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According to the Global Cancer Statistics 2020 published in the o�cial journal of the American Cancer Society (ACS), colorectal
cancer ranked 4th in incidence and 2nd in mortality, and the 2018 Cancer Registry Report of Taiwan Health Promotion
Administration showed that colorectal cancer ranked 2nd in incidence and 3rd inmortality. With the rapid evolution of the times,
the lifestyles of the people have shifted from what they used to be. In addition to uncontrollable factors such as family genetic
disorders, diet, and bad habits, life stress may lead to an unhealthy body mass index (BMI), which, together with aging, increases
the incidence of colorectal cancer. In this study, the convolutional neural network was used to assess the risk of tumor in the colon
by colonoscopy. �e endoscopic images of the colon, which were classi�ed into three categories of healthy (normal), benign
tumor, and malignant tumor, were adopted as training data. When this method is combined with the patient’s physical data, the
risk cancer can be calculated by the fuzzy algorithm. Based on the result of this study, the accuracy of the tumor pro�le by
colonoscopy, that is, 81.6%, is more precise than that of colorectal cancer tumor analysis studies in the recent literature. �e
proposed method will help physicians in the diagnosis of colorectal cancer and treatment decisions.

1. Introduction

According to Global Cancer Statistics 2021 published in the
o�cial journal of the American Cancer Society (ACS), co-
lorectal cancer is the 4th most common cancer and the 5th
most common mortality, posing a serious threat to the
health of the population [1, 2]. Another 2018 Cancer Registry
Report by Health Promotion Administration reveals that
colorectal cancer ranks 2nd in morbidity, 2nd in mortality,
1st in morbidity for men and 3rd for women, and 3rd in
mortality for men and 4th for women [3].

In recent years, the incidence of colorectal cancer is on
the rise year by year as a result of the changing living pattern,
food culture, sedentary lifestyle, work environment, and
other factors, even with the trend of increasing youthfulness.
With the exclusion of family genetic history, the risk factors
for colorectal cancer are associated with the poor habits of
people’s lives, irregular work habits, physical inactivity, work
strain, lack of dietary control, and aging. It is also noted that
in terms of the risk of colorectal cancer, ranging from age
and genetic to environmental and lifestyle choices, factors
such as obesity, low physical activity, active and passive
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smoking, and high salt and red meat consumption are
correlated to a higher risk of colorectal cancer [4–6]. Re-
garding the impact of age, a recent study demonstrated a
steady yearly increase in the risk of young-onset colorectal
cancer [7].

For early detection of colorectal cancer, carbohydrate
antigen 19-9 (CA 19-9) and carcinoembryonic antigen
(CEA) are commonly used biomarkers [8]. +ere is a strong
correlation between CA 19-9 and CEA levels in colorectal
cancer patients (p � 0.001 andp< 0.0001, respectively),
both of which are important biomarkers in the progression
of colorectal cancer [9]. Persistent smoking is known to alter
the prognostic value of postoperative serum CEA levels in
colorectal cancer patients because smoking can increase
serum CEA levels independent of the disease status [10].

Another recent breakthrough in the diagnosis of colo-
rectal cancer is deep neural network visualization [11–14].
An image analysis method based on deep learning can not
only accurately classify different types of polyps in the whole
slide image but also generate the main areas and features on
slides through the model visualization method. +is visu-
alization method could significantly reduce the cognitive
burden of clinicians [11]. In recent years, the convolutional
neural network (CNN) model has been applied in the rel-
evant medical literature. +e accuracy of most model vali-
dation from previous studies [12–14] related to colorectal
cancer falls between 75.1% and 83.9%. Based on the result of
this study, the accuracy of the tumor profile by colonoscopy,
that is, 81.6%, is more precise than those, 75.7% and 75.1%
respectively, of colorectal cancer tumor analysis studies in
references [12, 13]. It is slightly lower than that, 83.9%, in
reference [14]. However, the source of image acquisition and
research method are different. +e cost is relatively high and
is seldom employed. +e proximity and complexity of the
organs in the human body, the image resolution, size, and
angle can affect the accuracy of identifying the targeted
tissues and lesions using the training model.

+e biggest difference between CNN and multilayer
perceptron (MLP) lies in the additional convolution layer
and pooling layer. +ese two layers enable CNN to have the
capability in extracting details from image or speech fea-
tures, instead of simply extracting data for calculation like
other neural networks [15, 16].

