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�e selection of the optimal metal milling parameters greatly impacts �nal product quality and production e�ciency in modern
manufacturing systems. �e pro�t rate is also sensitive to the selected parameters. �is research focuses on determining the
optimal parameters of a multipass milling process using an improved particle swarm optimization (PSO) method.�e objective is
to minimize the production time. �e proper number of passes, the optimal cut speed, and feed rate are considered as the
parameters (the decision variables in the model) which are needed to be optimized. Furthermore, the permissive arbor strength,
arbor de�ection, and motor power are the constraints of the model. �e penalty function method is used as the constraints
handling technique to address the constraints e�ciently in the proposed method. A case is adopted and solved to evaluate the
performance of the proposed method. �e experimental part is analyzed and compared with advanced methods. Experimental
results show that the proposed method is very e�ective for parameters optimization of a multipass milling process and out-
performs other methods.

1. Introduction

In recent years, optimal machining parameters for milling
process play an important role to ensure the quality of �nal
products, productivity, and the competition of the manu-
facturers [1]. As a result, determining the optimal milling
parameters becomes a very hot research topic. Metal milling
is one of the most important and widely used manufacturing
processes. But it is di�cult to choose the optimal milling
parameters which are subject to multiconstraints of motor
power, cutting force, and feasible range of machining pa-
rameters [2]. �e single-pass milling process was originally
preferred to �nd the minimum production time for eco-
nomic reasons. However, with the development of the
economy, the single-pass process cannot meet the needs of
product quality [3]. Hence more and more researchers tend
to focus on the multipass machining operation. Tradition-
ally, the operators usually depend on the handbooks, and if
the machines and processing types do not exist, the oper-
ators can only rely on their experiences to choose the pa-
rameters. However, handbooks and experiences cannot

guarantee the selected parameters are optimal and this may
lead to the waste of time and resources [4].

Several researchers used mathematical methods to �nd
the authentic optimal machining parameters.�e traditional
strategies such as dynamic programming and geometric
programming (GP) have been applied to the optimization of
the single-pass cutting process [5]. Tolouei-Rad and Bid-
hendi [6] used a feasible direction method to determine the
optimal parameters in milling operation. Petropoulos [7]
used a GP method for practical optimization problems.
Although the application of traditional methods mentioned
above obtained better results than those gained by just
following the handbooks, the results were far from robust
when compared with the results obtained by heuristic
approaches.

However, these traditional methods cannot be the op-
timal strategies to determine the optimal machining pa-
rameters, especially for themultipass process.�is is because
milling parameters optimization is a complicated multi-
constraints nonlinear programming problem. Traditional
methods rely on gradient information and are far from
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robust. So many researchers begin to apply heuristic
methods to this problem. Vijayakumar et al. [8] used ant
colony optimization (ACO) to find the satisfactory pa-
rameters in multipass turning operation. Palanisamy et al.
[9] and Gakhe et al. [10] used a genetic algorithm (GA) to
obtain the optimal machining parameters and minimize the
total production time. Wang et al. [11] hybridized GA and
SA and got the new strategy GSA, to select the optimal
parameters in milling operation. 'e artificial bee colony
(ABC) [12] was applied to the milling parameters optimi-
zation problem by Rao et al. [5]. Baykasoglu [13] proposed a
weighted superposition attraction-repulsion algorithm for
cutting conditions.

Particle swarm optimization (PSO) is a soft computation
technology based on swarm intelligence [14, 15]. It can be
used in the area of system design, multiobjective optimi-
zation, pattern recognition, signal processing, games, deci-
sion making, simulation, and identification [16, 17]. PSO
had also been used to identify human tremors by Eberhart
et al. [18], and the computational process was fast and the
result was accurate. Han et al. [19] introduced PSO into the
flexible manufacturing system to find the optimal scheduling
and increase the use ratio of machines and productivity.
Tang et al. [20] developed a parallel random matrix PSO for
scheduling with budget constraints. Yang et al. [21] pro-
posed an improved multiobjective PSO for scheduling with
panel block construction. Sun and Ren [22] introduced
graph density into PSO. PSO also had been used in the fields
of CNC machining [23] and pulsed laser micromachining
[24], and both gained good results. Fang et al. [25] proposed
an improved adaptive PSO for cutting parameter
optimization.

