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Model selection and parameter estimation are very important in many �elds. However, the existingmethods havemany problems,
such as low e�ciency in model selection and inaccuracy in parameter estimation. In this study, we proposed a new algorithm
named improved approximate Bayesian computation sequential Monte Carlo algorithm (IABC-SMC) based on approximate
Bayesian computation sequential Monte Carlo algorithm (ABC-SMC). Using the IABC-SMC algorithm, given data and the set of
two models including logistic and Gompertz models of infectious diseases, we obtained the best �tting model and the values of
unknown parameters of the corresponding model.  e simulation results showed that the IABC-SMC algorithm can quickly and
accurately select a model that best matches the corresponding epidemic data among multiple candidate models and estimate the
values of unknown parameters of model very accurately. We further compared the e�ects of IABC-SMC algorithm with that of
ABC-SMC algorithm. Simulations showed that the IABC-SMC algorithm can improve the accuracy of estimated parameter values
and the speed of model selection and also avoid the shortage of ABC-SMC algorithm.  is study suggests that the IABC-SMC
algorithm can be seen as a promising method for model selection and parameter estimation.

1. Introduction

In many �elds of engineering and science, researchers or
engineers are dealing with model selection and comparison
problems.  e selection of the most suitable model among
several competitive models is the necessary basis to deter-
mine whether the data can accurately estimate and predict
the characteristics of data. In reality, it may be a challenge to
choose a model that best matches the real data among some
similar models, because it requires a deep understanding of
the nature of things, in addition, if the parameters in the
similar models are also unknown and the reliability of model
selection is questionable. To get a reliable model, it is
necessary to estimate the values of unknown parameters in
the model. Infectious diseases that have occurred in recent
years have signi�cantly a�ected public health and the

economy.  erefore, it is very important to perform model
selection and parameter estimation in similar models in the
process of infectious disease analysis, prediction, and
control.

More attention has been paid to model selection and
parameter estimation in recent decades. Given several po-
tential models and one or more sets of data, the model
selection should be able to select the best �tting model and
estimate the values of unknown parameters in the model, to
better �t the data. Several approaches have been applied to
model selection, among which the Bayesian method is the
most popular.  e Bayesian theory is a very comprehensive
approach and has universal applicability to the method of
inferring models from data. Many di�erent examples il-
lustrated the application of the Bayesian methods [1–6].
When the likelihood function is very complex or di�cult to
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calculate, the Markov chain Monte Carlo (MCMC) method
that can obtain approximate posterior distributions of pa-
rameters through sampling is successfully applied in model
selection [7]. A practical solution combining particle filter
model identification algorithm with real-time measurement
system was proposed [8]. Skilling [9, 10] has proposed
nested sampling (NS) as an alternative way of handling
model selection and parameter estimation. In [11], when the
distance between observed data and simulated data is the
smallest, the observed data in likelihood are replaced by
simulated data in the ABC algorithm.+e authors in [12, 13]
introduced the application of approximate Bayesian com-
putation based on the sequential Monte Carlo (ABC-SMC)
algorithm in model selection and parameter estimation. +e
advantage of ABC-SMC algorithm is that the prior distri-
butions of parameters are adaptive, so it can study the
complex posterior distributions of parameters more effec-
tively. Reference [14] offered a recalibration posterior pro-
cessing method that satisfies the coverage attribute to
improve the quality of posterior distributions of parameters
of ABC algorithm. Several criteria have been proposed to
deal with the goodness of fit between the candidate model
and data when dealing with model selection, such as AIC
[15, 16], weighted Bayesian information criterion (BIC) [17],
and Bayes factors, but all criteria are an approximation of
Bayes factors [18]. +ese criteria are related to the marginal
likelihood approximation and are also commonly used in the
Bayesian inference [19, 20]. AIC is still the most widely used
information criterion for ranking models among IT
methods.

+e ABC-SMC algorithm is a classic algorithm that
provides the possibility to select the most suitable model
among multiple competing models and estimate the values
of unknown parameters of the model. However, a tolerance
sequence is required as a selection criterion for accepting or
rejecting sampling parameters in this algorithm. More se-
riously, the ABC-SMC algorithm must manually define an
appropriate threshold sequence to ensure the accuracy of the
algorithm, but choosing an appropriate threshold sequence
requires us to try many times, which may be very trou-
blesome and time-consuming. Another problem of the
ABC-SMC algorithm is that the algorithm selects an ap-
propriate model at each iteration instead of selecting an
optimal model at the end of the algorithm, which results in a
longer computation time and lower efficiency of the algo-
rithm. So, is there a better way to solve these problems? Is it
possible to choose the best model to fit the corresponding
data?

+is study is intended to investigate the effects of the
proposed algorithm in model selection and parameter
estimation. To overcome the drawbacks of classical ABC-
SMC algorithm, we propose an IABC-SMC algorithm
based on the ABC-SMC algorithm and recalibration
postprocessing method. Taking dengue outbreak data and
A/H1N1 outbreak data of infectious disease as examples,
the IABC-SMC algorithm is used to estimate the values of
unknown parameters of classic model including logistic
model and Gompertz model, and the model that best
matches the corresponding data is selected. +e

simulations show that the parameter values estimated by
the IABC-SMC algorithm are very accurate, and the
model that matches the data can be quickly selected from
multiple candidate models. By comparing the IABC-SMC
algorithm with the ABC-SMC algorithm, we can see many
advantages of the IABC-SMC algorithm.