+e fuzzy theory was introduced by Lotfi [17]. +en,
fuzzy logic of the concept of linguistic variables is proposed
in reference [18]. Nowadays, fuzzy systems are applied in
different fields, such as household appliances, industrial
system control, and image recognition [19]. +e research
also pointed out that the application of professional fuzzy
rules could help in detecting colorectal cancer and help
doctors to easily identify diseases [20].

In this study, the convolutional neural network (CNN)
was used for the training and learning of feature extraction
from colonoscopy images. According to the health level, the
training data were classified into healthiness, benign tumors,
and malignant tumors. Colonoscopy images in the three
categories were randomly selected as test data, and designated
case images were used to assess the similarity of tumor profiles
between the designated image and the image from test data.

+e practical results of this study are summarized in the
following four points:

(1) By analyzing the polyp profile in colonoscopy im-
ages, the results can be used as a reference for
physicians to diagnose the symptoms as well as in-
crease the detection efficiency and reduce the mis-
diagnosis rate.

(2) +e patient’s physical data are combined with the
risk of tumor for assessment in the fuzzy system,
which not only allows the patient to understand his
current physical condition through data analysis but
also enables the physician to make corresponding
treatment decisions for the patient through the as-
sessment results.

(3) After discussion on the results with clinicians, the
accuracy of the raw data and assessment results are
consistent with clinical analysis.

(4) +e accuracy of the results of this study reaches
81.6%. Compared with the accuracy of colorectal
cancer tumor analysis and research in the literature,
the accuracy is better [12, 13], and the accuracy of the
original data and evaluation results after discussion
with clinicians is in line with clinical analysis.

2. Methodology

+is study is based on the case data of colorectal cancer in a
medical center in southern Taiwan. +e colonoscopy images
are trained and learned by convolutional neural networks.
After completing the learning verification, the colonoscopy
images of the designated patients will be tested and iden-
tified. Finally, the severity score and the patient-related
information are fuzzy analyzed through a fuzzy algorithm,
and the output is the risk of the patient’s colorectal cancer, so
that the doctor can diagnose colorectal cancer-related dis-
eases Time aids.

3. Methods

Between January 2016 and December 2020, the medical
records of the first 500 adults (i.e., age >18 years) of both
genders undergoing first-time colonoscopy at a single re-
ferral center (i.e., Kaohsiung Chang Gung Memorial Hos-
pital) regardless of indications were retrospectively
reviewed. Exclusion criteria were as follows: (1) patients
receiving previous colonoscopic examinations at other
medical institutes, (2) those with normal colonoscopic
findings, (3) those with a known history of benign or ma-
lignant colorectal diseases including familial polyposis and
inflammatory bowel disease (i.e., Crohn’s disease and ul-
cerative colitis), (4) those having received colorectal pro-
cedures (e.g., polypectomy and colorectal resection), (5)
those without pathological analysis of colorectal specimens,
and (6) those without complete information for the present
study (e.g., body mass index and circulating CEA levels).
Circulating CEA levels were determined in participants of
annual physical checkups and those with positive stool
occult blood test scheduled for colonoscopy.

2 Discrete Dynamics in Nature and Society



4. Results

Of the 992 adult patients receiving colonoscopic examina-
tion within the study period, the medical records of the �rst
500 eligible for the current study were reviewed. �e patient
population comprised 275 males (55%) and 225 females
(45%) with a mean age of 62.1± 11.8 (range, 31–85), a mean
body mass index of 23.5± 3.7 (range, 17.5–31.6), and a mean
circulating level of CEA 23.5± 280.6 (range, 0.5–1212.0).

In our routine practice, we take 12 images from a patient
during a colonoscopic examination. �erefore, we had a
total of 5950 images from 500 patients. All images were fed
into an imaging analyzing software (Spyder 4.2.0) that di-
vided the images into three categories, namely, normal
image (Figure 1), benign (Figure 2), and malignant (Fig-
ure 3) tumors. �ere was no human handling or annotation
of the images in the analytic process.

4.1. Research Environment. �e colonoscopy images of 500
cases were divided into a training set, validation set, and test
set. Among them, the colonoscopy images of 10 cases in the
total data are taken as the test set, the rest is taken as the
training set, and the images from the training set of 10% are
used as the validation set of the training model for cross
validation. Table 1 lists the environment and hardware
con�guration of this research.