PSO is simple in concept, convenient in computation,
fast in implementation, and brief in programming [26].
Using PSO to figure out nonlinear programming problems
with multiple constraints is efficient. 'at is why PSO is
considered to be one of the most popular methods among
nature-inspired methods to solve complex optimization
problems. However, the balance of the exploration (diver-
sification) and exploitation (intensification) is one of the
limitations, which impedes the application of PSO in the
multipass milling process greatly. Hence, an effective
modified particle swarm optimization method is proposed
for the multipass milling process. 'e motivation of the
proposed method is to balance the exploration (diversifi-
cation) and exploitation (intensification) of PSO, which aims
to improve the optimization results. With this motivation,
three aspects of improvement, including the searchability,
avoiding the local optima, and restart parameter, have been
implemented, and the constraints handling strategy is in-
troduced. Moreover, the penalty function method is com-
bined with PSO to optimize the parameters optimization of
the multipass milling process. 'e main contribution of this
paper has several points. Firstly, in order to improve the PSO
and avoid the local optima, the proposed method introduces
three aspects of modification to balance the diversification
and intensification. Secondly, a constraints handling strategy

is introduced to construct the penalty function for the
feasible particle. Finally, the proposed method is developed
into a multipass milling process optimization problem,
which has indicated the effectiveness of the proposed
method.

'e rest of this paper is organized as follows: the problem
is formulated in Section 2. Section 3 introduces the proposed
improved PSO. In Section 4, an application example has
been selected to testify to the performance of the proposed
PSO and the results are compared with the ones gained by
other strategies. Some conclusions are given in the last
section.

2. Problem Formulation

'is paper uses the mathematical model proposed by [27].
'e milling parameters optimization model is made up of
three essential parts, which are objective function, con-
straints condition, and decision variables. In this model, the
total production time is the objective function. 'e number
of passes, the depth of cut for the rough pass and final pass,
cutting speed, and feed per teeth are the parameters to be
optimized. 'e constraints of this problem include the
arbor strength, arbor deflection, and permissible motor
power.

2.1. Objective Function. In this multipass milling model, a
component’s milling process contains some rough processes
and one finishing process. 'e rough processes fulfil the
removal of a large number of materials while the finishing
process ensures the permissible surface roughness [5].

'e total production time for a component is Tpr; it is
composed of the following items:

Tpr � Tp + TL + Tα + Tm + Tc. (1)

Tp is the machine set-up time. Tp � Ts/Nb, where Ts is
the set-up time for a new batch and Nb means the total
number of components in a produced batch.
TL is the loading-unloading time for one part.
Tα is the process of adjusting and quick return time.
Tm is the actual machining time. Tm � L/f, where L

(mm) is the cutting length and f (mm/min) means the
feed rate. f � fz · Z · N, where fz stands for the feed
per tooth (mm/tooth), Z refers to the total number of
teeth on the cutter, N means spindle speed (rpm), and
N can be given as N � 1000 · V/πD, where V is cutting
speed (m/min) and D means cut diameter (mm).
Tc is the time per component to changemachining tool.
Tc � TdTm/T, where Td means actual time for
changing a dull cutting edge, and T � (C1/m

V Dbv/m/
V1/mαev/mf

uv/m
z αrv/m

w Znv/mλqv/m
S )(BmBhBpBt)

1/m repre-
sent tool life. For a multipass milling process, the total
machining time should take every milling pass into
consideration that Tpr becomes
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Np is the number of passes to remove the total depth of
cut.
i is a subscript that refers to the i-th pass of a process.
T1 � Ts/Nb + TL and T2 � 􏽐(Tαi + Tmi + TdTmi/T).

