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)e vague graph (VG), which has recently gained a place in the family of fuzzy graph (FG), has shown good capabilities in the face
of problems that cannot be expressed by fuzzy graphs and interval-valued fuzzy graphs. Connectivity index (CI) in graphs is a
fundamental issue in fuzzy graph theory that has wide applications in the real world. )e previous definitions’ limitations in the
connectivity of fuzzy graphs directed us to offer new classifications in vague graph. Hence, in this paper, we investigate con-
nectivity index, average connectivity index, and Randic index in vague graphs with several examples. Also, one of the motives of
this research is to introduce some special types of vertices such as vague connectivity enhancing vertex, vague connectivity
reducing vertex, and vague connectivity neutral vertex with their properties. Finally, an application of connectivity index in the
selected town for building hospital is presented.

1. Introduction

)e FG concept serves as one of the most dominant and
extensively employed tools for multiple real-world problem
representations, modeling, and analysis. To specify the
objects and the relations between them, the graph vertices or
nodes and edges or arcs are applied, respectively. Graphs
have long been used to describe objects and the relationship
between them. Many of the issues and phenomena around
us are associated with complexities and ambiguities that
make it difficult to express certainty. )ese difficulties were
alleviated by the introduction of fuzzy sets by Zadeh [1].)is
concept established well-grounded allocation membership
degree to elements of a set. Actually, fuzzy set theory is one
of the best and most powerful tools for modeling problems
in examining the relationship between uncertainties in the
real world. Rosenfeld [2] proposed the idea of FG in 1975.
Kauffman [3] represented FGs based on Zadeh’s fuzzy re-
lation [4, 5]. Bhutani and Rosenfeld [6] introduced the
concept of strong edges. Bhattacharya [7] presented some
observations on FGs, and some operations on FGs were
described by Mordeson and Peng [8]. )e existence of a

single degree for a true membership could not resolve the
ambiguity on uncertain issues, so the need for a degree of
membership was felt. Afterward, to overcome the existing
ambiguities, Gau and Buehrer [9] gave false membership
degrees and defined a vague set as the sum of degrees not
greater than 1. Ramakrishna in [10] proposed the vague
graph concept. New VG concept was introduced and ana-
lyzed by Borzooei et al. [11–13]. )e vague graph, which has
recently gained a place in the family of FG, has shown good
capabilities in the face of problems that cannot be expressed
by FGs. A vague graph is referred to as a generalized
structure of an FG that conveys more exactness, adaptability,
and compatibility to a system when coordinated with sys-
tems running on FGs. Furthermore, a VG is able to con-
centrate on determining the uncertainly coupled with the
inconsistent and indeterminate information of any real-
world problem, where FGs may not lead to adequate results.
Connectivity index is one of the most important topics that
has many applications in dynamic detection of competition
condition in parallel programming, finding phylogenetic
trees based on protein domain information, and social
networks. )e connectivity index problem can also be used
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to model many real-world situations in the fields of circuit
design, telecommunications, network flow, and so on. Binu
et al. [14] introduced connectivity index of a fuzzy graph.
Mathew and Sunitha [15] defined several types of arc in
fuzzy graph. Naeem et al. [16] investigated connectivity
indices of intuitionistic fuzzy graphs (IFGs). Poulik and
Ghorai [17] studied indices of graphs under bipolar fuzzy
environment. Sebastian et al. [18] presented connectivity
parameters in generalized fuzzy graphs. Several concepts and
results in VGs were proposed and investigated by Akram
et al. [19, 20]. Ghorai et al. [21] studied regular product vague
graphs and product vague line graphs. References [22, 23]
introduced competition-FGs and some remarks on bipolar-
FGs. References [24–29] investigated several concepts on
FGs and VGs. Kou et al. [30] studied g-eccentric node and
vague detour g-boundary nodes in VGs. Rashmanlou et al.
[31–33] described categorical properties and paired domi-
nation in IFGs. Kosari et al. [34] introduced the restrained
K-rainbow reinforcement number of graphs.

In this paper, we investigated connectivity index, average
connectivity index, and Randic index in VGs with several
examples. Likewise, we introduced some special types of
nodes such as vague connectivity enhancing node, vague
connectivity reducing node, and vague connectivity neutral
node with their properties. Finally, an application of con-
nectivity index in construction is presented.

2. Preliminaries

A FG G � (V, v, η) is a nonempty set V together with a pair
of functions v: V⟶ [0, 1] and η: V × V⟶ [0, 1] such
that η(ab)≤min v(a), v(b){ }, for all a, b ∈ V. Here, η is a
symmetric fuzzy relation on V×V.

Definition 1 (see [9]). A VS M is a pair (tM, fM) on set V

where tM and fM are taken as real valued functions which
can be defined on V⟶ [0, 1], so that tM(a) + fM(a)≤ 1,
for all a ∈ V.

Definition 2 (see [10]). G � (M, N) is called a VG on a crisp
graph G∗, in which M � (tM, fM) is a VS on V and N �

(tN, fN) is a VS on E⊆V × V so that tN(ab)≤min(tM

(a), tM(b)) and fN(ab)≥max(fM(a), fM(b)), ∀ab ∈ E.

Definition 3 (see [11]). Let G � (M, N) be a VG.

(i) A VG G′ � (M′, N′) is said to be a PVSG of G if
tM′(a)≤ tM(a), fM′(a)≥fM(a), ∀a ∈ V and
tN′(ab)≤ tN(ab), fN′(ab)≥fN(ab), for each edge
ab ∈ G.

(ii) A VG G′ � (M′, N′) is said to be a VSG of G if
tM(a) � tM′(a), fM(a) � fM′(a), ∀a ∈ V′ and
tN′(ab) � tN(ab), fN′(ab) � fN(ab), for each edge
ab ∈ G′.

Definition 4 (see [11]). Let G � (M, N) be a VG.