4.2. System Software Design and Composition. Two kinds of
software are used in the development of the system, one is

Spyder, which is based on the development environment
under the Python language. �e open-source cross-platform
scienti�c computing integrated development environment
(IDE) of the Python language provides advanced code
editing, interactive testing and debugging, computational
science, data processing, and predictive analysis and sup-
ports multiple programming languages and operating sys-
tems. �e second is Matlab, which is an interactive
development environment based on algorithm develop-
ment, data analysis, and numerical calculation.

4.3. Experimental Steps

(1) Obtain the image data of the colonoscopy through a
medical center in the south, and search for the body-
related data of the case based on the image data.

(2) Keep the required data, delete the unnecessary data
such as blurred images, overexposed images, and
unrecognizable shooting angles during the colo-
noscopy, and classify them into healthy (normal),
benign, and malignant according to the type and
appearance characteristics of polyps.

(3) From the three types of image data, after the training
set and the test set are separated, the convolutional
neural network is used to learn and train them, and
the parameter values are adjusted to make the ver-
i�cation accuracy and loss value reach the expected
value. Set goals.

Healthy.1 Healthy.2 Healthy.3 Healthy.4 Healthy.5 Healthy.6 Healthy.7 Healthy.8

Healthy.9 Healthy.10 Healthy.11 Healthy.12 Healthy.13 Healthy.14 Healthy.15 Healthy.16

Healthy.17 Healthy.18 Healthy.19 Healthy.20 Healthy.21 Healthy.22 Healthy.23 Healthy.24

Healthy.25 Healthy.26 Healthy.27 Healthy.28 Healthy.29 Healthy.30 Healthy.31 Healthy.32

Healthy.33 Healthy.34 Healthy.35 Healthy.36 Healthy.37 Healthy.38 Healthy.39 Healthy.40

Healthy.41 Healthy.42 Healthy.43 Healthy.44 Healthy.45 Healthy.46 Healthy.47 Healthy.48

Figure 1: Healthy (normal).
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(4) After completing the learning and training, perform
the result veri�cation to check the corresponding
similarity evaluation of healthy (normal), benign,
and malignant in the test images. �is value is also
used as the severity percentage in the fuzzy input,
which is called the tumor risk.

(5) Finally, input the age, BMI value, tumor risk, and
carcinoembryonic antigen index in the body data of
the corresponding case into the fuzzy algorithm to
evaluate the risk of cancer, and display the result.

4.4. Data Preprocessing. In the process of colonoscopy, the
large intestine will be a©ected by factors such as the width of
the intestine, bending of the intestine, the number of folds in
the intestinal wall, the position and size of polyps, the
shooting angle of the lens and whether it is accurately fo-
cused, and the overexposure or insu�cient light source. �e
output image quality of the mirror inspection, coupled with
the limited time of the inspection process, makes it inevitable
that there will be poor quality and di�culty to identify image
data in the screening results. �erefore, after �ltering them,
the di�cult-to-identify or poor-quality images are deleted to
improve the accuracy of the training model.

Since the human intestine is very long and the a©ected
part only exists in a certain part of the general intestine, the
results of colonoscopy screening may include normal images
(labeled as “healthy”) as well as those of polyps and ma-
lignant tumors. �e colonoscopy images of these 500

patients are classi�ed into three categories: “healthy” (Fig-
ure 1), “benign (Figure 2),” and “malignant” (Figure 3). �is
classi�cation is only based on the appearance of polyps as a
preliminary assessment, and the �nal judgment of the tumor
pro�le must be approved by a professional physician.
Screening and diagnosis are performed.

4.5. Convolutional Neural Network Model Architecture and
Parameter Settings. �e neural network model used in this
research is SmallerVGGNet, which is the simpli�ed CNN
model architecture of VGGNet [21], and the colonoscopy
data of 500 cases were classi�ed into healthy (normal),
benign, and malignant categories. In order to avoid over-
�tting of CNN during training, the database was divided into
a training set and a test set without duplication, and 5%–10%
of the images in the training set were taken as the validation
set, which was repeatable. �e purpose was to observe the
validation accuracy of the model after training and select the
training model with the highest validation accuracy as the
CNN model in this study for tumor risk assessment.