2.2. Constraint Conditions. Feasible results are subject to
some technological constraints that are related to the ma-
chining tools, cutting tools, and materials. Design variables
are bounded by the following constraints [27].

2.2.1. Power Constraint. Tool power of machine ought to be
less than effective power, which is shown as

Pc ≤Pmη. (3)

And for plain milling case,

Czp · αw · Z · D
bzαez f

uz

z V/6120≤Pmη. (4)

Pc is the cutting power
Pm is the nominal motor power
η is the overall efficiency of the cutting machine
Fc is the cutting force which can be calculated
according to Czp · αw · Z · Dbzαez f

uz
z

2.2.2. Arbor Strength. Cutting force Fc should not exceed
the permissible strength Fs, and all the coefficients are
following [27]:

Fc − Fs ≤ 0,

Fc −
0.1kbd

3
α

0.08Lα + 0.65
����������������������

0.25Lα( 􏼁
2

+ 0.5Dkb/1.3kt( 􏼁

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠≤ 0.

(5)

Fc is the cutting force
Fs is the permissible force for the arbor strength
kb is the permissible bending strength of the arbor
dα is the diameter of the arbor
Lα is the arbor length between supports
kt is the permissible torsional stress of the arbor
material

2.2.3. Arbor Deflection. Arbor deflection must be checked
when choosing the satisfying feed rate:

Fc − Fd ≤ 0,

Fd � 4
Eed

4
a

L
3
a

.

(6)

Fd is the permissible strength of the arbor deflection
E is the modulus of elasticity of the arbor material
e is the permissible value of the arbor deflection, and
e � 0.2 in roughing pass meanwhile e � 0.2 in finishing
pass

2.3. DecisionVariables. 'e number of passes, the cut depth
of each pass, the feed rate, and the feed per tooth are design
variables. 'e last two parameters can be gained from the
range of spindle speed and spindle feed rate. 'e first two
parameters are determined by the permissible boundary of
cutting depth and the total milling depth. 'e feasible range
of depth of cut is specified as [5]

αmin ≤ α≤ αmax, (7)

where αmin and αmax determine the boundary of the choice of
the depth of cut in every pass.

Yet the maximum spindle speed Nmax and the minimum
spindle speed Nmin determine the range of milling speed:

Vmin ≤V≤Vmax, (8)

where Vmin � πDNmin/1000 and Vmax � πDNmax/1000.
Also, the feasible feed rate must be in the range deter-

mined by the maximum and minimum feed rate of the
machine.

fzmin ≤fz ≤fzmax, (9)

where fzmin � fmin/ZNmax and fzmax � fmax/ZNmin and
fmax are the minimum and maximum spindle feed rate. 'e
PSO will be introduced in the following section based on the
given multipass milling model.

3. Proposed PSO for Parameter Optimization

3.1. Conventional PSO for Parameter Optimization. PSO is a
swarm-intelligence-based algorithm and was first proposed
as the simulation of a bird flock’s social behavior. PSO
randomly generates a set of birds with random velocities and
random positions. After that, an initial group of swarms is
produced. Individuals in the population are particles. 'e
number of particles in the swarm is the population size.
Every particle searches for the best position to get the
minimum value of the objective function just like the bird
searching for food. 'e search space of the optimization
problem is bounded by the feasible range of each decision
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variable. 'e position of each particle represents a potential
solution because every dimension of the search space stands
for the corresponding design variable. Each particle keeps
track of its coordinates in the problem space which is as-
sociated with the best solution it has achieved so far [19]; it is
pbest. Another important value that is tracked is the overall
best value. 'e overall best location is called gbest. Fitness
function is the criterion to judge the positions of particles.
And fitness function is composed of the objective function
and the constraints. pbest and gbest are continually updated
by the better locations and better fitness in the searching
process. 'is searching process is exactly like the self-
learning and social-learning behavior of birds. In a word, the
PSO concept consists of each time stop. Each particle
changing velocity toward Pbest and gbest randomly generates
the acceleration for each best position. Every particle
modifies its position and velocity after one search time by the
equations given as follows:

v
t+1
i � ω · v

t
i + c1r1 Pbest − P

t
i􏼐 􏼑 + c2r2 Gbesti − p

t
i􏼐 􏼑

i � 1, . . . , d,
(10)

p
t+1
i � p

t
i + v

t+1
i , i � 1, . . . , d. (11)

d is the dimension of the optimization problem (the
number of design variables)
vi � (v1, v2, . . . , vd) is the velocity of particles in the
d-dimension search space
pi � (p1, p2, . . . , pd) is the i-th particle’s d-dimension
position
pbesti � (pbest1, pbest2, . . . , pbestd) is the personal best
position
gbesti � (gbest1, gbest2, . . . , gbestd) is the global best
position
ω means the inertia weight controls the particle’s ex-
ploration and exploitation ability
c1, c2 are the acceleration constants that represent the
weighting that pulls each particle toward pbest and gbest
position
r1, r2 are two uniform random numbers between [0, 1]

'e process for implementing PSO is as follows:

(i) Initialize the population of particles with random
positions and random velocities within the search
ranges

(ii) Evaluate each particle with both the objective
function and constraints

(iii) Compare each particle’s objective value with its
pbest, take their constraints satisfaction into con-
sideration, and if the current position is better, take
the place of the previous fitness value and pbest

(iv) Compare each particle fitness evaluation and con-
straints satisfaction state with the overall previous
best gbest, updating gbest if it exits better particle and
keeping in track of the best fitness value

(v) Change the velocity and position of each particle by
(10) and (11)

(vi) Loop to (ii) if the maximum number of iterations is
not reached or the given precision is met

3.2. Constraints Handling Technique. In PSO, a traditional
method to deal with the constraints is usually adopted by
Yang et al. [28]. In this method, the more constraints a
particle violates, the worse the particle is. 'e degree of
violation of constraints is neglected. So, it is not so easy for
this method to judge the particles. 'e strategy is shown in
Table 1.

'e constraints handling technique is operated in the
encoding work rather than be put into the objective func-
tion. But it becomes hard to ensure the results are feasible
when the number of constraints increases. 'e final optimal
particle may just violate fewer constraints but is still not
feasible.

'us, the penalty function method is adopted in this
study. 'e overall constraints are contained in the penalty
function. 'e fitness function is composed of the penalty
function and the objective function. 'e results are usually
feasible and subject to all the constraints when setting the
punishment factor to a big enough number. 'e details to
build the fitness function with the penalty function are
introduced next.

For a general optimization problem, the mathematical
expressions can be described as follows [29].

Assume that x � (x1, x2, . . . , xn) is a point in n-di-
mension space Rn and f(x), hi(x), and gi(x) are given
functions with n variables. Consider the constraints as
follows:

hi(x)(i � 1, . . . , k) � 0,

gi(x)(i � 1, . . . , p)≤ 0.
(12)

'e optimization target is to obtain the minimum f(x):

f(x) is the objective function
hi(x) is k equality constraints
gi(x) is p inequality constraints
x are the design variables

'e fitness function is given as follows when considering c:

F(x) � f(x) + δP(x). (13)

δ is the punishment factor
P(x) is the punishment term

Without the ε (a positive tolerance value for equality
constraints) in [29], the penalty function can be written as

P(x) � m1 􏽘

k

i�1
hi(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ m2 􏽘

p

i�1
max 0, gi(x)( 􏼁􏼈 􏼉

2
. (14)

m1 is the weight of equality constraints
m2 is the weight of inequality constraints
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'e fitness function is built based on (13) and (14) with
the constraints and objective function. 'e process of
building this structure is simple, fast, and time-saving. 'e
results are very stable while using this penalty function
method.

3.3. 6e Proposed PSO. Based on the standard PSO, a new
improved PSO is applied to this study. To obtain better
computational results and avoid quick convergence, three
improvements are applied to standard PSO. A new fitness
function based on the problem is constructed.