(i) A path p: a � a0, a1, . . . , ak−1, ak � b in G is a se-
quence of distinct nodes where tN(ai−1ai)> 0,
fN(ai−1ai)> 0, i � 1, 2, . . . , k. )e length of P is k.

(ii) If p: a � a0, a1, . . . , ak−1, ak � b is a path between a

and b of length k, then (tN(ab))k � sup tN(aa1)􏼈

∧tN(a1a2)∧ . . .∧tN(ak−1b)} and (fN(ab))k

� inf fN(aa1)∨fN(a1a2)􏼈 ∨ . . .∨fN(ak−1b)}.

CONNG(a, b) � (CONNt
G(a, b),CONNf

G(a, b)) � ((tN

(ab))∞, (fN(ab))∞) is called the strength of connectedness
between any two nodes a and b in G where CONNt

G(a, b) �

supk∈N (tN(ab))k
􏽮 􏽯 and CONNf

G(ab) � inf
k∈N

(fN(ab))k
􏽮 􏽯. If

tN(ab)> 0 and fN(ab)> 0, ∀(a, b) in G, then the VG G is
called a CVG. If tN(ab) � min tM(a), tM(b)􏼈 􏼉 and
fN(ab) � max fM(a), fM(b)􏼈 􏼉, ∀a, b ∈ V, then G is named
a complete VG.

Definition 5 (see [11]). For a VG G, if tN(ab)≥ (tN(ab))∞

and fN(ab)≤ (fN(ab))∞, then the arc (ab) is named a
strong arc of G.

Definition 6 (see [11]). Let G � (M, N) be a CVG.

(i) G is called a VT if G has a VSSG G′ � (A′, B′) which
is also a tree and for all arcs (ab) not in G,
(tN′(ab))∞ < (tN(ab))∞ and (fN′(ab))∞ > (fN

(ab))∞.
(ii) An edge (ab) is said to be a VB if (tN(ab))∞ >

(tN′(ab))∞ and (fN(ab))∞ < (fN′(ab))∞.
(iii) G is called a vague cycle if G∗ is a cycle and there

does not exist unique edge (ab) in G for which
tN(ab) � min tN(a1b1) ∣ (a1b1) ∈ E􏼈 􏼉 and fN(ab)

� max fN(a1b1) ∣ (a1b1) ∈ E􏼈 􏼉.

All the basic notations are shown in Table 1.

3. Connectivity Index of a Vague Graph

Definition 7. )e CI of a VG G denoted by CIVG(G) is
defined as

CIVG(G) � CItVG(G),CIfVG(G)􏼐 􏼑

� 􏽘
a,b∈V

tM(a)tM(b) · CONNt
G(a, b), 􏽘

a,b∈V
fM(a)fM(b) · CONNf

G(a, b)⎛⎝ ⎞⎠,

(1)
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where CItVG(G) and CIfVG(G), respectively, denote the true-
CI and false-CI of G.

Example 1. Consider the CVG G of the graph G∗ shown in
Figure 1, where V � a, b, c, d, e{ } and E � (a, b), (b, c), (c,{

d), (d, e), (a, e), (b, d)}. Here, we suppose that the true-MV
and false-MV of every node are 0.2 and 0.5, respectively.

Here,

CONNt
G(a, b) � 0.1, CONNt

G(a, c) � 0.1, CONNt
G(a, d) � 0.1,

CONNt
G(a, e) � 0.2, CONNt

G(b, c) � 0.2, CONNt
G(b, d) � 0.2,

CONNt
G(b, e) � 0.1, CONNt

G(c, d) � 0.2, CONNt
G(c, e) � 0.1,

CONNt
G(d, e) � 0.1.

CONNf

G(a, b) � 0.6, CONNf

G(a, c) � 0.6, CONNf

G(a, d) � 0.6,

CONNf

G(a, e) � 0.6, CONNf

G(b, c) � 0.5, CONNf

G(b, d) � 0.5,

CONNf

G(b, e) � 0.6, CONNf

G(c, d) � 0.5, CONNf

G(c, e) � 0.6,

CONNf

G(d, e) � 0.6.

CItVG(G) � 0.004 + 0.004 + 0.004 + 0.008 + 0.008 + 0.008 + 0.004 + 0.008 + 0.004 + 0.004 � 0.056,

CIf

VG(G) � 0.15 + 0.15 + 0.15 + 0.15 + 0.125 + 0.125 + 0.15 + 0.125 + 0.15 + 0.15 � 1.425.

(2)

Hence, CIVG(G) � (CItVG(G),CIfVG(G)) � (0.056,

1.425)

Theorem 1. For a PVSG G′ � (M′, N′) of a VG
G � (M, N), CIt

VG(G′)≤CIt
VG(G) and CIf

VG(G′)≥CIf

VG
(G).

Proof. Let G′ � (M′, N′) be a PVSG of G � (M, N). Hence,
tM′(a)≤ tM(a), fM′(a)≥fM(a), ∀a ∈ G′ and tN′(ab)

≤ tN(ab), fN′(ab)≥fN(ab), ∀ab ∈ G′. Since
CONNt

G′(a, b) and CONNf

G′
(a, b) lie on one or many edges

of G′ and CONNt
G(a, b) and CONNf

G(a, b) lie on one or

many edges of G and tN′(ab)≤ tN(ab), fN′(ab)≥fN(ab),
∀ab ∈ G′, and hence we have

CONNt
G′(a, b)≤CONNt

G(a, b),CONNf

G′
(a, b)

≥CONNf

G(a, b),∀(a, b) ∈ G′.
(3)

Since

fM′(a)fM′(b)≥ 0,

fM(a)fM(b)≥ 0.
(4)

So,

Table 1: Some basic notations.
Notation Meaning
FG Fuzzy graph
VG Vague graph
CVG Connected vague graph
VS Vague set
MV Membership value
PVSG Partial vague subgraph
VSG Vague subgraph
VT Vague tree
ACI Average connectivity index
VCRN Vague connectivity reducing node
VCEN Vague connectivity enhancing node
VCNN Vague connectivity neutral node
CEVG Connectivity enhancing vague graph
CRVG Connectivity reducing vague graph
NVG Neutral vague graph
OND Open neighborhood degree
RI Randic index
CI Connectivity index
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tM′(a)tM′(b)CONNt
G′(a, b)≤ tM(a)tM(b)CONNt

G(a, b),

fM′(a)fM′(b)CONNf

G′(a, b)≥fM(a)fM(b)CONNf

G(a, b).