�e CNN architecture of this study is based on the
SmallerVGGNet neural network as a multiconvolutional
deep learning classi�er, which consists of 7 convolutional
layers and 4 pooling layers with MaxPooling added after
convolutional layers 1, 3, 5, and 7, respectively. �e
remaining model parameters are presented in Table 2, with
the activation function being ReLU in the CNN training
model, sigmoid in the multitag classi�er, adam in the

Benign.1 Benign.2 Benign.3 Benign.4 Benign.5 Benign.6 Benign.7 Benign.8

Benign.9 Benign.10 Benign.11 Benign.12 Benign.13 Benign.14 Benign.15 Benign.16

Benign.17 Benign.18 Benign.19 Benign.20 Benign.21 Benign.22 Benign.23 Benign.24

Benign.25 Benign.26 Benign.27 Benign.28 Benign.29 Benign.30 Benign.31 Benign.32

Benign.33 Benign.34 Benign.35 Benign.36 Benign .37 Benign.38 Benign.39 Benign.40

Benign.41 Benign.42 Benign.43 Benign.44 Benign.45 Benign.46 Benign.47 Benign.48

Figure 2: Benign tumor.
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optimizer, stride of 1, dropout of 25%, the initial learning
rate of 1e-3, batch size of 32, training iteration epoch of 200,
and hidden layer neurons of 1024.

4.6. Fuzzy System Design. �e tumor risk estimated by the
CNN training model can be combined with the patient’s
body-related data to derive the risk of colorectal cancer.
�erefore, a fuzzy system was designed by establishing se-
mantic variables of input and output, de�ning their mem-
bership functions, and formulating fuzzy rules, fuzzy
inference, and defuzzi�cation. As such, a fuzzy system for
the risk of cancer was determined.

�e tumor risk derived from the CNN model was
combined with four input variables, including the corre-
sponding age of the patients, BMI, and carcinoembryonic
antigen. After fuzzi�cation of the triangular and trapezoidal

membership functions, the maximum-minimum (max-min)
synthesis operator was used for the computation of the
membership of the fuzzy set by the center-of-gravity method
and the output was the risk of colorectal cancer.

4.6.1. Design of Fuzzy Parameters. �e fuzzy algorithm was
applied to assess the risk of colorectal cancer, as shown in
Figure 4, �e tumor risk derived from the CNN model was
combined with four input variables, including the corre-
sponding age of patients, BMI, tumor risk, and

Malignant.1 Malignant.2 Malignant.3 Malignant.4 Malignant.5 Malignant.6 Malignant.7 Malignant.8

Malignant.9 Malignant.10 Malignant.11 Malignant.12 Malignant.13 Malignant.14 Malignant.15 Malignant.16

Malignant.17 Malignant.18 Malignant.19 Malignant.20 Malignant.21 Malignant.22 Malignant.23 Malignant.24

Malignant.25 Malignant.26 Malignant.27 Malignant.28 Malignant.29 Malignant.30 Malignant.31 Malignant.32

Malignant.33 Malignant.34 Malignant.35 Malignant.36 Malignant .37 Malignant.38 Malignant.39 Malignant.40

Malignant.41 Malignant.42 Malignant.43 Malignant.44 Malignant.45 Malignant.46 Malignant.47 Malignant.48

Figure 3: Malignant tumor.

Table 1: Experimental setup.

Test system
Operating system Windows 10 Professional (x64)
CPU Intel Core i5-4570 (4C4T@3.2GHz)
GPU NVIDIA GeForce GT-710 2GB
Memory 16GB DDR3 1333MHz

Development environment Tensor¯ow-Keras (Spyder 4.2.0)
Matlab R2020a

Program language Python 3.6
Training set/test set 5950 piece/225 piece

Table 2: CNN model parameter settings.

Various parameters

Layers 7 layers of convolutional layer and 4
layers of pooling layer

Convolutional kernel 3× 3
MaxPooling 2× 2

Activation function Multilabel classi�cation: sigmoid neural
network training model: ReLU

Optimizer Adam
Stride 1
Dropout 25%
Learning rate 0.001
Batch size 32
Epoch 200
Number of hidden layer
neurons 1024

Discrete Dynamics in Nature and Society 5



carcinoembryonic antigen. After fuzzi�cation of the trian-
gular and trapezoidal membership functions, the maximum-
minimum (max-min) synthesis operator was used for the

computation of the membership of the fuzzy set by the
center-of-gravity method and the output was the risk of
colorectal cancer.