3.3.1. Modification of PSO

(1) Particles no longer learn from one’s own pbest. Parts
of the swarm obtain pbest of other members. 'e
different pbest guide the particle flying in another
direction. 'e searchability of the swarm is en-
hanced. In this study, ten percent of particles were
randomly chosen to implement this modification
and change pbest used in (10).

(2) To avoid the particles getting trapped into local
optima, after an iteration of the proposed method,

the particles do not update their position and ve-
locity by (12) and (13). Instead, ten percent of par-
ticles implement their initialization and randomly
get their positions and velocities. In this way, that the
majority of the experience has been held back and
delivered to the next generation. At the same time,
the diversity of the swarm is kept.

(3) 'e last modification of the standard PSO is a restart
parameter to stop its quick convergence. When all
the particles go to the same direction guided by gbest,
the swarm always have a fast convergence rate before
finding the optimal point. To get thorough flying in
the search space, the particles have some probability
to reset and restart the method so the particles can
jump out of local optima.

When gbest does not update, a counter-repeat times
(RepeatTime) increase by 1. When the repeat times reach the
max repeat time (MaxRepeatTime) that means the particles
may trap in the local minimum. We set a parameter rs that
combines with the present iteration times and the max it-
eration times (rs is present iteration times/max iteration
times). Another parameter rand is a randomly generated
number in [0, 1]. On the condition that the max repeat times
are reached, compare rs with rand. If rs is smaller than rand,
all particles have an initialized value and all parameters are
reset. But in each restart, the best global fitness is saved. It
can be seen that the restart probability decreased with the
iteration time rising because rs is increased by each iteration.

3.3.2. Fitness Function. In this optimization problem, there
are only three inequality constraints. Based on the standard
PSO and recommended constraints handling technique, the
constraints in (13) and (14) can be substituted with the
milling model. 'e fitness function is shown as follows:

Fit � Tpr + m2 max 0,
FcV

6120
− Pmη􏼒 􏼓􏼒 􏼓

2
+ max 0, Fc − Fs( 􏼁( 􏼁

2
+ max 0, Fc − Fd( 􏼁( 􏼁

2
􏼢 􏼣. (15)

According to (2), the fitness function above is a qua-
ternion function (about Np, αi, Vi, fzi). So, this is a four-
dimension optimization problem. Nevertheless, the opti-
mization results of Np and αi cannot always be implemented
in practice, because the removal of each pass (αi) depends on
the machining accuracy of the machine. And the number of
passes of the cutting process must be an integer. For the
reasons above, the two parameters, Np and αi, are optimized
by another strategy.

'ere are some frequently used machining options of Np
and αi. αi is defined in the range of (αmin, αmax). 'en the Np

is fixed by the total cut depth (α) and αi, Np � α/αi. Usually,
four or five strategies are implemented to obtain the final
best results. 'e set of Np and αi that obtain the minimum
machining time is considered as the optimal parameters.

'e representation of this milling problem by particles is
shown in Figure 1.

3.3.3. Computational Process. In this study, the program-
ming language is Microsoft Visual C++ and the flow chart of
the proposed PSO is shown in Figure 2.

3.3.4. Complexity of the Proposed Method. Assuming the
population size is K, the maximum iteration times is L

(maximum iteration times), the maximum repetition times is
R (maximum repeat times), and the problem size is N (N
parameters need to be optimized), and the computational
complexity is analyzed as follows: at each iteration, problem
modeling, fitness calculation, optimal state selection of

Table 1: 'e commonly used updating strategy for pbest.

Updating strategy for the personal best position (compare current
fitness value and pbest)

(i) If these two solutions are both feasible, select the one with
better fitness value; if both two fitness values are equal, randomly
select one of them.
(ii) If one is feasible and the other is infeasible, select the feasible
one.
(iii) If these two solutions are both infeasible, select the one with
the lower number of constraints violations; if they violate the same
number of constraints, randomly select one of them.
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individual and population, speed calculation, and state
update are required. 'erefore, the time complexity of the
proposed method is

O(L, K, R, N) � O K∗ KN +(R − 1)∗ (L − 1)∗ 0.1∗N
2

􏼐 􏼑􏼐 􏼑

≈ O K
2

􏼐 􏼑 + O KRLN
2

􏼐 􏼑.