2. Methods

2.1. Background Knowledge. In this section, we reviewed the
theory and some details of ABC-SMC algorithm and
recalibration postprocessing method, before introducing the
IABC-SMC model selection algorithm.

2.1.1. Approximate Bayesian Computation Based on Se-
quential Monte Carlo Algorithm. +e approximate
Bayesian computation (ABC) algorithm is a Bayesian
inference method developed in recent years based on data
simulation. When dealing with complex or computa-
tionally tricky likelihood problems, ABC is an improved
Bayesian inference algorithm for the purpose of inferring
the posterior distributions of parameters. Based on the
ABC algorithm, many methods have been extended in-
cluding the ABC rejection sampler algorithm and ABC
MCMC algorithm [21, 22]. ABC rejection algorithm is one
of the basic algorithms of ABC. When the prior distri-
butions of parameters are far from the posterior distri-
butions of parameters, it may lead to too long
computation time of the ABC rejection algorithm. +e
potential advantage of ABC MCMC algorithm is that it
saves computation time of algorithm due to the intro-
duction of acceptance probability. However, this algo-
rithm can cause sample values of parameters to be trapped
in a low probability region for a long time and we may
never get a good approximation of parameters. To solve
these problems, the concept of particle filtering has been
introduced. +e ABC algorithm is accelerated using a
large pool of candidate objects called particles instead of
selecting a candidate particle. In each step of the algo-
rithm, the particles are interfered and filtered by distance
metric and weights, and eventually, the particle pool
becomes closer and closer to meet the requirement of the
posterior estimation of parameters. +is method is named
ABC-SMC.

+e ABC-SMC Algorithm 1 is described as follows [23].

2.1.2. Recalibration Postprocessing Method. A large number
of postprocessing methods have been mentioned to
correct the deviation between posterior distributions of
parameters of the ABC algorithm and the true distribu-
tions of parameters. +e purpose of the recalibration
postprocessing method introduced in [14] is to produce
an approximation posterior distribution of parameters
that is closer to the true distributions of parameters. Not
only does this method improve the accuracy of posterior
distributions of parameters but also it avoids some
shortcomings of existing posterior processing methods.
So, the recalibration method can directly sample from the
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approximate posterior distributions of samples or im-
prove the efficiency of other posterior adjustment
methods.

Recalibration postprocessing algorithm presents a
standard parameter posterior simulation algorithm, which
completes the recalibration process of parameters. θ(i)(i �

1, . . . , N) sampled from the prior distribution of parameter
is substituted into the model π(y|θ) to get the simulation
value y(i). +en, the weight of parameters ω(i) is calculated
according to the kernel function; that is, ω(i)∝ kh(‖y(i) −

yobs‖) and Kh(u) is a smoothing kernel with scale parameter
h> 0. +e marginal distribution function Fj,yobs

(·) based on
yobs is constructed with the weighted parameters
θ(i),ω(i) 

N

i�1. Marginal distribution function Fj,y(i)
(·) based

on y(i) is constructed in the same way with

θ(m), v(m) 
N

m�1,m≠ i
as samples, where θ(m), v(m) 

N

m�1,m≠ i
is

the weighted parameters. It is assumed that
Fj,yobs

(·) ≈ Fj,y(i)
(·), and then, the probability of θ(i)

j is cal-

culated as p
(i)
j � Fj,yi

(θ(i)
j ). +e adjusted parameters can be

obtained according to several results in [14], namely
θ

i
� F

−1
j,yobs

(p
(i)
j ).

+e recalibration postprocessing method proceeds as
follows:

Data simulation and weighting:
For i � 1, . . . , N:
M1.1 Sample θ(i) from prior distribution π(θ).
M1.2 y(i) is obtained from likelihood π(y|θ).
M1.3 Compute the sample weight
w(i)∝Kh‖y(i) − yobs‖, where Kh(u) is a smoothing
kernel with scale parameter h> 0.
Recalibration:
M2.1 For j� 1,. . .,d, construct the jth marginal dis-
tribution function Fj,yobs

(·) according to sample
θ(i), w(i) 

N

i�1.

M2.2 Construct the jth marginal distribution function
Fj,y(i) (·) with θ(m), v(m) 

N

m�1,m≠ i
as samples in the same

way of step M1.3 and M2.1.
M2.3 Calculate the probability of θ(i)

j in Fj,y(i) (·),
p

(i)
j � Fj,y(i) (θ(i)

j ).
M2.4 (optional) Correct p

(i)
j using a regression

adjustment.
M2.5 Set θ

i
� F

−1
j,yobs

(p
(i)
j ).