Triangular’
and

Trapezoidal
Membership

Function

Mamdani Center of
Gravity

Risk
Estimation of

Colorectal
Cancer

Input Parameters

Fuzzification Fuzzy Inference Defuzzification Output result
AGE

BMI

CEA

Tumor Risk

Figure 4: Schematic diagram of fuzzy evaluation.

Risk Indicator Years

Very low risk group (VL) 0~20

Low risk group (L) 15~40

Low-medium risk group (LM) 30~50

Middle-risk group (M) 40~60

High-Medium risk group (HM) 50~70

High risk group (H) 60~85

Very High RiskGroup (VH) 80

VL L LM M HM H VH
1

0.5

0
0 10 20 30 40 50 60 70 80 90 100

input variable “Age”

Figure 5: Input attribution function design-age risk index.

Health Indicators BMI

Underweight 0~18.5

Normal 16~25

Overweight 22~29

1 Degree Fat 25~32

2 Degree Fat 29~40

3 Degree Fat 35

1

0.5

0
0 5 10 15 20 25 30 35 40 45 50

input variable “BMI”

Figure 6: Input attribution function body mass index, BMI.

Reference Indicator CEA (ng/mL)

Normal 0~3.5

Smoker 1.5~7

Abnormal 5 above

Normal Smoker Abnormal
1

0.5

0
0 1 2 3 4 5 6 7 8 9 10

input variable “Carcinoembryonic_Antigen”

Figure 7: Input attribution function carcinoembryonic antigen, CEA.
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4.6.2. Establishment of Semantic Variables and Membership
Functions. �e fuzzy system has four input parameters and
one output. Input parameters are age in Figure 5, BMI in
Figure 6, carcinoembryonic antigen in Figure 7, and tumor
risk in Figure 8, respectively, and the output is risk of co-
lorectal cancer in Figure 9 �e terms and the membership
functions of each parameter are explained below.

Once the terms were established, the membership
functions were de�ned based on the data from the pieces of
literature. �e graphs of membership function of this study
were based on the triangular (Trimf) and trapezoidal
(Trapmf) membership functions referenced to obtain better
results and to facilitate the observation of the data in this
study, while the range of age membership was determined

Severity Rating Risk of Tumor (%)

Healthy(Normal) 0~40

Benign 25~75

Malignant 55~100

Healthy (Normal) Benign Malignant
1

0.5

0
0 10 20 30 40 50 60 70 80 90 100

input variable “Probability_of_Tumor”

Figure 8: Input attribution function risk of tumor.

Risk Iindicator
Risk of 

Tumor (%)

Low-risk group(LR) 0<×≦20

Low-to-medium risk(LM) 20<×≦40

Medium risk group(MR) 40<×≦60

High-medium risk 
group(HM) 60<×≦80

High-risk group(HR) ×>80

LR LM MR HM HR
1

0.5

0
0 10 20 30 40 50 60 70 80 90 100

output variable “Probability_of_Cancer”

Figure 9: Risk of cancer.

Table 3: Risk of tumor. (a) Healthy: age/BMI; (b) age/CEA; (c) CEA/BMI.

(a) Healthy: age/BMI
BMI age (years) 0–20 15–40 30–50 40–60 50–70 60–85 Over 80
Underweight Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Normal weight Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Overweight Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Severe obesity Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Morbid obesity Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Super obesity Low risk Low risk Low risk Low risk Low risk Low risk Low risk

(b) Healthy: age/CEA
CEA age (years) 0–20 15–40 30–50 40–60 50–70 60–85 Over 80
Normal Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Smoker Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Abnormal Low risk Low risk Low risk Low risk Low risk Low risk Low risk

(c) Healthy: CEA/BMI
BMI age Normal Smoker Abnormal
Underweight Low risk Low risk Low risk
Normal weight Low risk Low risk Low risk
Overweight Low risk Low risk Low risk
Severe obesity Low risk Low risk Low risk
Morbid obesity Low risk Low risk Low risk
Super obesity Low risk Low risk Low risk

Discrete Dynamics in Nature and Society 7
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from the statistics of reference [11], and BMI and CEA
obtained from the information from the Ministry of Health
and Welfare and major hospitals.