(5)

)erefore,

􏽘

a,b∈V′
tM′(a)tM′(b)CONNt

G′(a, b)

≤ 􏽘
a,b∈V

tM(a)tM(b)CONNt
G(a, b)

(6)

􏽘

a,b∈V′
fM′(a)fM′(b)CONNf

G′
(a, b)

≥ 􏽘
a,b∈V

fM(a)fM(b)CONNf

G(a, b).
(7)

)erefore, CItVG(G′)≤CItVG(G) and CIfVG(G′)≤CIfVG
(G). □

Remark 1. For a VSG G′ � (M′, N′) of a VG G,
CItVG(G′)≤CItVG(G) and CIfVG(G′)≤CIfVG(G).

Example 2. Let G′ be a CVSG of the VG G as in Example 2
(see Figure 2). Here,

CItVG G′( 􏼁 � 0.004 + 0.004 + 0.008 + 0.008 + 0.004 + 0.004 � 0.032,

CIfVG G′( 􏼁 � 0.15 + 0.15 + 0.15 + 0.125 + 0.15 + 0.15 � 0.875.
(8)

So, CIVG(G′) � (0.032, 0.875). )erefore, Example 2
shows that CItVG(G′)≤CItVG(G) and CIfVG(G′)≤CIfVG(G).

Theorem 2. If G′ � (M′, N′) is a VSG of a CVG
G � (M, N), where V′ � V − s{ }, s ∈ V, then CIt

VG
(G′)<CIt

VG(G) and CIf

VG(G′)<CIf

VG(G).

Proof. Let G have n nodes, i.e., |V| � n and s ∈ V. )en, V′ �
V − s{ } i.e., |V′| � n − 1. Suppose V � a1, a2, . . . , an � s􏼈 􏼉.
Hence, V′ � a1, a2, . . . , an−1􏼈 􏼉. Since G′ is VSG of G, G′must
be a PVSG of G. So,

CItVG(G) � CItVG G′( 􏼁 + 􏽘
n−1

i�1
tM an( 􏼁tM ai( 􏼁CONNt

G an, ai( 􏼁,

CIfVG(G) � CIfVG G′( 􏼁 + 􏽘
n−1

i�1
fM an( 􏼁fM ai( 􏼁CONNf

G an, ai( 􏼁.

(9)

)us, CItVG(G′)<CItVG(G) and CIfVG(G′)<
CIfVG(G). □

Theorem 3. If G is a complete VG and V � a1, a2, . . . , an􏼈 􏼉

so that tM(ai) � pn and fM(ai) � qi, i � 1, 2, . . . , n, where

e

a

d c

b

(0.2, 0.6)

(0.1, 0.6) (0.2, 0.5)

(0.2, 0.5)

(0.1, 0.7)

(0.1, 0.8)

Figure 1: Connected VG G.
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p1 ≤p2 ≤ . . . ≤pn and q1 ≥ q2 ≥ . . . ≥ qn, then CIt
VG (G) �

􏽐
n−1
i�1 p2

i 􏽐
n
j�i+1 pj and CIf

VG(G) � 􏽐
n−1
i�1 q2i 􏽐

n
j�i+1 qj.

Proof. Let a1 ∈ V, tM(a1) � p1, and fM(a1) � q1. Since G is
complete, CONNt

G(ai, aj) � tN(ai, aj) and CONNf

G(ai,

aj) � fN(ai, aj). )en, CONNt
G(a1, aj) � tM(a1) � p1,

CONNf

G(a1, aj) � fM(a1) � q1, j> 1. Since p1 ≤p2 ≤ . . .

≤pn and q1 ≥ q2 ≥ . . . ≥ qn, then tM(a1)≤ tM(a2)≤ . . .

≤ tM(an) and fM(a1)≥fM(a2)≥ . . . ≥fM(an). )erefore,

tM a1( 􏼁tM aj􏼐 􏼑CONNt
G a1aj􏼐 􏼑 � p1pjp1 � p

2
1pj,

fM a1( 􏼁fM aj􏼐 􏼑CONNf

G a1aj􏼐 􏼑 � q1qjq1 � q
2
1qj.

(10)

It shows that

􏽘

n

j�2
tM a1( 􏼁tM aj􏼐 􏼑CONNt

G a1, aj􏼐 􏼑 � 􏽘
n

j�2
p
2
1pj,

􏽘

n

j�2
fM a1( 􏼁fM aj􏼐 􏼑CONNf

G a1, aj􏼐 􏼑 � 􏽘
n

j�2
q
2
1qj.

(11)

)erefore,

􏽘

n−1

i�1
􏽘

n

j�2
tM ai( 􏼁tM aj􏼐 􏼑CONNt

G ai, aj􏼐 􏼑 � 􏽘
n−1

i�1
􏽘

n

j�2
p
2
i pj,

􏽘

n−1

i�1
􏽘

n

j�2
fM ai( 􏼁fM aj􏼐 􏼑CONNf

G ai, aj􏼐 􏼑 � 􏽘
n−1

i�1
􏽘

n

j�2
q
2
i qj.