(16)

When the size of the problem is much larger than the
population size, the time complexity of this method can be
simplified as K∗R∗L∗O(N2); that is, the calculation
amount is proportional to the square of the size of the re-
search problem and is proportional to the population size
(K), the maximum number of repeats (R), and the maxi-
mum number of iterations (L).

Machining strategy 1
(number of passes and
cut depth of each pass)

Roughing
passes

Finishing
passes

Roughing
passes

Finishing
passes

Roughing
passes

Cut speed
Feed rate

Machining time
Velocity
Position

Cut speed
Feed rate

Machining time
Velocity
Position

Finishing
passes

Machining strategy 2
(number of passes and
cut depth of each pass)

. . .

. . .

Particles

Machining strategy п
(number of passes and
cut depth of each pass)

Figure 1: 'e representation of a solution to the milling parameters optimization problem.

Initialize positions of each particle within the
feasible range in each dimension

Ten percent of the particles
update their velocities based on

one other particle’s personal
best value.

Ten percent of the particles
initialize their positions and

velocities.

Update velocities and positions
of the last swarm in each

dimension depend on equation
(12) and (13)

Compare rs and rand,
if rs<rand

Reach the
maximum repeat times

Reach the
maximum iteration

times

Initialize velocities of each particle within its
initial position in each dimension

Initialize personal best position of each particle
with the initial position

Evaluate fitness of each particle accoring to
equation (18) and identify the global best position

Evaluate fitness of each particle, if the new fitness
is smaller than the premium personal best then

update the personal best fitness

If the new fitness is smaller than the premium
global best, update the global best fitness and

keep track of this best position. If the global best
fitness is not updated, the repeat time increased by

1.

Stop iteration and output the best results of fitness
and position

Yes

Yes

Yes

Yes

No

NoNo

Figure 2: 'e flowchart of the proposed PSO.
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4. Experiment Study

An application example is adopted to evaluate the perfor-
mance of the proposed PSO. 'e parameters, the constants,
and exponents’ values are specified as

Type of milling: plain milling.
Motor power: Pw � 5.5KW, efficiency η � 0.7.
Arbor diameter da � 27mm, arbor length between
supports Lα � 210mm.
Permissible bending and torsional stress of arbor: kb �

140MPa � 14.27kg/mm2, kt � 120MPa � 12.23kg/mm2.
Modulus of elasticity of arbor material
E � 200GPa � 20387kg/mm2.
Spindle speed range: (31.5 ∼ 2000) rpm, feed rate
range: (14 ∼ 900) mm/min.
Tool material: HSS; tool diameter: D � 63mm; number
of teeth Z � 8.
Workpiece material: structural carbon steel (C≤ 0.6%).
Tensile strength: 750MPa; Brinell hardness number:
150.
Length, width, depth of cut: L � 160mm, αw � 50mm,
α � 5mm.
Loading and unloading time of one work piece
TL � 1.5min.
Set up time of fixtures and machine tool Ts � 10min;
tool change time Tc � 5min.
Process adjusting and quick return time
Tα � 0.1min/part.
Lot size Nb � 100; cutting inclination: 30°.

'e constants and exponents used in the example are
listed as follows:

Cv � 35.4, m � 0.33, bv � 0.45, ev � 0.3, Bm � 1.0,
Bh � 1, Bp � 0.8, Bt � 0.8, uv � 0.4, rv � 0.1, nv � 0.1,
qv � 0, Czp � 68.2, bz � −0.86, ez � 0.86 and uz � 0.72
αmin and αmax are 0.5mm, 4mm for the milling op-
eration, so 0.5≤ αi ≤ 4

Calculate the boundary of fz (feed per teeth) and V (feed
speed) based on (13) and (14). 'e following equations are
obtained:

0.00875
mm
tooth

􏼒 􏼓≤fz ≤ 3.571
mm
tooth

􏼒 􏼓,

6.234
m

min
􏼒 􏼓≤V≤ 395.84

m

min
􏼒 􏼓.

