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Based on FFT, a high-order multinomial tree is constructed, and the method to obtain the price of American style options in the
Lévy conic market is studied. Firstly, the nature of the Lévy process and the pricing principle of European-style options are
introduced. Secondly, the method to construct a high-order multinomial tree based on Fourier transform is presented. It can be
proved by theoretical derivation that the multinomial tree can converge to the Lévy process. �irdly, we introduce the conic
market theory based on the concave distortion function and give the discretization method of the concave distortion expectation.
�en, the American option pricing method based on reverse iteration is given. Finally, the CGMY process is used to demonstrate
how to price the American put option in the Lévy conic market. We can draw conclusions that the Fourier transformmultinomial
tree can avoid the di�culty of parameter estimation when using traditional moment matching methods to construct multinomial
trees. Because the Lévy process has the analytic form characteristic function, this method is a promising method to calculate the
prices of options in the Lévy conic market.

1. Introduction

In the traditional market described by the law of one price,
buyers and sellers in the market sell goods at the same price
at the same moment. However, the law of one price cannot
describe a market with insu�cient liquidity or a market
using the market maker rule, such as Nasdaq or other OTC
markets. �e conic �nance theory developed in recent years
can solve this problem well. In the conic theory, the whole
market is treated as a virtual counterparty for zero-trans-
action costs with non-negative cash �ows.�ere are di�erent
prices for the same cash �ow at the same time. So the conic
market is also known as the two-price market [1]. Contrary
to the law of one price that risks can be eliminated through
hedging, the conic �nance theory argues that the risk in the
market will not be eliminated completely but only to a
certain acceptable extent, which re�ects the reality of the
market better . �e theory of conic �nance is the latest
development branch of �nancial economics and �nancial

engineering. It is a hot research topic spot in theory and
application in recent years.

A basic model based on a more realistic balance sheet
mode was introduced in Refs. [2], [3], where both the assets
and liabilities were found to be risky. �us, bid and ask
prices must be treated separately and prudently. According
to this model, contingent capital notes are priced based on
the conic theory. Using the acceptability and distorted ex-
pectations, the author introduced a capital gap-based trigger
and summarized the pricing of seven kinds of capital and
noncapital bonds. Dilip Madan and Wim Schoutens [3]
solved the parameter correction problem of distortion risk
measures by using the bid-ask transaction history data in the
options market. Fasen and Svejda [4] gave a dynamic
consistency version to ensure that acceptability decisions are
consistent over time. One of the static risk measures is the
so-called distortion measure. Based on the framework of
notions of consistency, these static risk measures can be
extended to the dynamic setting, and the acceptable or
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unacceptable risks of bank portfolio are studied based on the
dynamic risk measure. Rodriguez [5] studied the theory of
no-arbitrage pricing and dynamic cone finance in discrete-
time markets where the underlying asset pays dividends and
carries transaction costs and pointed out that the no-arbi-
trage condition in this market also implies the existence of a
risk-neutral measure. Madan and Schoutens [6] illustrated a
two-price market equilibrium theory that allows investors to
trade structured products of their design. Competitive
pressures in the market cause the market to reduce asking
prices and raise bid prices. Bielecki et al. [7] used the theory
of dynamic coherent acceptability indices to derive the
theoretical framework of dynamic bid-ask prices for de-
rivatives and amplified the dynamic gain loss ratio to cal-
culate the bid and ask prices of some path-dependent
options. Madan et al. [8] constructed a Markov chain to
modeling the dynamically consistent sequences of the bid
and ask prices. )ese processes are demonstrated by gen-
erating dynamically consistent bid and ask sequences for
various structured products. Eberlein et al. [9] clarified that
nonlinear discounted martingale is associated with no-ar-
bitrage in a two-price economy because the linear dis-
counted martingale is independent of no-arbitrage in the
economy and satisfies the law of one price. In Madan and
Wang [10], for the dual problem, the acceptability pricing is
attributed to convex programming that can be solved by the
CVXOPT. )e forward-start option is used to describe the
acceptability process which is defined by positive expecta-
tions at minima var. Obtaining the boundaries is more
restrictive than ignoring the repricing constraints or the
acceptability support set. Madan [11] constructed a model
combining nonlinear discounting and nonlinear martingale,
which illustrates the interaction between the severity of the
change and its associated discount rate. Mathematical fi-
nance relies extensively on martingale, and in some cases,
martingale needs to satisfy constraints. For example, they
may need to evolve in compact concentrates; if the interest
rate is positive, the discounted zero-coupon bond price is [0,
1] in the risk-neutral martingale. Vrins [12] presented conic
martingale to solve this problem, and then the SDE of
bounded martingale with separable diffusion coefficients is
converted into an SDE with the drift process of the au-
tonomous diffusion coefficient. )e method is applied to the
modeling of survival probabilities and potential applications
include CDS options or CVA of the pricing. Eberlein [13]
proposed a two-price market model, which is determined in
the absence of market equilibrium so that the risk of loss is
acceptable. Acceptability is defined by a series of test
measures or scenarios. )erefore, the bid price is the lowest
point of the valuation of the test, and the asking price is the
highest price of such a valuation. )e two prices are related
to the nonlinear expectations operator, which discussed
liquidity measurement and portfolio theory and other as-
pects. Junike [14] proposed a new definition of concave
conditional performance, proving the duality of the con-
ditional risk measure, and established a new dynamic per-
formance measure. Madan and Schoutens [15] gave a
comprehensive introduction to the conic theory which also
known as two-price theory. Although the law of one price