(12)

)us, CItVG(G) � 􏽐
n−1
i�1 􏽐

n
j�i+1 pj and CIfVG(G) � 􏽐

n−1
i�1

􏽐
n
j�i+1 qj. □

Example 3. Consider the complete VG G shown in Figure 3
where V � a, b, c{ }. Here, tM(vi) � pi and fM(vi) � qi, for
i � 1, 2, 3.

tM(a) � p1 � 0.1, fM(a) � q1 � 0.4, tM(b) � p2 � 0.2,
fM(b) � q2 � 0.3, tM(c) � p3 � 0.3, fM(c) � q3 � 0.2.

Hence, p1 ≤p2 ≤p3 and q1 ≥ q2 ≥ q3.

CItVG(G) � 􏽘

2

i�1
p
2
i 􏽘

3

j�i+1
pj

� p
2
1p2 + p

2
1p3 + p

2
2p3

� (0.1)
2
(0.2) +(0.1)

2
(0.3) +(0.2)

2
(0.3) � 0.017,

(13)

CIfVG(G) � 􏽘
2

i�1
q
2
i 􏽘

3

j�i+1
qj

� q
2
1q2 + q

2
1q3 + q

2
2q3

� 0.048 + 0.032 + 0.018 � 0.098.

(14)

)us, CIVG(G) � (CItVG(G),CIfVG(G)) � (0.017, 0.098).
Now we define average connectivity index (ACI) of a

VG.

Definition 8. )e ACI of a VG G � (M, N) denoted by
ACIVG(G) is defined as

ACIVG(G) � ACItVG(G),ACIf

VG(G)􏼐 􏼑

�
1
n

2
⎛⎝ ⎞⎠

􏽘
a,b∈V

tM(a)tM(b)CONNt
G(a, b), 􏽘

a,b∈V
fM(a)fM(b)CONNf

G(a, b)⎡⎢⎢⎣ ⎤⎥⎥⎦. (15)

Example 4. From Example 2, for VG G, the ACI of G is

e c

ba

Figure 2: Connected VSG G′.
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ACIVG(G) � ACItVG(G),ACIf

VG(G)􏼐 􏼑 �
0.056
5

2
⎛⎝ ⎞⎠

,
1.425
5

2
⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
0.056
10

,
1.425
10

􏼒 􏼓 � (0.0056, 0.1425).

(16)

Definition 9. Let G � (M, N) be a CVG. A node a is called a

(i) VCRN if ACt
VG(G − a{ })<ACt

VG(G) and ACIfVG
(G − a{ })>ACIfVG(G).

(ii) VCEN if ACItVG(G − a{ })>ACItVG(G) and ACIfVG
(G − a{ })<ACIfVG(G).

(iii) VCNN if ACItVG(G − a{ }) � ACIt
VG(G) and ACIfVG

(G − a{ }) � ACIfVG(G).

Example 5. Consider the VG G shown in Figure 4. We have

CONNt
G(a, b) � 0.1,CONNt

G(a, c) � 0.1,CONNt
G(a, d) � 0.1,

CONNt
G(b, c) � 0.2,CONNt

G(b, d) � 0.2,CONNt
G(c, d) � 0.2,

CONNf

G(a, b) � 0.4,CONNf

G(a, c) � 0.5,CONNf

G(a, d) � 0.4,

CONNf

G(b, c) � 0.5,CONNf

G(b, d) � 0.4,CONNf

G(c, d) � 0.5.

(17)

Hence,

CItVG(G) � 0.004 + 0.004 + 0.004 + 0.008 + 0.008 + 0.008 � 0.036,

CIfVG(G) � 0.036 + 0.045 + 0.045 + 0.036 + 0.045 + 0.036 + 0.045 � 0.243.,

ACItVG(G) �
0.036
6

� 0.006, ACIfVG(G) � 0.040,

ACItVG(G − a{ }) � 0.008, ACIfVG(G − a{ }) � 0.039,

ACItVG(G − b{ }) � 0.005, ACIfVG(G − b{ }) � 0.042,

ACItVG(G − c{ }) � 0.005, ACIfVG(G − c{ }) � 0.036,

ACItVG(G − d{ }) � 0.005, ACIfVG(G − d{ }) � 0.042.

(18)

Hence, a is a VCEN of G and b and d are VCRN of G.

a (0.1, 0.4) b (0.2, 0.3)

c (0.3, 0.2)

(0.1, 0.4)

(0.1, 0.4)

(0.2, 0.3)

Figure 3: A complete VG G.
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Theorem 4. Let G � (M, N) be a complete VG with
|V| � n≥ 3, and p1 � CIt

VG(G)/CIf

VG(G − a{ }), p2 � CIf

VG
(G)/CIf

VG(G − a{ }), a ∈ V. 6e node a is a

(i) VCEN if and only if p1 ≤ n/n − 2 and p2 > n/n − 2.
(ii) VCRN if and only if p1 > n/n − 2 and p2 < n/n − 2.
(iii) VCNN if and only if p1 � n/n − 2 and p2 � n/n − 2.

Proof. (i) Assume that a is a VCEN. )en, Definition 9
shows that

ACIt
VG(G)<ACItVG(G − a{ }),

ACIf

VG(G)>ACIfVG(G − a{ }).
(19)

So, CItVG(G)/(n/2) <CItVG(G − a{ })/(n − 1/2) and CIfVG
(G)/(n/2)<CIfVG(G − a{ })/(n − 1/2). Hence, CItVG(G)/
CItVG(G − a{ })< (n/2)/(n − 1/2) and CIfVG(G)/CIf

VG(G−

a{ })> (n/2)/(n − 1/2). )us, p1 < n/n − 2 and p2 > n/n − 2.
Conversely, let p1 < n/n − 2 and p2 > n/n − 2. So,

CItVG(G)/CItVG(G − a{ })< n/n − 2 and CIfVG(G)/CIf

VG(G−

a{ })> n/n − 2. Hence, CItVG(G)/(n/2)<CItVG(G − a{ })/(n−

1/2) and CIfVG(G)/(n/2) >CIfVG(G − a{ })/(n − 1/2). )us,
ACItVG(G)<ACItVG(G − a{ }) and ACIfVG(G)>ACIfVG
(G − a{ }). )erefore, a is a VCEN of G. In the same way, (ii)
and (iii) can be proved. □

Theorem 5. Let G � (M, N) be a complete VG with
|V| � n≥ 3. Suppose Lt � 􏽐a∈V− b{ }tM(a)tM(b)CONNt

G(a, b),
Lf � 􏽐a∈V− b{ }fM(a)fM(b)CONNf

G(a, b), and b is an end
node of G. 6en,

(i) Lt < 2/n − 2 and Lf > 2/2 − n iff b is a VCEN.
(ii) Lt > 2/n − 2 and Lf < 2/2 − n iff b is a VCRN.
(iii) Lt � 2/n − 2 and Lf � 2/2 − n iff b is a VCNN.