2.2. Model Selection Algorithm. Mathematical models play
an important role in understanding how the disease spread.
+ere is an evidence that mathematical models have the
ability to inform policymakers, in particular the feasibility of
achieving the ambitious goal of keeping the prevalence of
moderate and severe infections below 1% by 2020 [24]. So,
model prediction based on appropriate epidemiological data
is very important. +e goal of ABC algorithm is to obtain
approximate posterior distributions of parameters that are
easy to calculate the following:

π θ|yobs, M( ∝ L yobs|θ, M( π(θ|M), (1)

where M is a model based on a series of parameter θ, π(θ|M)

represents the prior distribution of the parameter space, and
L(yobs|θ, M) is the likelihood of the observed data yobs for a
given series of parameter θ. To overcome the problem of
intractable likelihood function, ABC algorithm compared
the observed value with the simulated value and accepted the
simulated value when the distance between the observed
value and the simulated value is less than the artificial
threshold. In the ABC-SMC algorithm, it sampled from a set
of parameters and treated each parameter vector set as a
particle, instead of having only one parameter vector at a
time.

+e disadvantage of ABC-SMC algorithm is that an
appropriate threshold sequence must be selected to ensure
the accuracy of the algorithm, and it is very troublesome and
time-consuming to choose an appropriate threshold

S1 Define the threshold values ε1, . . . , εH (larger at the beginning and decrease gradually), start with iteration h � 1
S2 Set the particle indicator j � 1 .
S3 If h � 1, sample θ∗ from the prior distribution π(θ). A simulated data set D(f)(θ

∗) of F1 times is generated and the value of fh(θ∗)
is calculated, where p(D|θ) is a posterior distribution and D(f) ∼ p(D|θ) for any deterministic parameter θ and F1, fh(θ∗) �


F1
f�1I d(D0, D(f)(θ

∗))≤ ϵ1  represents the approximation degree between θ∗ and the true parameter, D0 is the experimental data
set and I is an indicative function.
If h> 1, sample a particle from the last generation θ(j)

h−1 with weight v
(j)

h−1, j � 1, 2, . . . , N and use a kernel function Kh to disturb the
particle to gain θ∗.
If π(θ∗) � 0 or fh(θ∗) � 0, return to the beginning of S3.
S4 Set θj

h � θ∗ and determine the weights of the estimated particle θj

h, v
(j)

h �

fh(θj

h) if h � 1

(π(θj

h)fh(θj

h)/
N

j�1
Kh(θj

h−1, θ
j

h)) if h> 1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

If j<N, update j � j + 1 and go back to S3 until all the particles and their distributions are obtained.
S5. Normalize the weights v

(j)

h , If h<H (number of threshold values), update h � h + 1 and go back to S2.

ALGORITHM 1: ABC-SMC algorithm.
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sequence. Generally, if the defined tolerance sequence is
too long, it will lead to too many simulations of the al-
gorithm and take a long time. On the contrary, the
posterior distributions of the estimated parameters are
inaccurate if the defined tolerance sequence is too short.
+e principle of the ABC-SMC algorithm is to find the
optimal model and parameters in each iteration of the
algorithm, rather than selecting the optimal model and
parameters at the end of the algorithm, which is also time-
consuming. +erefore, to overcome these shortcomings,
we proposed the improved approximate Bayesian com-
putation algorithm (IABC-SMC) based on the ABC-SMC
algorithm. +e principle of the IABC-SMC algorithm is to
calculate the values of unknown parameters of each
candidate model separately, then recalibrate the values of
unknown parameters in the model, and finally select the
model that best matches the data. In each iteration of the
algorithm, the particles are selected by the distance be-
tween simulated data and observed data to avoid setting
the threshold sequence manually. +en, the posterior
distributions of unknown parameters can be adjusted
through the recalibration postprocessing method to make
them closer to the true distributions of unknown pa-
rameters in the model. So, the IABC-SMC algorithm also
improves the accuracy of estimated unknown parameters.

In the first iteration, the IABC-SMC algorithm calcu-
lated the distance between the simulated data and the ob-
served data and selected some particles with an acceptance
rate when the distance between the simulated data and the
observed data is very close, which means that these particles
are selected randomly to avoid setting threshold sequence
artificially. +e weights of these particles are all 1. In the
second iteration, the particles selected randomly from the
previous generation were substituted into the model to get
the simulated data, and the particles with an acceptance rate
were selected through the distance between the simulated
data and the observed data. Finally, the particles of the
second iteration were obtained by perturbation kernel. +e
weights of these particles were updated and normalized.
After several iterations of this algorithm, preliminary pos-
terior distributions of parameters can be obtained, but these
distributions are different from the true distributions of
parameters.+en, we adjusted the above distributions by the
recalibration postprocessing method to make the adjusted
distributions closer to the true distributions of parameters.

+e IABC-SMC Algorithm 2 is described as follows.

2.3. Model Evaluation Criteria. Recently, more and more
scientists are using novel model selection methods to analyze
data. +e AIC method is a popular method among these novel
methods [25–27]. AIC provides a standard to balance the
complexity of estimated model and the goodness of data. +is
approach allows people to comparemultiple competingmodels
and estimate whichmodel is closest to the “real” process behind
the epidemiological phenomenon being studied. Accordingly,
AIC itself is meaningless, but its significance comes from the
comparison of the model and AIC value. +e model with the

smallest AIC value is the “closest model.” +e calculation of
AIC is not difficult, and it is counted as follows:

AIC � −2 · ln(L) + 2k, (2)

where L is likelihood function and k is number of parameters
in the model.