usually eliminates all risks, the concept of acceptable risk is
vital to the two-price theory which considers that it is im-
possible to eliminate risk in the modern financial economy.

In the conic market, the bid-ask spread reflects the
market liquidity, and the transaction direction determines
the transaction price. )erefore, risk measurement and
management and hedging strategies in the conic market are
completely different from those in one price market. Cor-
cuera et al. [16] introduced the concept of the implicit li-
quidity of a market. Implicid liquidity is the ability to
describe the liquidity risk embedded in the prices of financial
derivatives. Albrecher et al. [17] used the bid and ask model
prices to fit their market quotes, and then obtain the implied
liquidity of financial instruments which is called Lambda:
)e lower the lambda, the higher the mobility. Estimating
parameters before the credit crisis and after the credit crisis
showed that long-term options tend to reduce liquidity, and
short-term options enhanced liquidity during troubled
times. Masimba et al. [18] presented a method to estimate
the bid-ask price based on the LIBOR option, which is used
for the determination of the caps and floors premium. In the
framework of conic finance, Leippold and Schaerer [19]
developed a stochastic fluidity model that extends Madan’s
(2010) discrete-time constant mobility model. With this
extension, it is possible to better describe the term structure
such as skewness and kurtosis of bid-ask spreads that are
typically observed in the options market. Masimba et al. [20]
examined the quantification of the risk of incomplete market
trading strategies based on the reasonable price of conic
finance, which can be determined only by the probability
distributions of cash flows. Madan et al. [21] conducted a
study based on the conic finance theory to analyze assets
demand, optimal debt level, and the value of return of the
loss to the tax payer’s option for a firm with a lognormal
distribution and assets and liabilities, debt and equity costs,
as well as the level of the securities ultimately reported in the
balance sheet to analyze and report in detail the relationship
between these entities and the risk characteristics of the firm.
Madan [2] used all the underlying option surfaces to hedge
complex positions on multiple underlies.)e hedging goal is
to minimize the asking price and the remaining risk after
hedging is acceptable at a predetermined level. It indicates
that such hedging requires the use of risk-neutral principles
for potential risks. )e comparison of neutral risk, risk-
neutral method, and statistical method to estimate the joint
risk of multiple underlying assets from multiple option
surfaces shows that risk-neutral is superior to its statistical
counterparty, and hedging can significantly reduce the
asking price. Based on the conic finance theory, Madan [22]
studied the evolution of credit assessment adjustment
(CVA) from the counterparty’s credit risk, including the
influence of its default (DVA), the recognition of risk, and
the possibility of joint default. Madan [23] introduced the
definition of acceptable risk of loss when supply and demand
are defined in different event spaces. )e risk of acceptable
loss is modeled by the convex cone containing all non-
negative variables, and financial balance is usually defined as
a two-price economy. Acceptable risk of loss has an impact
on accounting and risk management since debt is usually
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valued by ask price and the asset is valued at the bid price. In
two-price economy, the best of marking to market is
marking two prices. Madan et al. [24] used dynamic concave
bid prices and convex ask price functions to define a new
hedging strategy called dynamic-conic hedging. )e main
points of these strategies are to maximize the expected
position of the nonlinear condition. Guillaume and
Schoutens [25] used the calibrated risk for bid-ask pricing
and market-oriented cash flow valuation based on the conic
theory. Calibration of the different asset pricing models for
liquid trading derivatives leads to different risk-neutral
measures by using a variety of reasonable calibration