4.6.3. Establish Fuzzy Rule Base. After evaluating the polyp
profile of colorectal endoscopy based on the CNN network
model, combining the relevant risk factor parameters and
the clinical experience of professional physicians, the cor-
responding results can be summarized, which is also used as
a reference for the design of the fuzzy rule library. In the rule
table of the fuzzy system in this study, there are 7 semantic
variables in “age,” 6 semantic variables in “BMI value,” 3
semantic variables in “carcinoembryonic antigen index,”
and 3 in “tumor risk.” +ere are semantic variables, so there
are a total of 378 rules. Tables 3–5 list the comparison of the
fuzzy rule base of healthy, benign, and malignant.

4.6.4. Fuzzy Inference and Defuzzification. In the fuzzy
system of this study, the method of the center of gravity was
utilized for the computation of the defuzzification. With the
center of gravity method, the tumor risk and the three risk
factors can be derived to assess the risk of cancer. Finally, the
probabilistic assessment of the risk level allows the physician
to know the current physical data of the patient to assist the
physician in the diagnosis and treatment process, thus in-
creasing the efficiency of diagnosis and reducing the rate of
misdiagnosis. In the case of a patient aged 75, with a BMI of
25.5, a CEA of 10.55, and a tumor risk of 60.5%, the risk of
cancer is calculated to be 75.3%, which corresponds to a risk
assessment of the “moderate-to-high risk group.”

5. Results

5.1. 8e Proposed CNN Training Model. Following the
consummation of design of the neural network architecture,

the accuracy and loss function of the model were observed
by varying the number of iterations and the ratio of images
in the training and validation sets.+e accuracy ranged from
0.6 to 0.65 for 50 and 75 iterations, indicating a poor training
effect. Figure 10 shows the training results of the model with
100, 150, 175, and 200 iterations, and it can be therefore
observed that when the ratio of the training set to the
validation set was 9:1 for 200 iterations, the accuracy rate
reached 81.6%, which was the model with the optimal
training effect after multiple adjustments. +us, it was
chosen as the CNN training model for this study.

5.2. Analysis of the Risk of Tumor Detection by Colonoscopy.
After the CNN training model was selected, the image data
from the test set were classified and identified by a multi-
convolutional classification Keras model. +e results of the
colonoscopy images in Figure 11 illustrate the percentage of
the images in each of the three categories of healthy, benign,
and malignant after assessment by the classification model,
and the assessed probabilities were benign, 87.88%; malig-
nant, 24.19%; healthy, 0.02%. Since the three categories of
healthy, benign, and malignant were analyzed separately in
the assessment process, the results were not 100% for the
three categories combined; instead, the percentages of the
three categories were assessed separately for each image.
From the above assessment results, the risk of the polyp
profile being a benign tumor was 87.88%.

5.3. Assessment of the Risk of Colorectal Cancer. +ere were
four input parameters of the fuzzy system in this study,
among which tumor risk was estimated by the CNN model,
and the remaining age, BMI, and CEA indexes were the
physical data of the patient corresponding to the colonos-
copy images. +e risk of colorectal cancer was measured by
the fuzzy system, as shown in Figure 12 the result of

Table 5: Risk of tumor. (a) Malignant: age/BMI; (b) age/CEA; (c) CEA/BMI.

(a) Malignant: age/BMI
BMI age (years) 0–20 15–40 30–50 40–60 50–70 60–85 Over 80
Underweight High risk High risk High risk High risk High risk High risk High risk
Normal weight High risk High risk High risk High risk High risk High risk High risk
Overweight High risk High risk High risk High risk High risk High risk High risk
Severe obesity High risk High risk High risk High risk High risk High risk High risk
Morbid obesity High risk High risk High risk High risk High risk High risk High risk
Super obesity High risk High risk High risk High risk High risk High risk High risk

(b) Malignant: age/CEA
CEA age (years) 0–20 15–40 30–50 40–60 50–70 60–85 Over 80
Normal High risk High risk High risk High risk High risk High risk High risk
Smoker High risk High risk High risk High risk High risk High risk High risk
Abnormal High risk High risk High risk High risk High risk High risk High risk

(c) Malignant: CEA/BMI
BMI age Normal Smoker Abnormal
Underweight High risk High risk High risk
Normal weight High risk High risk High risk
Overweight High risk High risk High risk
Severe obesity High risk High risk High risk
Morbid obesity High risk High risk High risk
Super obesity High risk High risk High risk

Discrete Dynamics in Nature and Society 9
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Figure 10: Epochs and validation accuracy di©erence comparison. (a) Epochs: 100, validation accuracy: 0.7424. (b) Epochs: 150, validation
accuracy: 0.7918. (c) Epochs: 150, validation accuracy: 0.8108. (d) Epochs: 175, validation accuracy: 0.7555. (e) Epochs: 200, validation
accuracy: 0.8027. (f ) Epochs: 200, validation accuracy: 0.8161.