Nevertheless, there are various controversies about the
use of AIC [16], and many alternative methods have been
proposed. In the meantime, BIC is proposed as a special
alternative to AIC, which is superior to AIC in the average
method of IT model [17]. BIC is denoted as follows:

BIC � −2 · ln(L) + kln(n), (3)

where L is likelihood function, k is number of parameters in
the model, and n is the length of observed data.

3. Data and Results

3.1. Data and Models. We employed the data from China’s
Centers for Disease Control and Prevention website on the
number of confirmed cases during the dengue outbreak
from 2014 to 2015 and the number of confirmed cases during
the A/H1N1 outbreak from 2009 to 2010. +e data listed in
Tables 1 and 2 represent the monthly cumulative confirmed
number of dengue and A/H1N1 reported by hospitals across
China, respectively. We considered these data to be observed
data.

Logistic model and Gompertz model are widely used
single-population models that can be easily used to fit data
and estimate the values of unknown parameters. +ey are
also two alternative models of dengue data and A/H1N1 data
in this study.

+e logistic model is shown as follows [28]:

x′(t) � rx(t) 1 −
x(t)

K
 . (4)

+e Gompertz model is shown as follows [29]:

x′(t) � rx(t)ln
K

x(t)
 . (5)

For convenience, the above two models are denoted as
M1 and M2. x(t) in (4) and (5) represents the number of
confirmed cases of dengue and A/H1N1 at time t, respec-
tively. +ere are two distinct unknown parameters r and K.
+e positive parameter r represents the intrinsic growth rate,
which reflects the propagation capacity of infectious diseases
under ideal conditions. K denotes the maximum environ-
mental capacity of infectious diseases.

Our purpose is to select the best model among the above
two commonly used models based on the infectious disease
data listed in Tables 1 and 2, which will help us to evaluate
the characteristics of infectious diseases. +erefore, we need
to estimate the values of unknown parameters r and K of
each candidate model according to the data, to determine the
best fitting model.
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3.2. Numerical Results. Our focus so far has been on the
IABC-SMC algorithm, model evaluation criteria, and two
alternative models with unknown parameters of the in-
trinsic growth rate r and maximum environmental ca-
pacity K. To simplify the interpretation of our
mathematical results, we continued to discuss them by
numerical simulation.

3.2.1. Results of Dengue

(1) Simulation 1: Results of IABC-SMC Algorithm. To get the
results of model selection and parameter estimation of
dengue by the IABC-SMC algorithm, the number of initial
infections x0 � 5 according to Table 1, the total number of
algorithm iterations T � 6, and the total number of pa-
rameters n � 6000 is used here as the initial condition. +e
infection time of dengue in China was from April 2014 to
March 2015 (12 months). It is proved by practice that the

Monte Carlo error is minimal when the acceptance rate is
0.4, so we set the acceptance rate to 0.4.

When applying the IABC-SMC algorithm to estimate
unknown parameters of model and make model selection of
dengue disease, we assumed that the prior distribution of
each estimated parameter is uniformly distributed,
r ∼ U(0, 2) and K ∼ U(40000, 60000). +e disturbance
added by each sampled particle is uniform, and r and K are
0.1 and 1000, respectively. In this experiment, two particles
are sampled simultaneously and the IABC-SMC algorithm
ends when the most fitting model is selected for dengue data.
+e algorithm abstracts the parameter estimation of the
above two models and the real data of dengue.

Figure 1 shows the histograms of intrinsic growth rate r

(Figure 1(a)) and maximum environmental capacity K

(Figure 1(b)) of the logistic model. +ese parameters are
obtained by the IABC-SMC algorithm. X-coordinate indi-
cates the range of estimated parameter, and Y-coordinate
indicates the frequency of parameter occurrence. In Figure 1,

�e first generation
Q1.1 Define the number of iteration t � 1, the number of particles i(i � 1, . . . , n).
Q1.2 Sample θ(i) from prior distribution π(θ) and get simulated values y(i) from model π(y|θ).
Q1.3 An acceptance rate of particles θ∗ is selected from π(θ) and simulated values y∗ are selected from y when the simulated value y∗

is close to the observed value yobs.
Q1.4 Set θ(i)

t � θ∗ and fix the weights w
(i)
t � 1(i � 1, . . . , n∗ acceptance rate).

�e 2. . .T generation
Q2.1 Define the number of iteration t(t � 2, . . . , T), the number of particles i(i � 1, . . . , n) and the particle dimension
j(j � 1, . . . , m).
Q2.2 Select n particles with weights wt−1 from previous generation particles randomly and use the kernel function K to perturb those
particles, an acceptance rate of particles θ∗∗ is selected from π(θ) and simulated values y∗∗ are selected from y when the simulated
value y∗∗ is close to the observed value yobs.
Q2.3 Set θ(i)

t � θ∗∗ and fix the weight of each particle wi
t � (π(θi

t)/
n
j�1 w

j
t−1kt(θ

j
t−1, θ

i
t)).

Q2.4 Normalize the weights w
(i)
t .If t<T, update t � t + 1 and return to Q2.1.