methods, which can be viewed as a test measure for eval-
uating the (not) acceptability of risk. Madan et al. [26] used
nonlinear conditional expectations of nonadditive proba-
bilities in the discrete-time Markovian environment to es-
timate trading strategies by exaggerating the upward caudal
loss event and exaggerating the downward tail gain event to
obtain conservatism and the steady-state fixed point of the
value and strategy. Madan [27] constructed the best port-
folio for full-size positions, long-short mix positions, and
volatility-constrained portfolios, compared to the mean-
variance portfolio, reflecting a lower degree of concentration
in the conic portfolio. It has a comparable sample upside
performance and higher downside results. Madan [27] ex-
amined portfolio selection issues within the framework of
conic finance obtaining the level of risk from the market,
selecting weights for each asset to maximize the bid price,
comparing different distortion measures to achieve the
expected cash flows, solving the problem under different
constraints of size and weight, and using a variety of al-
gorithms to calibrate the model. In the conic market, the
economic equilibrium allows for different trading prices for
nontraded positions. Marking the market turns to marking
two prices. Madan [28] applied CoCoCoA to continuously
contemporary conservative accounting and used these two
mark-to-market systems for 77 companies from November
2005 to July 2015 and the average return of trading per-
formance indicators. It showed that the two accounting
systems have substantial differences in business rankings.
Hellmers et al. [29] reduced the imbalance in order to
improve the total profitability of the asset portfolio by in-
creasing the implicit penalty. A comprehensive mathe-
matical model was proposed to study business strategy in
two-price economy. It was found that due to the two-price
structure of the equilibriummarket, the combined strategy is
the most profitable. Li [30, 31] studied the European option
pricing problem in the conic market. Van [32], Vazifedan
[33], and Vega [34] investigated the application of risk
measurement, no-arbitrage, and mechanism selection in the
pricing of derivatives in conic financial markets and the
impact of credit and default on asset values. Michielon [35]
proposed a conic theory-based approach that is able to
obtain risk-neutral implied volatilities by use of bid-ask
quotes and does not require any restrictive assumptions.
Madan [36] provided a systematic and in-depth introduc-
tion to the pricing of derivatives in conic financial markets.

In recent years, the Fourier transform has become one of
the most frequently used tools in derivatives pricing. One

reason is that using fast Fourier transform can reduce the
amount of computation, which significantly saves the use of
computing resources. )e other reason is that the Lévy
process is considered to be a better description of stochastic
movement of risky asset prices. Mordecki [37], Sheu and
Tsai [38], and Yamazaki [39] studied optimal stopping time
and permanent American option pricing problems based on
Fourier transforms. Zhylyevskyy [40] and Gyulov and
Valkov [41] focused on the stochastic volatility and
American options pricing on finite intervals based on
Fourier transform. Pellegrino and Sabino [42], Chan [43],
Ruijter and Oosterlee [44] used the multidimensional
Fourier transform. Chan [43]studied the derivative pricing
by the complex Fourier transform. Wong and Guan [45]
obtained a Markov chain for option pricing by the use of
FFT. Madan and Yor [46]came up with a type of time-varied
Brownian representation theorem about the Lévy process.
Asiimwe et al. [47] gave a mechanism to select risk pricing in
the Lévy market. Kulczycki and Ryznar [48] studied the
problem of estimating the probability transfer function of
the Lévy stochastic process. Neufeld andNutz [49] and Vrins
[50] focused on the characteristic functions of Lévy pro-
cesses. Jovan and Ahčan [51] researched on the Lévy model
using structural methods to predict the default. Gong and
Zhuang [52] and Lian et al. [53], respectively, studied the
Lévy process under the American options and discrete
barrier option pricing methods.