Proof. (i) Let Lt < 2/2 − n and Lf > 2/2 − n. Now,

CItVG(G) � CItVG(G − b{ }) + 􏽘
a∈V− b{ }

tM(a)tM(b)CONNt
G(a, b),

CIfVG(G) � CIfVG(G − b{ }) + 􏽘
a∈V− b{ }

fM(a)fM(b)CONNf

G(a, b).

(20)

So, CItVG(G) � CItVG(G − b{ }) + Lt and CIfVG(G) �

CIfVG(G − b{ }) + Lf. Hence, CItVG(G)/(n/2) � CItVG(G−

a{ })/(n/2) + Lt/(n/2) and CIfVG(G)/(n/2) � CIfVG(G−

a{ })/(n/2) + Lf/(n/2). )us, ACIt
VG(G)<CItVG(G − b{ })/

(n − 1/2) · (n − 2)/n + 2/n − 2/(n/2) and ACIfVG(G)>CIfVG
(G − b{ })/(n − 1 /2) · (n − 2)/n + 2/2 − n/(n/2). )erefore,

ACItVG(G)<ACItVG(G − b{ }) −
2
n

ACItVG(G − b{ }) −
2

(n − 1)(n − 2)
􏼢 􏼣,

ACIfVG(G)>ACIfVG(G − b{ }) −
2
n

ACIfVG(G − b{ }) +
2

(n − 1)(n − 2)
􏼢 􏼣.

(21)

a (0.2, 0.3)

b (0.2, 0.3) d (0.2, 0.3)

c (0.2, 0.3)

(0.1, 0.4) (0.1, 0.4)

(0.2, 0.5) (0.2, 0.5)

(0.2, 0.6)

Figure 4: A connected VG G.
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So, ACItVG(G)<ACIt
VG(G − b{ }) and ACIfVG(G)>

ACIfVG(G − b{ }).
In the same way, (ii) and (iii) can be proved. □

Definition 10. Let G � (M, N) be a CVG.

(i) G is named CEVG, if it has at least one VCEN.
(ii) G is named CRVG, if it has no VCRN.
(iii) G is named NVG, if all nodes of G are VCNN.

Example 6. For the VG G in Example 5, the node a is a
VCEN of G, so G is a CEVG, but G is neither a CRVG nor a
NVG.

Theorem 6. For each pair of numbers (L1, L2), where L1 is a
positive true real number and L2 is a positive false real
number, there always exist VG G � (M, N) so that
CIt

VG(G) � L1 and CIf

VG(G) � L2, |V| � n.

Proof. Suppose tM(a) � 1, ∀a ∈ V, and fM(a) � 0, ∀a ∈ V.
Now, we consider a path in G so that tN(ab) � L1/(n/2) and
fN(ab) � L2/(n/2) for all edges (a, b) ∈ G. Hence, we get

CItVG(G) � 􏽘
a,b∈V

tM(a)tM(b)CONNt
G(a, b) �

n

2
⎛⎝ ⎞⎠

L1
n

2
⎛⎝ ⎞⎠

� L1,

CIfVG(G) � 􏽘
a,b∈V

fM(a)fM(b)CONNf

G(a, b) �

n

2
⎛⎝ ⎞⎠

L2
n

2
⎛⎝ ⎞⎠

� L2.

(22)

□
Definition 11. )e OND or degree of a node c in a VG G is
described as deg(a) � (degt(c), degf(c)), where degt(c) �

􏽐 c≠d
cd∈E

tN(cd) and degf(c) � 􏽐 c≠d
cd∈E

fN(cd). If

deg(c) � (t1, t2), ∀c ∈ V, then G is named (t1, t2)-regular.

Now, we introduce the RI of a VG with examples.

Definition 12. )e RI of a VG G � (M, N) is shown by
RIVG(G) and described as

RIVG(G) � RItVG(G),RIfVG(G)􏼐 􏼑

� 􏽘

i≠j

aiaj∈E

tM ai( 􏼁tM aj􏼐 􏼑degt
ai( 􏼁degt

aj􏼐 􏼑􏼐 􏼑
−1/2

, 􏽘

i≠j

aiaj∈E

fM ai( 􏼁fM aj􏼐 􏼑degf
ai( 􏼁degf

aj􏼐 􏼑􏼐 􏼑
−1/2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(23)

Example 7. Consider the VG G shown in Figure 5. Here,
deg(a) � (0.3, 1.3), deg(b) � (0.6, 1.8), deg(c) � (0.4, 1.5),
deg(d) � (0.4, 1.7), and deg(e) � (0.3, 1.1).
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􏽘

i≠j

vivj∈E

tM vi( 􏼁tM vj􏼐 􏼑degt
vi( 􏼁degt

vj􏼐 􏼑􏼐 􏼑
−1/2

� 16.667 + 20.449 + 28.901 + 10.214

+ 17.699 + 14.450 + 9.624 + 16.667

� 134.671,

(24)

􏽘

i≠j
vivj ∈ E

fM vi( 􏼁fM vj􏼐 􏼑degf
vi( 􏼁degf

vj􏼐 􏼑􏼐 􏼑
−1/2

� 2.669 + 2.532 + 2.746 + 1.756
+ 1.807 + 1.905 + 1.835 + 1.889

� 17.139.

