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A fully integrated Chen chaotic oscillation system using operational amplifiers (OAs) and multipliers is designed and verified in
this paper. Unlike the conventional breadboard-based Chen chaotic system using off-the-shelf discrete components, the fully
integrated Chen chaotic oscillation circuit presented in this paper is realized using GlobalFoundries’ 0.18 μm CMOS 1P6M
process, and all the circuit components are integrated in a chip. *e fully integrated Chen chaotic oscillation system is verified
using Cadence IC Design Tools, and the post-layout simulation results indicate that the presented integrated Chen chaotic
oscillation system only consumes 148 mW from ± 2.5 V supply voltage, and its chip area is 6.15 mm2

.

1. Introduction

With the development of nonlinear systems, the research on
chaos and chaotic neural networks has grown rapidly in
recent years [1–10]. However, the development of chaos and
chaotic neural networks mainly focuses on their software
algorithm improvement [11–18], the hardware imple-
mentation of chaos and chaotic neural networks has fallen
far behind their software algorithm. Facing with this issue,
the research on hardware circuits implementation of chaos
and chaotic neural networks becomes increasing important.
Chaos has been investigated widely in the last decades and
they become increasing interest subjects because of their
great potential applications in many fields such as chaotic
signal radar [19], secure communications [20–24], chaos-
based analog-to-information conversion and image en-
cryption applications [25]. *e double-scroll Chua system is
the first physical circuit realization of chaos. Since then,
other chaotic and hyperchaotic systems with complex
chaotic attractors and nonlinear dynamical characteristics
have been realized [26–31], and most of them are validated
with commercial available discrete electronic components or

digital signal processing (DSP) and field programmable gate
array (FPGA) [32–42].

Most of the reported and physical implemented chaotic
systems are realized using off-the-shelf electronic com-
ponents with breadboards. *e breadboard-based chaotic
circuits are suitable for theoretically proving the existence
and realizability of chaos, they are non-portable and un-
stable, and far from the practical application of chaos.
Unlike the conventional breadboard-based chaotic circuits,
the fully integrated chaotic systems are more stable and
convenient than their breadboard-based counterparts.
Chaotic systems fully integrated on a single chip should be
the development direction of chaotic circuits, and the fully
integrated chaotic circuits will greatly enhance the prac-
ticality of chaos. For example, two CMOS Chua’s chaotic
circuits were reported in Ref. [43], another 2 μm CMOS
process integrated chaotic system with high speed opera-
tion was introduced Ref. [44], and an integrated multi-
scroll chaotic oscillator generating 3- and 5-scroll attractors
was reported in Ref. [45].

Because of its simple circuit structure and easy to be
theoretically proven, the famous Chen chaotic system
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[46–50] and its deformation circuits are deeply studied in the
past decades. Several realization and implementation of
Chen chaotic circuits are presented in Ref. [50], however,
these circuits are also realized using commercial available
discrete electronic components with breadboards. Based on
the existing Chen chaotic circuits and systems, a low voltage
low power fully integrated classic Chen chaotic oscillation
system is realized in this paper. *e post-layout simulation
results verified that the fully integrated Chen chaotic os-
cillation system is feasible and achievable. In addition, the
main contributions of this work can be summarized below.

1) An operational amplifiers (OA) and an analog mul-
tiplier with GlobalFoundries’ 0.18 μm CMOS 1P6M
process are designed in this work.

2) Unlike the conventional breadboard-based chaotic
circuits, a fully integrated Chen chaotic oscillation
system using the designed OA and multiplier is
presented.

3) *e fully integrated Chen chaotic system is verified
with Cadence IC Tools. *e post-layout simulation
results demonstrate that the whole power con-
sumption of the fully integrated Chen chaotic system
is about 148 mW, its chip area is only 6.15 mm2, and
the fully integrated Chen chaotic circuit is a more
suitable candidate for practical applications.

2. Fully Integrated Chen Chaotic Circuit

*e design of fully integrated Chen chaotic circuit is pre-
sented in this section. *e original Chen chaotic system and
its fully integrated circuit is introduced in subsection 2.1, and
the implementations of operational amplifier and analog
multiplier are introduced in subsection 2.2 and 2.3,
respectively.

