � h242

� h252 � h262 � 20,

h271 � h172 � h171 � h272 � 80,

h18 � h28 � 30,

Ω1 � 1,

Ω2 � 0.5,

(69)
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Figure 3: Responses of x1(t) and 􏽥x1(t).
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Figure 4: Responses of x2(t) and 􏽥x2(t).
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5. Conclusion

In this article, we investigate innovatively the stabilization of
an uncertain and frequently switched system that is
equipped with an event-triggered dynamic output-feedback
controller. By utilizing the average dwell-time strategy, the
residence time of subsystems is arbitrarily small so that the
uncertain system can be frequently switched. Moreover, we
adopt dynamic output-feedback control for stabilization
device, which replaces state-feedback control and is con-
ducive to acquiring the whole information. Furthermore, a
controller-pattern-related Lyapunov functional is con-
structed, and the pattern-related event-triggered scheme and

the dynamic output-feedback controller are conjointly de-
vised to guarantee the exponential stabilization of an un-
certain closed-loop system. To reasonably deal with the
uncertain parameters, the Lyapunov functional and con-
troller gains are designed by the approach of a block matrix,
as well as some linear matrix inequalities are exploited.
Furthermore, the adopted event-triggered scheme can also
avoid the Zeno phenomenon. Eventually, we provide a
numerical simulation to confirm the availability of the de-
rived results.
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