(25)

)erefore, RIVG(G) � (RItVG(G),RIfVG(G)) � (134.671,

17.139).

Theorem 7. Let G � (M, N) be a connected VG and G′ �
(M′, N′) so that V′ � V − cn􏼈 􏼉, cn ∈ V with |V| � n. 6en,
RIt

VG(G)≥RIt
VG(G′) and RIf

VG(G)≥RIf

VG(G′).

Proof. G has n nodes, i.e., V � c1, c2, . . . , cn􏼈 􏼉. )en,
V′ � c1, c2, . . . , cn−1􏼈 􏼉. So, V′ should be a subset of V, so G′ is
a VSG of G. Hence, tM(ci) � tM′(ci), fM(ci) � fM′(ci),
tN(cicj) � tN′(cicj), and fN(cicj) � fN′(cicj), ∀ci ∈ V′ and
∀cicj ∈ E′.

Now, degt(ci) � 􏽐cicj∈EcjtN(cicj) and degf(ci) �

􏽐cicj∈EcjfN(cicj), i.e., deg
t(ci) and degf(ci) are sum of the

true-MVs and false-MVs of the edges incident in ci in G,
respectively. )en, degf(ci)deg

f(cj) is s positive real

number. So, deg′t(ci) � 􏽐cicj∈E′cjtN(cicj) and deg′f

(ci) � 􏽐cicj∈E′cjfN(cicj), i.e., deg′
t
(ci) and deg′

f
(ci) are sum

of the T-MVs and false-MVs of the edges incident in ci in G′,

respectively. )en, deg′f(ci)deg′
f

(cj) is a positive real
number. )us,

tM ci( 􏼁tM cj􏼐 􏼑degt
ci( 􏼁degt

cj􏼐 􏼑􏼐 􏼑
−1/2
≥ 0,

tM′ ci( 􏼁tM′ cj􏼐 􏼑deg′t ci( 􏼁deg′t cj􏼐 􏼑􏼐 􏼑
−1/2
≥ 0,

fM ci( 􏼁fM cj􏼐 􏼑degf
ci( 􏼁degf

cj􏼐 􏼑􏼐 􏼑
−1/2
≥ 0,

fM′ ci( 􏼁fM′ cj􏼐 􏼑deg′f ci( 􏼁deg′f cj􏼐 􏼑􏼒 􏼓
−1/2
≥ 0.

(26)

So,

􏽘

1≤ i≠j≤ n

cicj∈E

tM ci( 􏼁tM cj􏼐 􏼑degt
M ci( 􏼁degt

M cj􏼐 􏼑􏼐 􏼑
−1/2

≥ 􏽘

1≤ i≠j≤ n−1

cicj∈E′

tM′ ci( 􏼁tM′ cj􏼐 􏼑deg′t ci( 􏼁deg′t cj􏼐 􏼑􏼐 􏼑
−1/2

􏽘

1≤ i≠j≤ n

cicj∈E

fM ci( 􏼁fM cj􏼐 􏼑degf
M ci( 􏼁degf

M cj􏼐 􏼑􏼐 􏼑
−1/2

≥ 􏽘

1≤ i≠j≤ n−1

cicj∈E′

fM′ ci( 􏼁fM′ cj􏼐 􏼑deg′f ci( 􏼁deg′f cj􏼐 􏼑􏼒 􏼓
−1/2

.

(27)

)erefore, RIt
VG(G)≥RItVG(G′) and RIfVG(G)≥

RIfVG(G′). □

Example 8. Consider VG G′ � (M′, N′) of Figure 6 and VG
G of Figure 5. Clearly, tM(vi)≥ tM′(vi), fM(vi)≤fM′(vi),
∀vi ∈ V′, and tN(vivj)≥ tN′(vivj), fN(vivj)≤fN′(vivj),
∀vivj ∈ E′. Hence, G′ is a VSG of the VG G.

a (0.1, 0.2)

c (0.2, 0.4)

b (0.2, 0.3)

d (0.1, 0.3)

e (0.3, 0.5)(0.1, 0.5)

(0.1, 0.4)

(0.1, 0.4) (0.
2, 0

.6)

(0.2, 0.5)

(0.1, 0.3)

(0.1, 0.4)

(0.1, 0.6)

Figure 5: VG G.
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RItVG G′( 􏼁 � 20.449 + 20.449 + 33.333 + 12.5 + 20.449 + 20.449

� 127.629,

RIf

VG G′( 􏼁 � 3.140 + 2.532 + 3.414 + 2.067 + 2.247 + 2.788

� 16.188.

(28)

)erefore, RItVG(G)≥RItVG(G′) and RIfVG(G)≥RIfVG(G′).

Remark 2. Let G � (M, N) be a connected VG and G′ �
(M′, N′) so that E′ � E − cicj􏽮 􏽯, cicj ∈ E. )en,
RItVG(G)≥RIt

VG(G′) and RIfVG(G)≥RIfVG(G′).

Proof. Assume G has n nodes, i.e., |V| � n and ci ∈ V. Let
V � c1, c2, . . . , cn􏼈 􏼉. So, V′ � c1, c2, . . . ci−1, ci+1, . . . , cn􏼈 􏼉.
)en, V′ must be a subset of V, and so G′ is a VGS of G. So,
RItVG(G)≥RIt

VG(G′) and RIfVG(G)≥RIfVG(G′). □

Theorem 8. Let G be a complete VG so that M is a constant
function. 6en, RIVG(G) � (n/2]21, n/2]22), where n � |V| and
(]1, ]2) � (tM(ci), fM(ci)), ci ∈ V.