(17)

'e maximum iteration number is set as 40, the pop-
ulation of particles is 20, inertia weight (ω) factor is 0.9,
acceleration coefficients c1, c2 are 1.05, and the punishment
factor δ is 50. All the hyperparameters, such as the c1 and c2,
are selected based on preliminary experiments, and the
experiment results are not sensitive with a feasible selection
range. Moreover, the preliminary experiment also suggests
that the hyperparameter in this experiment will provide an
acceptable result as well. But if it wants to exploit the best

performance of the proposed method, a fined search for the
hyperparameter is more feasible.

For this simplified two-dimension problem, the width of
each dimension is (3.571–0.000875) and (395.84–6.234). It
can be seen that the two ranges differ so much. So, the initial
speeds are assigned with the initial position coordinates of
particles rather than be set at the 10∼20% of the dynamic
range traditionally. 'e searchability of particles is balanced
in two dissimilar dimensions by the recommended
assignment.

Four typical machining strategies with different Np and
αi are chosen. And the different strategies to accomplish the
total 5mm removal are tabulated in Table 2.

Some other methods are implemented to have a com-
parison with the proposed PSO. Geometric programming
(GP) is one of the typical traditional dynamic programming
methods. Artificial bee colony (ABC) and simulated
annealing (SA) are kinds of soft computing methods that are
researched mostly in recent years. All the comparison
methods are the advanced methods of multipass milling
process, and for a fair comparison, the proposed improved
PSO (IPSO) is compared with these methods directly
without any extra design or strategies. 'e purpose of the
comparison is to evaluate if the proposed method is effective
for multipass milling process.

Table 3 shows the four groups of computational results of
IPSO and ABC. IPSO is superior to ABC in all four strat-
egies. 'e production time of one part is shorted by 0.038
minutes, especially in machining strategy 1. 'e total ma-
chining time of a batch is shortened by 0.038×100� 38
minutes.

'e computational results obtained by GP are tabulated
in Table 4. Also, Table 4 gives the results of SA in the
commonly used strategy 2. 'e final production time
demonstrates the superiority of IPSO to GP and SA. IPSO
cut the production time of one part by 0.031minutes
contrasted to SA. And for GP, production time decreases by
almost one minute.

IPSO has a self-adapting feature that the particles follow
the local best and global best position by adjusting their
velocities. 'e two best positions are updated by fitness
estimation and affect the direction of swarms in the next
iteration. Particles continually gather to the near-optimal
area by conducting two ongoing comparisons. IPSO has
efficient search ability due to its active inner learning
structure.

ABC gains results approximate to IPSO in Table 3 but
ABC algorithm is so complicated in the concept of foragers,
and unemployed foragers consist of scout bee and recruit,
employed foragers, and experienced foragers [12, 30]. SA is a
kind of probabilistic hill-climbing computing algorithm and
is suitable for combinatorial optimization problems or
nonlinear response functions. According to Table 4, the
results obtained by SA are inferior to the results gained by
IPSO. Moreover, SA is time-consuming. With about 100
iterations, SA can obtain the final best results [5]. Unlike
IPSO, SA uses Metropolis strategy to update the current best
solution and only when the annealing time is long enough,
SA can provide good results. When compared to GP which is
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one type of traditional optimization strategy, IPSO is better
than the results of GP. Traditional methods alone cannot
give a robust result of the multiconstraints nonlinear pro-
gramming optimization problem.