Recalibration
Q3.1 According to the particles and the simulation values obtained by the Tth iteration, the weight v of each particle is calculated and
v(i)∝ kh(‖y(i) − yobs‖), where kh(0) is a smooth kernel with scale parameter h> 0.
Q3.2 For j � 1, . . . , m, construct the jth marginal distribution function Fj,yobs

(·) according to sample θ(i), v(i) 
Q

i�1, where v(i) > 0 and
Q is the total number of particles in the marginal distribution function.
Q3.3 Construct the jth marginal distribution function Fj,yi

(·) according to sample θ(x), v(x) 
Q

x�1,x≠ i
in the same way of Q3.1 and

Q3.2.
Q3.4 Calculate the probability of θ(i)

j in Fj,yi
(·), p

(i)
j � Fj,y(i)

(θ(i)
j ).

Q3.5 Calculate the adjusted particle, θ
(i)

� F
−1
j,yobs

(p
(i)
j ).

Model output
Q4 According to the given model, adjusted parameters and weights, the evaluation criteria of AIC and BIC are obtained, then the
most fitting model can be selected.

ALGORITHM 2: IABC-SMC algorithm.

Table 1: Monthly cumulative confirmed data on dengue outbreaks from April 2014 to March 2015.

Month 4 5 6 7 8 9 10 11 12 1 2 3
Data 5 28 53 208 995 15754 44550 47110 47290 47309 47331 47356

Table 2: Monthly cumulative confirmed data on A/H1N1 outbreaks from May 2009 to April 2010.

Month 5 6 7 8 9 10 11 12 1 2 3 4
Data 22 566 1587 3170 19136 52079 96349 125128 131059 131893 132308 132431
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the range of parameter r is between 1.72 and 1.8 and the
range of parameter K is between 4600 and 5100, which
indicates that the range of posterior distributions of these
two parameters is very small and concentrated. +e distri-
butions of both parameters are all close to normal distri-
butions. When r is about 1.764, the cumulative number of r

reaches a peak of about 350 times. When the parameter K is
48500, the cumulative number of K reaches a peak of about
270 times.

+e parameter statistics associated with candidate
model can be estimated. Table 3 gives the ranges of pa-
rameters and parameter statistics of approximate poste-
rior distributions of logistic model. As can be seen from
Table 3, the two parameters are estimated precisely and
the results of these two parameters are excellent because
the most parameter values are within the [2.5th, 97.5th]
percentiles.

Figure 2 displays the histograms of intrinsic growth
rate r (Figure 2(a)) and maximum environmental capacity
K (Figure 2(b)) of the Gompertz model. +ey are available
by the IABC-SMC algorithm, which is the same method as
above. X-coordinate indicates the range of estimated
parameters, and Y-coordinate indicates the frequency of
occurrence of parameters. As can be seen from Figure 2,
the distributions of these two parameters are all similar to
normal distribution, but both distributions of these pa-
rameters in Figures 2(a) and 2(b) have two peaks. When r

is 0.5 and 0.53, the peak of cumulative times of r all
reaches about 235 times. When the parameter K is 50000
and 54000, the peak of cumulative number of K all reaches
about 280 times. So, the estimated parameters are not
particularly good.

Table 4 expresses the parameter ranges and the pa-
rameter statistics of the Gompertz model of approximate
posterior distribution. We can see that the variances of these
two parameters in Table 3 are smaller than that in Table 4,
which indicates that the parameter range estimated by the
logistic model is more accurate.

To further study which model is more credible and verify
the posterior distributions of parameters, some calculations
and simulations were performed. As mentioned above, the
models are sorted by the value of AIC and the best approxi-
mation model is the model with the smallest AIC value.
+erefore, AIC is an important element to measure the
matching degree between model and data. +e selection result
of the two candidate models is based on the AIC values cal-
culated in Table 5, which confirms the decisive evidence for the
existence of the model. +at is, they are 7831.8 and 43980 for
logistic model (M1) and Gompertz model (M2), respectively.
+eAIC value of modelM1 is the smallest, so the best model is
logistic model. To further verify the effect of IABC-SMC al-
gorithm, the BIC value of each model was counted. BIC values
of models M1 and M2 are 7832.7 and 43981, respectively. +e
results also indicate that the logistic model is the best, which is
consistent with the results of AIC. Finally, we verified the above
results again by comparing the operation time of model se-
lection, because the operation time of M1 is 151.48 seconds,
which is less than 163.52 seconds of M2.+erefore, the logistic
model saves the computation time of IABC-SMC algorithm
and is more efficient than the Gompertz model.

Using the mean values of the parameters obtained above,
the disease prediction figure can be made. Figure 3 manifests
the comparison between the observed data and simulated
data calculated from the estimated mean values of the
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Figure 1: Parameter histograms of logistic model of the IABC-SMC algorithm. (a) Estimation of r. (b) Estimation of K. Here, the initial
states are n � 6000, x0 � 5, a � 0.4, T � 6, and t � 12.

Table 3: Parameter ranges and statistics of the logistic model.

Parameter Lower bound Upper bound Mean Std. [2.5th, 97.5th] percentiles
r 1.7157 1.8001 1.7596 7.2548 × 10−4 [1.7231, 1.7927]
K 45998 50790 48393 42.6146 [46351, 50413]
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Figure 2: Parameter histograms of the Gompertz model of the IABC-SMC algorithm. (a) Estimation of r. (b) Estimation of K. Here, the
initial states are n � 6000, x0 � 5, a � 0.4, T � 6, and t � 12.