Most Lévy processes do not have analytic forms of
probability density functions but definitely have analytic
forms of characteristic functions. Hu et al. [54] presented
an algorithm to create a multinomial tree based on saddle-
point approximation for pricing options in the Lévy
market. Based on FFT, authors proposed a new method to
construct a high-order recombination multinomial tree,
which can be applied to the American option pricing in
Lévy model conic markets. )e algorithm has low com-
putational resource requirements and is very easy to
program, which solves the difficulty of constructing a risk-
neutral multinomial tree by traditional moment matching
methods.

When the market is incomplete, the equivalence mar-
tingale measure of pricing is not unique, and thus the
traditional pricing theory is also able to obtain the bid-ask
spread of prices of the same financial derivatives. In a
noncomplete market, the bid-ask price spread determined
by the equivalence martingale measure is too broad com-
pared with the actual bid-ask spread in the market. In
contrast, the parameters of the distortion measure in conic
market theory can be obtained by use of the market data, and
the obtained bid-ask spread better reflects the actual market
situation. )e remainder of this article is organized as fol-
lows: Section 2 describes the Lévy process and European
option pricing. In Section 3, we present an algorithm to
create a multinomial tree based on FFT. Section 4 introduces
the concave distortion expectation and pricing in the conic
market and gives the discretization method of the concave
distortion function. Section 5 gives an American option
pricing method based on inverse iteration. Section 6 dem-
onstrates the application of the algorithm to pricing
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American put option through the CGMY process. In Section
7, we draw conclusions and provide an outlook.

2. The Lévy Process and European
Option Pricing

Given a Lévy process Xt, based on the Lévy–Khintchine
formula, the characteristic exponent of X1 can be presented
as follows:

Ψ(u) � iμu −
1
2
σ2u2

+ 􏽚
R

e
iux

− 1 − iux1(− 1,1)􏼐 􏼑](dx). (1)

)e characteristic function of Xt is

Φ(u) � EXt
e

iux
􏽨 􏽩

� e
tΨ(u)

.
(2)

Denote the probability density function (PDF) by f(x),
and denote cumulative distribution function (CDF) by F(x).
)e characteristic function is the Fourier transform of the
PDF is given by

Φ(u) � 􏽚
+∞

− ∞
e

iux
f(x)dx. (3)

)e PDF and the CDF can be obtained from the
characteristic function as

f(x) �
1
π

􏽚
+∞

0
R e

− ixuΦ(u)􏼐 􏼑du,

F(x) �
1
2

−
1
π

􏽚
+∞

0
J

e
− ixuΦ(u)

u
􏼠 􏼡du,

(4)

R(·) is the real part of the complex number, and J(.) refers
to the imaginary component of the complex number. )e
mature period is T. When t � 0, the price of a European
option with the payoff function g(.) is

C � e
− rT

E
Q

[g(x)]

� e
− rT

􏽚
+∞

− ∞
g(x)f(x)dx.

(5)

But for most Lévy processes, there is no analytic form of
the PDF, and you need the help of numerical calculation
methods, but the efficiency of doing so is extremely low. Carr
and Madan [55], Lewis [56], and Bates [57] used different
techniques and all obtained analytical formulas for Euro-
pean option pricing in the Fourier transform space.