Figure 11: Tumor risk analysis result: the risk of benign tumor is
87.88%.

Figure 12: Tumor risk assessment result: the risk of benign tumor
is 98.84%.
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colonoscopy image assessment was as follows: the risk of
benign tumor is 98.84% and is 65.23% after the conversion of
severity level, while the age of the patient was 44 years old,
with a BMI of 31.6 and a CEA index of 2.01, and the risk of
colorectal cancer was 60.6% after the assessment by the fuzzy
system.

6. Discussion

+e results of this study are intended for diagnostic pur-
poses, not as a substitute for a physician’s decision, thus
there is no definite accuracy rate. Apart from discussing the
results of the analysis of different tumor probabilities and
physical conditions, the cases are also observed to see
whether the accuracy rates are clinically relevant in various
situations.

Case 1. Age� 56, BMI� 20.1, CEA� 5.15, PoT� 90.71%,
and the fuzzy system assesses the risk of cancer as 91.7%,
which corresponds to the interval of high-risk group. +e
risk factors in this case are all within normal values except
for the age risk, which indicates that although this study
adopts relatively stable risk factors as the experimental data,
all risk factors can only function to the extent of increasing
or decreasing the risk, and the actual physical condition has
to be properly assessed by screening.

Case 2. Age� 61, BMI� 26.8, CEA� 1.09, PoT� 64.05%,
and the fuzzy system assesses the risk of cancer as 60.2%,
which corresponds to the interval of medium-high risk
group. +e possibility of cancer in this case is subject to
assessment by the physician.

Case 3. Age� 47, BMI� 24.9, CEA� 434.78, PoT� 25.7%,
and the fuzzy system assesses the risk of cancer as 10.1%,
which corresponds to the interval of low-risk group. +is
case shows an unusually high CEA. Although CEA is only a
reference value for risk factors, neither a high value means
cancer, nor a low value means no cancer. As the human
intestine is very long and the CEA in this case is significantly
elevated above the abnormal range, this phenomenon
suggests that the lesion may be located elsewhere in the
intestine.

Taking into account the promising association between
the imaging outcomes and the results of pathological ana-
lyses, the current study highlighted a time-efficient and
noninvasive approach to the diagnosis of potential colorectal
malignancies. +e imaging tool may provide clinical guid-
ance for clinicians to determine whether to proceed with
high-risk procedures (e.g., polypectomy) or adopt a more
conservative strategy, particularly in patients at high risk of
complication (e.g., coagulopathy or impending colon per-
foration). Another advantage is the lack of requirement for
specific software for operation. Nevertheless, the current
study has its limitations. First, despite the involvement of up
to 500 patients in the current study, the sample size is still
relatively small to consolidate our findings. Second, although
we included patient factors including age, CEA, and body
mass index in our analysis, other risk factors for colorectal

cancers such as dietary habits and family history were not
taken into account. Further large-scale studies are warranted
to validate the clinical application of the present imaging
approach. Finally, the lack of real-time feedback is another
limitation. Nevertheless, analyses of all images from a single
patient can be completed within five minutes. In routine
practice, such a short time could allow a clinician to decide
the appropriate colonoscopic management strategy (i.e.,
invasive vs. conservative) based on the results of analysis
when the patient is still under anesthesia or sedation.

+e lack of real-time feedback is another limitation.
Nevertheless, analyses of all images from a single patient can
be completed within five minutes. In routine practice, such a
short time could allow a clinician to decide the appropriate
colonoscopic management strategy (i.e., invasive vs. con-
servative) based on the results of analysis when the patient is
still under anesthesia or sedation.

Essentially the fuzzy rules based on the way-wise phy-
sicians’ design and a large amount of learning information
will reduce, but not completely avoid, the misdiagnosis rate.