Table 4: Parameter ranges and statistics of the Gompertz model.

Parameter Lower bound Upper bound Mean Std. [2.5th, 97.5th] percentiles
r 0.4022 0.5621 0.4861 6.0838 × 10−4 [0.4143, 0.5507]
K 44572 69495 53852 44.5627 [45830, 65812]

Table 5: AIC, BIC, and operation time of two models.

Model Logistic Gompertz
AIC 7831.8 43980
BIC 7832.7 43981
Operation time (s) 151.48 163.52
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Figure 3: Comparison between the observed data and simulated data of the IABC-SMC algorithm. (a) Logistic model. (b) Gompertz model.
Here, the initial states are n � 6000, x0 � 5, a � 0.4, T � 6, and t � 12.
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parameters. Figure 3(a) is the fitting effect of observed data
and simulated data of the logistic model, and Figure 3(b) is
the fitting effect of observed data and simulated data of the
Gompertz model. +e black curve represents the number of
confirmed cases of dengue fever from April 2014 to March
2015, and the blue dots represent the simulated data of the
model. +e trend of Figure 3(a) is that the number of in-
fections rises sharply from August and stabilizes after No-
vember. It is clear that the logistic model is very consistent
with the data of the outbreak of dengue fever in 2014. +e
trend of Figure 3(b) is that the number of simulated in-
fections is on the rise, but there is a certain deviation be-
tween the simulated data and the observed data. Under the
same conditions, the simulated data of the logistic model
match the observed data much better than those of the
Gompertz model.

From the above results, it can be concluded that the
IABC-SMC algorithm can improve the quality of posterior
distributions of parameters greatly, obtain more accurate
parameter values, and choose the most suitable model. +e
result of model selection is also consistent with the result
of [7].

(2) Simulation 2: Results of ABC-SMC Algorithm. To verify
the effects of the IABC-SMC algorithm, we compared the
IABC-SMC algorithm, with the ABC-SMC algorithm in
[13]. Both algorithms used the same model, experi-
mental data, parameter initial values, and thresholds.
+e threshold set is selected manually and given as
ε � 65389, 41043, 33049, 30077, 28770, and 16433. +e prior
probability of each model is equal, i.e., p(M1) � p(M2) �

1/2. Figure 4 is the fitting effect of the observed data and
simulated data obtained by the ABC-SMC algorithm. +e
black curve represents the number of confirmed cases of
dengue fever from April 2014 to March 2015, and the blue
dots represent the simulated data of the ABC-SMC algo-
rithm. Compared with the Gompertz model, the simulated
data obtained from logistic model are closer to the observed
data, which indicates that the logistic model is better than the
Gompertz model. +e result of model selection is also
consistent with the result of the IABC-SMC algorithm, and
the results of model selection are all logistic model. However,
from the perspective of simulation effect of algorithm, the
fitting effect between the simulated data obtained from the
ABC-SMC algorithm and the observed data is worse than
that of the IABC-SMC algorithm. From the perspective of
simulation time of algorithm, the computation time of ABC-
SMC algorithm is 40272 seconds, which far exceeds the
computation time of IABC-SMC algorithm.

Figure 5 shows the histograms of parameters r

(Figure 5(a)) and K (Figure 5(b)) of the model selected by
the ABC-SMC algorithm. +e X-coordinate is the range of
the parameters, and the Y-coordinate is the frequency of
parameter. When r is 0.5, parameter r appears most fre-
quently, which is about 2700 times. However, other values of
r occur between 1.5 and 2.+e parameter K appears between
40000 and 60000. When K is 55000, K appears most fre-
quently and it is about 680 times. Table 6 shows the pa-
rameter summary statistics estimated by the ABC-SMC

algorithm. It can be seen from Figure 5 and Table 6 that the
ABC-SMC algorithm can also estimate the posterior dis-
tributions of unknown parameters, but the parameter range
is larger and more dispersed than that of the IABC-SMC
algorithm.

+ese results confirm that the IABC-SMC algorithm has
the advantages of high computational efficiency, low time
complexity, and more accurate parameter values.

3.2.2. Results of A/H1N1

(1) Simulation 1: Results of IABC-SMC Algorithm. To verify
the results of model selection and parameter estimation of
A/H1N1 by the IABC-SMC algorithm, the number of initial
infections x0 � 22 according to Table 2, total number of
algorithm iterations T � 6, and the total number of pa-
rameters n � 6000 are used as the initial condition. +e
infection time of A/H1N1 disease in China was from May
2009 to April 2010, expressed by t � 5 to t � 16 (12months)
in diagram. As above, the acceptance rate is also set to 0.4.

When applying the IABC-SMC algorithm to estimate
model parameters and make model selection, we assumed
that the prior distribution of each estimated parameter is
uniformly distributed, r ∼ U(0, 2.5) and
K ∼ U(100000, 150000). +e disturbance added by each
sampled particle is uniform, and r and K are 0.1 and 1000,
respectively. When the IABC-SMC algorithm finishes, the
model that best matches the A/H1N1 data can be obtained.
+e algorithm abstracts the parameter estimation of the
above two models and the real data of A/H1N1.