Proof. Since M is constant and tM(ci) � ]1, fM(ci) � ]2,
ci ∈ V, then tM(ci) � ]1, fM(ci) � ]2, ∀ci ∈ V. Since G is a
complete VG, tN(cicj) � min tM(ci), tM(cj)􏽮 􏽯 � ]1 and
fN(cicj) � max fM(ci), fM(cj)􏽮 􏽯 � ]2, ∀cicj ∈ E. Again, G

is complete and |V| � n, and thus there are n(n − 1)/2 nodes
and n(n − 1)/2 edges and each node inG is neighbor to (n − 1)

nodes. )erefore,

degt
ci( 􏼁 � 􏽘

cj

cicj∈E

tN cicj􏼐 􏼑 � ]1]1 . . . ]1 � (n − 1)]1,

degf
ci( 􏼁 � 􏽘

cj

cicj∈E

fN cicj􏼐 􏼑 � ]2]2 . . . ]2 � (n − 1)]2.
(29)

Hence,

RItVG(G) � 􏽘

i≠ j

cicj∈E

tM ci( 􏼁tM cj􏼐 􏼑degt
ci( 􏼁degt

cj􏼐 􏼑􏼐 􏼑
− 1/2

�
n(n − 1)

2
]1]1(n − 1)]1(n − 1)]1( 􏼁

− 1/2
�

n

2]21
,

RIfVG(G) � 􏽘

i≠ j

cicj∈E

fM ci( 􏼁fM cj􏼐 􏼑degf
ci( 􏼁degf

cj􏼐 􏼑􏼐 􏼑
− 1/2

�
n(n − 1)

2
]2]2(n − 1)]2(n − 1)]2( 􏼁

− 1/2
�

n

2]22
.

(30)

)erefore, RIVG(G) � (RItVG(G),RIfVG(G)) � (n/2]21,
n/2]22). □

Example 9. Let G be a VG as shown in Figure 7. Here,
V � a, b, c, d, e{ }, n � |V| � 5, and tM(vi) � 0.3 � ]1,
fM(vi) � 0.5 � ]2, 1≤ i≤ 5. Hence, M is a constant function.

E � ab, ac, ad, ae, bc, bd, be, cd, ce, de{ }, (31)

and tN(vivj) � 0.3, fN(vivj) � 0.5, for all edges vivj ∈ E.
Now, tN(vivj) � 0.3 � min tM(vi), tM(vj)􏽮 􏽯 and fN(vi

a (0.1, 0.2)

c (0.2, 0.4)

b (0.2, 0.3)

d (0.1, 0.3)

(0.1, 0.5)

(0.1, 0.4)

(0.1, 0.4) (0.
2, 0

.6)

(0.1, 0.3)

(0.1, 0.4)

Figure 6: Vague subgraph G′ of the vague graph G of Figure 5.
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vj) � 0.5 � max fM(vi), fM(vj)􏽮 􏽯. So, G is a complete VG.
Using )eorem 8,

RItVG(G) �
n

2]21
�

5
2(0.3)

2 � 27.77,

RIfVG(G) �
n

2]22
�

5
2(0.5)

2 � 10.

(32)

4. Connectivity Index in the Selected Town for
Building Hospital

Today, the treatment and medical services issue sits among
the most important issues for every country. Governments
are always trying to provide the best possible services and
medical facilities for patients. In the past, unfortunately, as a
result of the lack of medical services and the lack of hospitals
and clinics, patients were not transferred to these medical
centers for the required time and so they lost their lives. )is
crisis was because of the governments’ constraints for
revenue and financial problems. So, governments decided to
build hospitals in the cities so that patients could seek
treatment without stress as soon as possible. But deter-
mining the right place to build a hospital is very important

because firstly, it must be built in a place where there is no
traffic and crowds nearby, and secondly, patients living in
neighboring cities can easily access it. )erefore, in this
paper, by using the concept of connectivity index, we try to
determine the most appropriate places to establish a hos-
pital. For this purpose, we consider six cities in China
(Guangdong state), namely, Shaoguan, Qingyuan, Heyuan,
Zhaoqing, Foshan, and Guangzhou, and the attributing
symbols for each city are given in the graph as A, B, C, D, E,
and F, respectively. Location of cities is shown in Figure 8.
Also, distance between cities is shown in Table 2.

In this vague graph, the nodes representing cities and
edges also represent the quality of roads as well as the
amount of traffic of cars during most hours of the day.
Weight of nodes and edges is shown in Tables 3 and 4.

)e vertex B(0.6, 0.3) shows that the city of Qingyuan
has 60% of the necessary facilities and equipment to build a
hospital, of which the necessary manpower is also part of
this equipment. Clearly, it does not have 30% of the
equipments for construction. )e AB edge shows that the
Shaoguan-Qingyuan route has 50% quality and the nec-
essary road and transportation standards (road quality and
traffic signs), and the amount of car traffic on this route is
equal to 50%. For the vague graph G shown in Figure 9, we
have

a (0.3, 0.5)

b (0.3, 0.5)

e (0.3, 0.5)

c (0.3, 0.5)

d (0.3, 0.5)

(0.3, 0.5)

(0.3, 0.5)

(0.3, 0.5)

(0.3, 0.5)

(0.3, 0.5)(0.3, 0.5)

(0.3, 0.5)
(0.3, 0.5)(0

.3,
 0.

5)
(0.3, 0.5)

Figure 7: A VG G.
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Created with paintmaps.com

Guangdong Map

Figure 8: Location of cities.

Table 2: Distance between cities.
Cities Shaoguan-Foshan Foshan-Zhaoqing
Distance 202 km 69 km
Cities Shaoguan-Zhaoqing Shaoguan-Qingyuan
Distance 225 km 134 km
Cities Qingyuan-Heyuan Heyuan-Zhaoqing
Distance 168 km 293 km
Cities Zhaoqing-Guangzhou
Distance 81 km

Table 3: Weight of nodes in G.

G A B C D E F
(tM, fM) (0.5, 0.3) (0.6, 0.2) (0.5, 0.4) (0.3, 0.5) (0.6, 0.3) (0.7, 0.2)

Table 4: Weight of edges in G.