5. Conclusion and Future Work

Process planning of the multipass milling process is crucial
for the determination of the cutting parameters. 'e se-
lection of the passes, depth of cut, cut speed, and feed per
teeth have a great impact on the production time greatly.'e
cost and final quality of products are also affected by the

recommended parameters. In this study, the multipass
machining process is modeled on basis of the proposed PSO
which is one kind of swarm intelligence algorithm. Its search
mechanism of going after the local best and global best
positions ensures the convergence of particles.

'e penalty function method is used as the constraints
handling technique. 'e constraints of the arbor strength, the
arbor deflection, and the cutting power are satisfied by the
punishment function method. An experimental example is
presented to test the proposed IPSO. 'e computational results
of IPSO are superior to the results gained by ABC, SA, and GP.
Meanwhile, IPSO has a relatively high convergence rate.

Table 2: Four machining strategy options.

Machining strategy 1 2 3 4

Roughing operation

αrough � 2 αrough � 1.5 αrough � 2 αrough � 1
αrough � 2 αrough � 1.5 αrough � 1 αrough � 1

αrough � 1.5 αrough � 1 αrough � 1
αrough � 1

Finishing operation αfinish � 1 αfinish � 0.5 αfinish � 1 αfinish � 1

Table 3: Computational results of PSO and ABC.

Method Results of IPSO Results of ABC
T1

(min)S.
no.

Machining
strategy

fz (mm/
tooth)

V (m/
min)

T2
(min)

Production time
T1 + T2

fz (mm/
tooth)

V (m/
min)

T2
(min)

Production time
T1 + T2

1
αrough � 2 0.242 53.53 0.456

3.24
0.231 48.117 0.475

3.278
1.9

αrough � 2 0.242 53.53 0.456 0.231 48.117 0.475
αfinish � 1 0.190 72.61 0.428 0.189 74.090 0.428

2

αrough � 1.5 0.341 50.86 0.340

3.232

0.337 46.982 0.343

3.240

2.0
αrough � 1.5 0.341 50.86 0.340 0.337 46.982 0.343
αrough � 1.5 0.341 50.86 0.340 0.337 46.982 0.343
αfinish � 0.5 0.435 64.19 0.212 0.432 64.41 0.211

3

αrough � 2 0.242 53.53 0.456

3.334

0.231 48.117 0.475

3.355

2.0
αrough � 1 0.554 47.33 0.225 0.552 47.519 0.226
αrough � 1 0.554 47.33 0.225 0.552 47.519 0.226
αfinish � 1 0.190 72.61 0.428 0.189 74.090 0.428

4

αrough � 1 0.554 47.33 0.225

3.428

0.552 47.519 0.226

3.432

2.1
αrough � 1 0.554 47.33 0.225 0.552 47.519 0.226
αrough � 1 0.554 47.33 0.225 0.552 47.519 0.226
αrough � 1 0.554 47.33 0.225 0.552 47.519 0.226
αfinish � 1 0.190 72.61 0.428 0.189 74.090 0.428

Table 4: Computational results of IPSO, SA, and GP.

Machining strategy fz (mm/tooth) V (m/min) Tpr � T1 + T2 (min)

PSO

αrough � 1.5 0.341 50.86

3.232αrough � 1.5 0.341 50.86
αrough � 1.5 0.341 50.86
αfinish � 0.5 0.435 64.19

SA

αrough � 1.5 0.336 44.633

3.263αrough � 1.5 0.336 44.633
αrough � 1.5 0.336 44.633
αfinish � 0.5 0.429 57.23

GP αrough � 3 0.338 26.4 4.205αfinish � 2 0.57 25.16
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In this study, IPSO is successfully used in milling pa-
rameters optimization problems, but it has not been fre-
quently tested in other metal machining parameters
optimization problems such as drilling, grinding, and
turning. In future work, the searching ability and conver-
gence rate of IPSO will be tested by increasing the di-
mensions of the optimization problem. Furthermore, for a
complicated machining process with different machining
operations, this will largely decrease the total process time
and increase production. Besides, hybridizing IPSO with
other optimization algorithms to enhance its performance is
another research direction.
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