For exotic options with path dependence and American
options that can be terminated before the mature time, there
is no analytic form of pricing formula. In the use of nu-
merical methods to calculate Fourier transform or inverse
Fourier transform, FFT (IFFT) reduced to NlogN

2 times to
calculate the discrete Fourier transform or inverse Fourier
transform which required N2 times calculation, which
greatly improves the computational efficiency. )is means
that in the pricing of derivatives if the analytic pricing
formula of Fourier space can be obtained, it is also called the
analytic pricing formula.

3. FFT-Based Multinomial Trees

Compared with the Markov chain, which holds fixed nodes
during the whole computation process, the multinomial tree
has fewer nodes at the time when price fluctuation is rel-
atively small and has more nodes at a relatively large price
fluctuation time and also has higher computational effi-
ciency when calculating the price of derivatives. In the
present literature, the moment matching method is appli-
cated to making the moments of the multinomial tree as
close as possible to the moments of continuous distribution.
Determining the multinomial tree to meet the requirements
of the parameters is very difficult, and we often need some
extra constraints, such as Yamada and Primbs [58]; the
formulation of parameter estimation about a quintuple tree.
However, this requires that higher order moments of the
continuous distribution must exist and satisfy certain re-
lational constraints; otherwise, the existence of equivalent
probability measures for the obtained multinomial trees
cannot be guaranteed.

We subject the price of the risky asset to the exponential
Lévy process as

St � S0e
rt− μt+Xt( ), (6)

where S0 is the stock price when t � 0, and r 〉 0 is the risk-free
interest rate, Xt is a Lévy process, μ is the constant that makes
the expected return of risky asset to be the same as the risk-free
interest rate. T〉0 is the maturity of the derivatives, and we
make δ � T/N by using the independent-stationary-incre-
ments property of the Lévy process, and we have

log Snδ( 􏼁 − log S(n− 1)δ􏼐 􏼑 � (r − μ)δ + Xδ. (7)

Let Sn :� Snδ, Xn :� Xnδ. )e multinomial tree with L �

2k is the state which is similar to the Lévy distribution in
[0, δ]. )e truncation interval Xδ is [− a, a]. Let
Δ � 2a/(L − 1) and then, we have

x1,j � − a + Δj, j � 0, 1, 2, . . . , L − 1. (8)

)e L state of the reorganized multinomial tree, in the
first n(n≤N) total of (L − 1)n + 1 nodes, and the j node has

xn,j � − na + Δj, j � 0, 1, 2, . . . , (L − 1)n. (9)

In period n, the truncation interval Xn is [− na, na]

because

Xn+1,j+k � − (n + 1)a +(j + k)Δ

� − na + jΔ − a + kΔ

� Xn,j + X1,k,

(10)

where k � 0, 1, 2, . . . , L − 1, so the node j in the period n has L

subnodes of the period (n + 1): Xn+1,j, . . . , Xn+1,j+L− 1, and the
price of the underlying asset at the node j in the period n is

Sn,j � S0e
(r− μ)δn+Xn,j( 􏼁

� S0e
((r− μ)δn− na+jΔ)

, j � 0, 1, 2, . . . , (L − 1)n,

(11)
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whereΦ(u) is the characteristic function of the Lévy process
in [0, δ], and the PDF is discretized as

f(x) �
1
π

􏽚
+∞

0
R e

− ixuΦ(u)􏼐 􏼑du

≈
1
π

􏽘

L− 1

j�0
R e

− ixujΦ uj􏼐 􏼑􏼐 􏼑η.