Figure 6 shows the histograms of intrinsic growth rate r

(Figure 6(a)) and maximum environmental capacity K

(Figure 6(b)) of the logistic model. +ese parameters are
available by the IABC-SMC algorithm. X-coordinate indi-
cates the range of estimated parameters, and Y-coordinate
indicates the frequency of parameters. As can be seen from
Figure 6, the range of parameter r is between 1.6 and 1.68,
and the range of parameter K is between 125000 and 139520,
which shows that the range of posterior distributions of
these two parameters is very small and concentrated. +e
distributions of both parameters are all close to normal
distribution. When r is about 1.64, the peak of cumulative
number of r reaches about 290 times.When the parameter K

is 131000, the peak of cumulative number of K reaches about
235 times.

+e correlation statistics of parameters r andK related to
the logistic model can be obtained. Table 7 gives the range of
parameters and the unknown parameters statistics of the
approximate posterior distributions of logistic model. As can
be seen from Table 7, the parameters all can be well esti-
mated. +e results of these two parameters are excellent
because their parameter values are within the [2.5th, 97.5th]
percentiles.

Figures 7(a) and 7(b) show the histograms of intrinsic
growth rate r and maximum environmental capacity K of
the Gompertz model, respectively. +ese parameters are
obtained by the IABC-SMC algorithm. X-coordinate indi-
cates the range of estimated parameters, and Y-coordinate

8 Discrete Dynamics in Nature and Society



indicates the total times of parameters. As can be seen from
Figure 7, the distributions of parameters r and K do not
follow normal distribution and both parameters have two
peaks. When r is 0.5 and 0.53, the peak of cumulative
number of r reaches about 235 times.When the parameter K

is 50000 and 54000, the peak of cumulative number of K

reaches about 280 times. So, the results of estimated pa-
rameters are not particularly good.

+e posterior estimation results of unknown parameters
and the statistics related to the Gompertz model are shown
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Figure 4: Fitting effect of simulated data and observed data of ABC-SMC algorithm. (a) Logistic model. (b) Gompertz model. Here, the
initial states are n � 6000, x0 � 5, T � 6, t � 12, ε � 57453, 22335, 16047, 12872, 11540, 6720, andp(M1) � p(M2) � 1/2.
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Figure 5: Model parameter histograms of ABC-SMC algorithm. (a) Estimation of r. (b) Estimation of K. Here, the initial states are
n � 6000, x0 � 5, T � 6, t � 12, and ε � 65389, 41043, 33049, 30077, 28770, and 16433.

Table 6: Parameter summary statistics of ABC-SMC algorithm.

Parameter Lower bound Upper bound Mean Std. [2.5th, 97.5th] percentiles
r 0.4138 1.9986 1.0814 0.8011 [0.4287, 1.9285]
K 40003 60000 52019 1.0596 × 10−4 [41416, 59042]
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in Table 8. We can see that the variances of these two pa-
rameters in Table 7 are smaller than that in Table 8, which
indicates that the parameter range estimated by the logistic
model is more accurate.

Similarly, to further verify the effects of the IABC-
SMC algorithm, some calculations and simulations are
carried out. According to the criteria presented in Table 9,
the evidence for choosing logistic model is conclusive. +e
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Figure 6: Parameter histograms of logistic model of the IABC-SMC algorithm. (a) Estimation of r. (b) Estimation of K. Here, the initial
states are n � 6000, x0 � 22, a � 0.4, T � 6, and t � 12.

Table 7: Parameter ranges and statistics of logistic model.

Parameter Lower bound Upper bound Mean Std. [2.5th, 97.5th] percentiles
r 1.5983 1.6889 1.6442 6.7627 × 10−5 [1.6022, 1.6833]
K 125130 139520 132460 93.6276 [125730, 138640]
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Figure 7: Parameter histograms of Gompertz model of the IABC-SMC algorithm. (a) Estimation of r. (b) Estimation of K. Here, the initial
states are n � 6000, x0 � 22, a � 0.4, T � 6, and t � 12.

Table 8: Parameter ranges and the statistics of the Gompertz model.

Parameter Lower bound Upper bound Mean Std. [2.5th, 97.5th] percentiles
r 0.4336 0.5464 0.4971 6.4659 × 10−4 [0.4417, 0.5421]
K 125050 161430 140430 95.3831 [127100, 158750]

10 Discrete Dynamics in Nature and Society



AIC values of M1 and M2 are calculated as 4060 and
49816, respectively. It is obvious that the AIC value of M1
is much smaller than that of M2, so the best model is the
logistic model. +e BIC values of M1 and M2 also support
us to choose logistic model. Finally, we can use the model
selection time to verify the above conclusions again. It is
easy to notice that M1 saves more time than M2. So, the
logistic model is the “best” model for us to fit the A/H1N1
data.

+e fitting results of logistic model and Gompertz model
in Figure 8 are plotted based on the observed data and the
simulated data calculated using the average values of the
estimated parameters. +e X-coordinate shows the outbreak
time of A/H1N1 disease from May 2009 to April 2010, and
the Y-coordinate shows the cumulative number of infec-
tions. Obviously, the simulation data obtained by the logistic
model and the A/H1N1 epidemic data have the best fitting
effect. +e result of model selection of A/H1N1 disease is
also consistent with that of dengue disease.