G AE AD AB
(tN, fN) (0.4, 0.5) (0.2, 0.6) (0.5, 0.5)

G ED DF BC
(tN, fN) (0.2, 0.6) (0.3, 0.6) (0.5, 0.4)

G CD
(tN, fN) (0.2, 0.5)

12 Discrete Dynamics in Nature and Society



CONNt
G(A, E) � 0.4, CONNt

G(A, D) � 0.2, CONNt
G(A, F) � 0.2,

CONNt
G(A, B) � 0.5, CONNt

G(A, C) � 0.5, CONNt
G(B, E) � 0.4,

CONNt
G(B, D) � 0.2, CONNt

G(B, C) � 0.5, CONNt
G(B, F) � 0.2,

CONNt
G(C, D) � 0.2, CONNt

G(C, E) � 0.4, CONNt
G(C, F) � 0.2,

CONNt
G(D, E) � 0.2, CONNt

G(D, F) � 0.3, CONNt
G(E, F) � 0.2,

CONNf

G(A, E) � 0.5, CONNf

G(A, D) � 0.5, CONNf

G(A, F) � 0.6,

CONNf

G(A, B) � 0.5, CONNf

G(A, C) � 0.5, CONNf

G(B, E) � 0.5,

CONNf

G(B, D) � 0.5, CONNf

G(B, C) � 0.4, CONNf

G(B, F) � 0.6,

CONNf

G(C, D) � 0.5, CONNf

G(C, E) � 0.5, CONNf

G(C, F) � 0.6,

CONNf

G(D, E) � 0.5, CONNf

G(D, F) � 0.6, CONNf

G(E, F) � 0.6,

CItVG(G) � 0.12 + 0.03 + 0.07 + 0.15 + 0.125 + 0.144 + 0.036 + 0.15 + 0.084 + 0.03 + 0.12 + 0.07 + 0.036 + 0.063 + 0.084

� 1.312,

CIf

VG(G) � 0.045 + 0.075 + 0.036 + 0.03 + 0.06 + 0.03 + 0.05 + 0.032 + 0.024 + 0.1 + 0.06 + 0.048 + 0.075 + 0.06 + 0.036

� 0.761.

ACItVG(G) �
1.312
15

� 0.0874,

ACIfVG(G) �
0.761
15

� 0.0507.

(33)

In the same way, we have

E (0.6, 0.3)

A (0.5, 0.3)

B (0.6, 0.2) C (0.5, 0.4)

D (0.3, 0.5)

F (0.7, 0.2)

(0.4, 0.5) (0.2, 0.6)

(0.5, 0.5)

(0.2, 0.6)

(0.5, 0.4)

(0.2, 0.5)

(0.3, 0.6)

Figure 9: VG G.
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CItVG(G − A{ }) � 1.817, CIfVG(G − A{ }) � 0.515,

CItVG(G − B{ }) � 0.748, CIfVG(G − B{ }) � 0.595,

CItVG(G − C{ }) � 0.817, CIfVG(G − C{ }) � 0.461,

CItVG(G − D{ }) � 1.117, CIfVG(G − D{ }) � 0.401,

CItVG(G − E{ }) � 0.808, CIfVG(G − E{ }) � 0.515,

CItVG(G − F{ }) � 0.941, CIfVG(G − F{ }) � 0.557.

ACItVG(G − A{ }) � 0.1817, ACItVG(G − B{ }) � 0.0748,

ACIt
VG(G − C{ }) � 0.0817, ACItVG(G − D{ }) � 0.1117,

ACItVG(G − E{ }) � 0.0808, ACItVG(G − F{ }) � 0.0941,

ACIfVG(G − A{ }) � 0.0515, ACIfVG(G − B{ }) � 0.0595,

ACIf

VG(G − C{ }) � 0.0461, ACIfVG(G − D{ }) � 0.0401,

ACIfVG(G − E{ }) � 0.0515, ACIfVG(G − F{ }) � 0.0557.

(34)

Hence,

ACItVG(G − B{ })<ACItVG(G) ACIfVG(G − B{ })>ACIfVG(G),

ACItVG(G − D{ })>ACItVG(G) ACIfVG(G − D{ })<ACIf

VG(G),

ACItVG(G − E{ })<ACItVG(G) ACIfVG(G − E{ })>ACIfVG(G).

(35)

Clearly, the vertices B and E are VCRN and the vertex D

is VCEN. If we remove the node D, then the true-CI is
strictly increased and false-CI is strictly decreased. Also, by
deleting vertex D, vertex F is automatically deleted (because
it is completely disconnected).

)erefore, if the government wants to build a hospital in
one of these six cities for the treatment of patients, it should
avoid the cities of Zhaoqing and Guangzhou. Also, the cities
of Qingyuan and Foshan are the best choices for building a
hospital because firstly, they have the most facilities and
human resources for construction, and secondly, the
communication roads between other cities with these two
cities are of better quality and have the least traffic and
congestion compared to other routes.

5. Conclusion

)e vague graphs can amplify flexibility and precision to
model complex real-time problems better than a fuzzy
graph. )ey have several applications in many decision-
making processes among solution choice, weather fore-
casting, prognosis risks in business, and so on, and one of the
most important features of VGs that has many applications
in real problems is the concept of connectivity index.
Connectivity index has many applications in psychology,
medical sciences, social groups, and computer networks.
)erefore, in this paper, we examined connectivity index,
average connectivity index, and Randic index in VGs with

several examples. Likewise, some special types of nodes such
as vague connectivity enhancing vertex, vague connectivity
reducing vertex, and vague connectivity neutral vertex are
presented. Finally, an application of connectivity index in
construction has been introduced. In our future work, we
will define the domination of the VGs in terms of strong
edges and examine their properties. Also, we will study
domination in terms of independent sets, and since many of
the phenomena surrounding us are hybrid, we also discuss
the domination concept on its fuzzy operations.
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