(12)

)e upper bound of the integral in (11) is b � Lη and
Δη � 2π/L. )us, the FFT calculation formula can be used.
FFT returns L and the value x, and then we get

xj � − a + Δj, j � 0, 1, 2, . . . , L − 1. (13)

Whenxj ∈ [− a, a], further, let uj � ηj, then the (12) can
be expressed as

f xk( 􏼁 ≈
1
π

􏽘

L− 1

j�0
R e

− iΔηkjΦ uj􏼐 􏼑ηwj􏼐 􏼑, (14)

where k � 0, 1, 2, . . . , L − 1, and wj is based on different
numerical integration methods to determine the weighting
coefficients such as Trapezoidal rule weight, and its weight is
wj � 1/2. When j � 0, L − 1; otherwise, wj�1, and then the
weighting coefficient of Simpson’s rule is

wj �

1
3
, j � 0, L − 1,

4
3
, j � 1, 3, 5, . . . , L − 3,

2
3
, j � 2, 4, 6, . . . , L − 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Based on FFT, we can obtain the approximate formula of
the PDF in [− a, a] an equidistant grid point.

In the L state of the multinomial tree, the probability of
occurrence of the j state is

Pj �
f xj􏼐 􏼑

􏽐
L− 1
k�0f xk( 􏼁

. (16)

)e denominator in (16) acts as a normalization to
ensure that all states in the multinomial tree can form a
complete probability space.

Theorem 1. When a⟶ +∞, L⟶ +∞, then the dis-
tribution of X1,j converges to the continuous distribution Xδ.

Proof 1. )e PDF of Xδ is f(x), x ∈ (− ∞, +∞), X1,j is the L

aliquot of [− a, a], then the discrete random variable X1,j can
be extended to the continuous distribution within [− a, a],
and the CDF after the extension is

􏽥F(x) �

P0, x≤ − a,

􏽘

j

k�0
Pk, − a + Δj<x≤ − a + Δ(j + 1),

1, x〉a.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

(I) When x≤ − a, by F(x) monotonically increasing,
there is

|F(x) − 􏽥F(x)|≤F(x) + 􏽥F(x)

≤F(− a) + 􏽥F(− a)

≤F(− a) + f(− a).

(18)

∵ lim
− a⟶− ∞

F(− a) � lim
− a⟶− ∞

f(− a) � 0.

lim
− a⟶ − ∞
x≤− a

|F(x) − 􏽥F(x)| � 0.
(19)

(II) When x≤ − a, then

|F(x) − 􏽥F(x)| � |F(x) − 1|. (20)

∵ lim
a⟶+∞

F(a) � 1.

lim
a⟶+∞
x≥a

|F(x) − 􏽥F(x)| � 0.
(21)

(III) When − a + Δj〈x≤ − a + Δ(j + 1), j � 1, 2, . . . ,

L − 1, then

􏽥F(x) � 􏽘

j

k�0
Pk

�
􏽐

j

k�0 f xk( 􏼁

􏽐
L− 1
i�0 f xi( 􏼁

�
􏽐

j

k�0 f xk( 􏼁Δ
􏽐

L− 1
i�0 f xi( 􏼁Δ

.

(22)

∵ When a is fixed, L⟶ +∞,
Δ � 2a/L − 1⟶ 0, xj⟶ x∴ lim

L⟶+∞
􏽥F(x)

� F(x) − F(− a)/F(a) − F(− a)∵ 当.
a⟶ +∞, F(− a)⟶ 0, F(a)⟶ 1. ∴
lim

a⟶+∞
lim

L⟶+∞
􏽥F(x) � F(x).

Combining (i), (ii), and (iii), ∀x ∈ (− ∞, +∞), and we
conclude that

lim
L⟶+∞
a⟶+∞

􏽥F(x) � F(x).
(23)

□

4. Distort Expectations, Pricing,
and Discretization

Cherny and Madan [59] defined the concave distortion
function.)e so-called concave distortion functionΨ(·) is in
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[0, 1] itself a monotone concave function, and there are
Ψ(0) � 0 and Ψ(1) � 1.

)e commonly used CDF has CVaR, and the function
form is as follows:

Ψλ(u) � min
u

λ
, 1􏼒 􏼓. (24)

Minmax var and its function form is as follows:

Ψc
(u) � 1 − 1 − u

1/1+c
􏼐 􏼑

1+c
. (25)

Wang transform [60] and the function form is as follows:

Ψα(u) � N N
− 1

(u) + α􏼐 􏼑. (26)

In Figure 1 shows CVaR parameters for the λ � 0.05,
minmax var parameters for the c � 0.5, and Wang trans-
formation parameters for the α � 0.75.