2.1. Chen Chaotic System. *e classic dimensionless state
equations of the Chen system can be depicted as follow:

dx

dt
� a(y − x)

dy

dt
� (c − a)x − xz + cy,

dz

dt
� xy − bz
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where a, b and c are all constants, and a � 35, b � 3, c � 28.
When the initial condition is (0, 0, 0), the Matlab nu-
merical simulation results of Chen system are presented in
Fig 1, and the chaotic attractors are observed as shown in
Fig. 1(a)-(c).

Because the supply voltage of the fully integrated Chen
chaotic oscillation system are ±2.5 V, and the output ranges
of state variables x, y and z in Fig 1 all exceed ±2.5 V, state
variables compression are necessary. After evenly com-
pressed 40 times of the state variables, the state equations of
the Chen system could be expressed as:

dx

dt
� 35(y − x),

dy

dt
� −7x − 40xz + 28y,

dz

dt
� 40xy − 3z.
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(2)

Let τ � τo × t, and τo � 10000, and the state equations of
the Chen system could be rewritten as:

dx

dt
� 100000(3.5y − 3.5x),

dy

dt
� 100000(−0.7x − 4xz + 2.8y),

dz

dt
� 100000(4xy − 0.3z).
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Based on the existing circuit realizations of Chen chaotic
systems, a simplified Chen chaotic oscillation circuit suitable
for integration is presented in Fig. 2.

Assuming the gains of the multipliers are all k, and the
circuit equation of Fig. 2 could be expressed as:

dx

dt
�

1
R4C1

−
R3R6

R1R5
x +

R3

R2
y􏼠 􏼡,

dy

dt
�

1
R11C2

−
R6R10

R5R7
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kR6R10

R5R8
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R10

R9
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dz

dt
�

1
R15C3

kR14

R12
xy −

R14R17

R13R16
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(4)

2.2. Implementation of Operational Amplifier. *e designed
OA for the integrated Chen chaotic oscillation circuit is
shown in Fig. 3. *e designed operational amplifier is
very simple, and its supply voltages are VCC � −VSS � 2.5
V, and it includes two amplification stages and one bias
stage.

*e transistors M7-M11 consist of the differential am-
plification input stage; M13 is the second common source
amplification stage, and M12 is the active load of M13; the
transistorsM1-M6 consist of the bias stage of the OA, and the
transistor M14 and capacitor C are used for frequency
compensation.

*e simulated voltage gain and phase frequency
characteristics of the OA are shown in Fig. 4. From the
mark M0, we can know that the voltage gain of the OA is
about 30dB; From the marks M0 and M1, we can calculate
that the 3dB bandwidth of the OA is 218.5 kHz; From the
marks M2 and M3, we can know that the phase margin of
the OA is about 86.22°. *e power consumption of the OA
is about 5.85 mW.
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Figure 2: *e fully integrated Chen chaotic oscillation circuit.
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Figure 3: *e designed OA.
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Figure 1: Numerically simulated phase portrait of Chen’s attractors: (a) x-z plane, (b) z-y plane, and (c) y-x plane.
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2.3. Implementation of Analog Multiplier. *e analog mul-
tiplier used in the integrated Chen chaotic oscillation circuit
is shown in Fig. 5. *e classic Gilbert structure is adopted,
M1 and M2 consist of the current mirror, and they are the
bias stage of themultiplier; M3 works on its saturation region
(also known as amplification region), which can be ap-
proximated as a current source to provide bias current for
the transconductance stage (M4 and M5); M4 and M5 consist
of the transconductance stage, M6-M9 consist of the Gilbert
switch stage [51–53], and M10-M13 consist of the load stage
of the analogmultiplier.*e supply voltages of themultiplier
are VCC � −VSS� 2.5 V, and its power consumption is about
47.7 mW.