(2) Simulation 2: Results of ABC-SMC Algorithm. To verify
the efficiency of the IABC-SMC algorithm, the IABC-SMC
algorithm is compared with ABC-SMC algorithm. Both
algorithms used the same model, experimental data, pa-
rameter initial values, and threshold. +e threshold set is
selected manually and given as
ε � 168655, 106154, 78152, 64957, 59245, and 41355. +e
prior probability of each model is equal; i.e.,

p(M1) � p(M2) � 1/2. Figure 9 is the fitting effect of the
observed data and the simulated data obtained by the ABC-
SMC algorithm. +e black curve represents the number of
confirmed cases with A/H1N1 fromMay 2009 to April 2010,
and the blue dots represent the simulated data of the ABC-
SMC algorithm. It is not difficult to see from the simulation
results that the fitting effect of the observed data and the
simulated data obtained by the logistic model is better than
that of the Gompertz model. It is consistent with the results
of the IABC-SMC algorithm and the results of model se-
lection are all logistic model. Although the final results of
model selection of the two algorithms are both logistic
model, the simulation data obtained by the IABC-SMC
algorithm fit the observed data better. +e computation time
of ABC-SMC algorithm is 3212 seconds, which is also much
longer than that of the IABC-SMC algorithm.

Figure 10 shows the histograms of parameters r

(Figure 10(a)) and K (Figure 10(b)) of the selected model
obtained by the ABC-SMC algorithm. +e X-axis is the
range of the parameters, and the Y-axis is the total number
of parameter. When r is 0.5, parameter r appears most
frequently, which is about 2800 times. However, other
values of r occur between 1.5 and 1.8. When the parameter
K is between 115000 and 144000, the total number of K is
about 200. When the value of K is between 144000 and
150000, the total number of K increases significantly.
Table 10 represents the relevant statistical information of
the unknown parameters estimated by the ABC-SMC

Table 9: AIC, BIC, and operation time of two models.

Model Logistic Gompertz
AIC 4060 49816
BIC 4061 49817
Operation time (s) 209.6029 213.6122
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Figure 8: Comparison between the observed data and simulated data of the IABC-SMC algorithm. (a) Logistic model. (b) Gompertz model.
Here, the initial states are n � 6000, x0 � 22, a � 0.4, T � 6, and t � 12.
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algorithm. Although the ABC-SMC algorithm can also
estimate the posterior information of the unknown pa-
rameters, it has a larger and more scattered parameter
range than that of the IABC-SMC algorithm. +ese results
confirm the advantages of IABC-SMC algorithm again.

4. Discussion

Many methods have various problems in the selection of
models and parameter estimation, such as low efficiency
in model selection and inaccuracy in parameter estima-
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Figure 9: Fitting effect of simulated data and observed data of ABC-SMC algorithm. (a) Logistic model. (b) Gompertz model. Here, the
initial states are n � 6000, x0 � 22, T � 6, t � 12, ε � 168655, 106154, 78152, 64957, 59245, and 41355, andp(M1) � p(M2) � 1/2.
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Figure 10: Model parameter histograms of ABC-SMC algorithm. (a) Estimation of r. (b) Estimation of K. Here, the initial states are
n � 6000, x0 � 22, T � 6, t � 12, and ε � 168655, 106154, 78152, 64957, 59245, and 41355.

Table 10: Parameter summary statistics of ABC-SMC algorithm.

Parameter Lower bound Upper bound Mean Std. [2.5th, 97.5th] percentiles
r 0.4477 1.8446 1.0983 1.7324 [0.4556, 1.8013]
K 114780 150000 139490 29446 [118040, 149410]
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tion. +ese problems may lead to the selection of the
wrong model and the inaccurate estimation of actual data
scale. Our study proposed an IABC-SMC algorithm based
on the ABC-SMC algorithm and recalibration post-
processing method. We took the reported data of dengue
epidemic and A/H1N1 epidemic in China as examples in
our study.

We used the IABC-SMC algorithm and two simplest
single-population models to analyze the results of model
selection of the dengue epidemic data and the A/H1N1
epidemic data and the results of parameter estimation of
the selected model. +e selected model in two examples is
consistent, and the model selected is the logistic model.
Compared with the ABC-SMC algorithm, the IABC-SMC
algorithm has the advantages of higher computational
efficiency, lower time complexity, more fast and accurate
model selection ability, and more accurate posterior
distributions of parameters. +e IABC-SMC algorithm
avoids the problem of setting the threshold sequence of
the ABC-SMC algorithm manually and the time-con-
suming problem and also avoids the shortage to find the
optimal model and value of unknown parameters of
model in each iteration in ABC-SMC algorithm.

Although the alternative model in this study is relatively
simple, it demonstrates many promising aspects of the
IABC-SMC algorithm, which can be extended to complex
system models to deal with model selection and parameter
estimation problems effectively in the future. It can be
utilized not only for deterministic models but also for
stochastic models in the physical, chemical, and biological
sciences.
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