As can be seen in Figure 1, the concave distortion
function amplifies the downside (corresponding loss) of the
distribution, while the top of the distribution (upside,
corresponding yields) is narrow. )is reflects the real de-
cision-making psychology of investors, which can be
explained by the prospect theory of behavioral economics
[61]. We use the bid and ask price history data of the new
financial products to estimate the parameters according to
the method given by Bannör and Scherer. Based on the
concave distortion function, Madan and Schoutens defined
the concave distortion measure, the market receivable cash
flow X, the CDF F(x), and the PDF f(x). Using the concave
distortion measure, the bid-ask prices of cash flow X are
given as

bid(X) � e
− rT

􏽚
+∞

− ∞
x dψ(F(x)). (27)

)en,

ask(X) � − e
− rT

􏽚
+∞

− ∞
x dΨ F− X(x)( 􏼁. (28)

)e risk-neutral price is

neutral(X) � e
− rT

􏽚
+∞

− ∞
x dF(x). (29)

From the nature of the distortion function, we get

bid(X)≤ neutral(X)≤ ask(X), (30)

T denotes the mature time, and r denotes the risk-free rate.
To price American options with early execution char-

acteristics, a multinomial, dynamic concave distortion
measure must be used. Taking into account the temporal
consistency of prices, the multiperiod dynamic uniform
concave distortion measure given by Fasen and Svejda [4] is
used to obtain the price of American options.

When the cash flow increases with the price of the risky
asset, such as the payoff function of call options, the bid price

is calculated using the following method of discretization of
the concave distortion measure:

P
bid
L− l �Ψ 􏽘

l

i�0
PL− l+i

⎛⎝ ⎞⎠ − Ψ 􏽘
l

i�1
PL− l+i

⎛⎝ ⎞⎠, l � 1,2,3, . . . ,L − 1,

P
bid
L �Ψ PL( 􏼁.

(31)

When calculating the asking price, the ask cash flow can
be seen as the negative of negative cash flow expectations of
the bid cash flow. So the cash flow increases with the un-
derlying asset price rise. )e asking price is calculated using
the following concave distortion measure discretization:

P
ask
l �Ψ 􏽘

l

i�1
Pi

⎛⎝ ⎞⎠ − Ψ 􏽘
l− 1

i�1
Pi

⎛⎝ ⎞⎠, l � 2,3, . . . ,L,

P
ask
1 �Ψ P1( 􏼁.

(32)

When the cash flow decreases with the price of the risky
asset, such as the put option payoff function, to calculate the
bid price, we use the concave distortion measure dis-
cretization method given by (31) and use the concave dis-
tortion measure discretization method given in (32) to
calculate the asking price.

5. American Option Pricing Based on
Reverse Iteration

Using the dynamic consistency method given by Fasen and
Svejda [4] to price American options, reverse iteration based
on dynamic programming can be used. Assume that the
American option has a payoff function of M(S), the
probability of L nodes corresponding to each node in pricing
is P1, P2, . . . , PL, at the period i node j, then the continued
holding value of American options remains C(i,j). )e
American option has the value H(i,j) at the node. So the
conic L state reorganization of multinomial tree pricing
American options of the specific process is as follows:

Step 1: When i � N, then H(N,j) � M(S(N,j)),
C(N,j) � 0, j � 1, 2, . . . , (L − 1)N + 1.
Step 2: At the period i and node j, the value of holding
the American option is

C(i,j) � e
− rΔT

􏽘

L

k�1
PkH(i+1,j+k− 1), j � 1,2, . . . ,(L − 1)i +1.

(33)

)e value of American options is

H(i,j) � max M S(i,j)􏼐 􏼑, C(i,j)􏼐 􏼑, (34)

if there is

M S(i,j)􏼐 􏼑≥C(i,j). (35)

(i) )e American option is executed ahead of time at this
node.
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Step 3: If i � 0, end; otherwise, i: � i − 1, turn to step
2.
)e American option value at the initial period is
C(0,0).