*e transient response of the designed analog multiplier
is presented in Fig. 6. Vi1 and Vi2 are the two input voltages,
their input powers are all -10 dBm, and their frequencies are
100 MHz and 10 MHz, respectively. Vout is the output
voltage of the analog multiplier. From the above simulation
results, it is clear that Vi1 is the high frequency carrier, Vi2 is
the low frequency input signal, and the multiplication is
realized in the output voltage Vout. From the marks M0-M3
in Fig. 6, peak voltages of Vi1 and Vi2 are all about 200 mV,
and the peak voltage of Vout is about 4mV. According to Vout
� k × Vi1 × Vi2, it is clear that the parameter k in equation (4)
is about 0.1.

3. Post-Layout Simulation Results of the
Integrated Chen Chaotic Oscillation Circuit

*e presented fully integrated Chen chaotic oscillation
circuit in Fig. 2 is simulated and verified using Cadence IC
Tools with GlobalFoundries’ 0.18 μmCMOS technology.*e
supply voltages of the fully integrated Chen chaotic circuit
are ±2.5 V, and its whole static power consumption is about
148mW. Considering equations (3) and (4), the values of
circuit elements are selected as R1 � R2 � 2.85 kΩ, R3 � R5 �

R6 � R10 � R14 � R16 � R17 � R18 � R19 �10 kΩ, R4 � R11 � R15
� 200 kΩ, R8 � R12 � 0.25 kΩ, R7 � 14.28 kΩ, R9 � 3.57 kΩ,
R13 � 33.33 kΩ, C1 � C2 � C3 � 50 pF.

*e chip layout diagram of the Chen Chaotic oscillation
system is shown in Fig. 7, and its chip area is 6.15 mm2

including all the testing pads.
*e Mentor Calibre software is used for circuit verifi-

cation and parasitic extraction. Based on the layout of the
Chen chaotic oscillation circuit in Fig. 7, and connecting the
extracted parasitics to the original circuit in Fig. 2, the post-
layout simulation results of the integrated Chen chaotic
oscillation circuit are presented in Figs. 8 and 9.

Fig. 8 is the transient response of the fully integrated Chen
chaotic circuit, and various dynamical oscillations can be
observed. From Fig.8, it is clear that the peak amplitudes of
output voltages x, y and z are all less than 2V. Fig. 9 is the phase
portraits in x-z, z-y and y-x planes. By comparing Figs. 1 and
Fig. 9, a good qualitative agreement between the post-layout
chip circuit simulation and numerical simulation is observed.

*ere are nine operational amplifiers and twomultipliers
used in the Chen chaotic oscillation circuit. According to the
data sheets of operational amplifier LF347 and multiplier
AD633JN in Refs. [51–55], the supply voltage of LF347 is
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Figure 5: *e designed analog multiplier.
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±18 V, and its power consumption is about 500 mW; the the
supply voltage of AD633JN is also ±18 V, and its power
consumption is also about 500 mW. If the Chen chaotic
circuit is realized using commercial available chips LF347

and AD633JN, the whole power consumption is about
5500 mW.

*e supply voltage of the fully integrated Chen chaotic
oscillation circuit is ±2.5 V, the whole power consumption is

Figure 7: Chip layout diagram of the Chen chaotic oscillation circuit.
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Figure 9: Phase portraits of the Chen’s attractor in (a) x-z plane, (b) z-y plane, and (c) y-x plane.
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about 148mW, and its chip area is only 6.15mm2. Com-
pared with the conventional realizations using commercial
available discrete electronic components with breadboards,
the fully integrated Chen chaotic oscillation circuit is a more
suitable candidate for practical applications.

4. Conclusion

In this paper, a fully integrated Chen chaotic oscillation
system using OAs and multipliers is designed and verified.
Unlike the conventional realization using commercial
available discrete electronic components with breadboards,
the designed Chen chaotic oscillation system is integrated in
a single chip. It has the advantages of smaller chip area, lower
supply voltage and power consumption. Moreover, it has
practical application prospects in demanding portable chaos
systems. Besides, it should be further developed from the
following objectives to improve the practicability of the fully
integrated chaotic circuit. Firstly, other OA and trans-
conductance operational amplifier (OTA) with simpler
circuit structures and lower power consumption should be
designed to further improve the performance of the fully
integrated chaotic circuit. In addition, the realization of
integrated chaotic circuits with complex chaotic attractors
and nonlinear dynamical characteristics is also considered in
our future works.
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