When using conic multinomial tree pricing American
options, the early exercise boundaries for American style
options are not the same with the continuous-time and not
the same with determining the early exercise boundary of the
traditional market. In a discrete multinomial tree market,
there may not be a node where the immediate execution
value is exactly equal to the value of the American option. At
the same node, the same American options, the direction of
the transaction on the value of American options, and early
implementation also have an impact and decisive role. In
period i, the long-position owner of an American option
decides whether to execute early or not. For American call
options, the early execution boundary is determined as
follows:

min
j�1,...,(L− 1)i

j

s.t.

M S(i,j)􏼐 􏼑≥C(i,j).

(36)

For American put options, the early execution boundary
is determined as follows:

max
j�1,...,(L− 1)i

j

s.t.

M S(i,j)􏼐 􏼑≥C(i,j).

(37)

6. Illustration

)e CGMY process proposed by Carr et al. [62] belong to a
purely jumping Lévy stochastic process without continuous
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motion. Within an appropriate range of parameters, there
can be infinite jumps in any given time interval. Infinitely
small jumps and a few big jumps constitute the price
movement of the risk assets, which is closer to the financial
market reality. )e characteristic function of CGMY is

Φ(μ)� eCΓ(− Y) (G+iμ)Y − GY+(M− iμ)Y− MY( ), (38)

where Γ(.) is the gamma function, and C, G, M, Y are the
parameters of the CGMY distribution Y〈2, but when
1≤Y〈2, there is no finite second-moment matrix. When
0≤Y〈1, then CGMY has infinite jumps. German [63] used
PJM’s data to obtain the parameters of the CGMY:
C � 0.279627, G � 1.497869, M � 1.97856, and
Y � 0.257689. When T � 0.5, the year risk-free interest rate
is r � 5%, the beginning of the share price is S0 � 100, and
the exercise prices of American options, respectively, are:
K � 95, 100, 105. )e TVaR with parameter λ � 0.95 is se-
lected as the concave distortion function, and the state L � 9,
using the method described above to calculate the price of
American options in Figure 2.

It can be seen from Figure 2, the bid price is lower than
the neutral price, and the neutral price is always lower than
the asking price. )e imaginary value of the American put
option quickly becomes zero because the underlying asset
price of the multinomial tree is moving in a limited range. As
can be seen from Figure 2, the bid-ask spread obtained by the
conic method is close to the actual bid-ask spread in the
market. In traditional risk-neutral priced financial deriva-
tives, the bid-ask spreads obtained based on the risk-neutral
set are too broad to be of practical value because the risk-
neutral measure is not unique.

7. Conclusion

By using FFT to construct high-order restructuring multi-
nomial trees, the pricing of American options in the Lévy
model conic market is studied. It proved that the multi-
nomial tree converges in distribution to the Lévy process. It
introduces the conic market based on the concave distor-
tions function and pricing and gives the discretization
method of the concave distortions function. It gives the
American option pricing method based on reverse iteration
and demonstrates the American put option pricing in the
Lévy-conic market by the CGMY process. It is found that,
for the deep-out-of-money American option, the option
price obtained by a multinomial tree quickly becomes zero
due to the restriction of the price range of the risky asset.)e
bid price is always less than the risk-neutral price, while the
risk-neutral price is always less than the asking price. So with
the random concave distortions function parameter
changing, bid-ask spreads can be arbitrarily small.

When constructing a high-order restructured multino-
mial tree using FFT, for the Lévy model in some specific
parameter combination, due to the existence of the trun-
cation error, the value of the PDF is sometimes less than zero
when calculating the PDF from the characteristic function
using IFFT. We must be careful to observe that once the
probability density function has a value less than zero, we

can consider using the thresholdmethod tomake the density
function value less than zero to become zero. In the future,
we will further study high-precision algorithms, or other
alternative methods, and strive to avoid the value of PDF less
than zero.
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