7. Conclusion

In this study, a CNN training model is employed to analyze
the assessment of tumor risk of healthy, benign, and ma-
lignant on colonoscopy images, and then the four param-
eters of tumor risk, age, BMI, and CEA are utilized to assess
the risk of colorectal cancer by fuzzy algorithm, which assists
physicians to effectively diagnose patients’ symptoms
through their current physical condition and data, thus
reducing the misdiagnosis rate.

However, from the analysis and discussion of the ex-
perimental results, it is evident that despite the high priority
of assessed tumor risk in the fuzzy system, as colonoscopy is
the most direct way to screen for colorectal cancer, the
consideration of risk factors has a certain degree of reference
value for diagnostic signs, clinical analysis, postoperative
follow-up, and prevention, in addition to the current
physical condition.

Among the many colorectal cancer screening methods,
colonoscopy is currently the most important and direct
screening method. Compared with other methods, this
method can directly observe the general situation of all
tumors in the intestine. Compared with medical image
computing together with MICCAI, CVC Colon DB, and
ISIT-UMR, the Association for Computer-Aided Inter-
vention used the image sequence data in the medical dataset
as the training model of the deep convolutional neural
network (DCNN) and trained two sets of settings Set-1 and
DCNN. +e accuracy rates of Set-2 are 75.71% and 79.78%,
respectively [12]; based on computer-aided diagnosis
(CAD), combined with convolutional neural network
(CNN), through deep learning model after training, the
polyp status analyzed by CAD in colonoscopy was used for
verification test with CNN, and the accuracy rate of the
research results was 75.1% [13].

+e proximity and complexity of the organs in the
human body, the image resolution, size, and angle can affect
the accuracy of identifying the targeted tissues and lesions
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using the training model. +e biggest difference between
CNN and multilayer perceptron (MLP) lies in the additional
convolution layer and pooling layer. According to the
Cancer Registration Annual Report of the National Health
Administration of the Ministry of Health and Welfare of
Taiwan, 17,302 people were initially diagnosed with colo-
rectal cancer in 2019, of which 11,031 (63.8%) were colon
cancer, and 6,271 (36.2%) were rectal, sigmoid junction, and
anus [3]. Future research will be directed towards designing
CNN network model to observe the difference in the di-
agnostic accuracy of colorectal cancer in different parts.

Data Availability

Access to data is restricted and the data are not freely
available. Acceptable justifications for restricting access may
include legal and ethical concerns, such as third-party rights,
patient privacy, and commercial confidentiality.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is research work was partly supported by the Ministry of
Science and Technology, ROC, Grant no. MOST 110-2221-
E-992-093.

References

[1] S. Hyuna, F. Jacques, L. Rebecca et al., “Global cancer statistics
2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries,” Ca - a Cancer
Journal for Clinicians, vol. 70, pp. 145–164, 2020.

[2] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,
2017,” CA: A Cancer Journal for Clinicians, vol. 67, no. 1,
pp. 7–30, 2017.

[3] Cancer Registry Annual Report 2018, pp. 1–5, Taiwan health
promotion administration Ministry of health and Welfare,
Taipei, Taiwan, 2020.

[4] L. Anna, R. Grzegorz, L. Tomasz, S. G. Aleksandra, and
R. Sławomir, “Risk factors for the diagnosis of colorectal
cancer,” Research Square, vol. 29, pp. 1–15.

[5] A. H. Fatima and P. B. Robin, “Colorectal cancer epidemi-
ology: incidence, mortality, survival, and risk factors,” Clinics
in Colon and Rectal Surgery, vol. 22, pp. 191–197, 2009.

[6] C. C. Kuan, C. L. Ko, H. C. Hong, C. C. Kung, L.W. Kuen, and
C. S. Ling, “Path analysis of the impact of obesity on post-
operative outcomes in colorectal cancer patients: a pop-
ulation-based study,” Journal of Clinical Medicine, vol. 10,
pp. 1–11, 2021.

[7] H. Alyssa, C. S. Eric, M. L. Jonathan et al., “Trends in the
incidence of young-onset colorectal cancer with a focus on
years approaching screening age: a population-based longi-
tudinal study,” JNCI J Natl Cancer Inst, vol. 113, pp. 863–868,
2021.

[8] A. Subki, A. ButtNS, and A. A. Alkahtani, “CEA and CA19-9
levels and KRAS mutation status as biomarkers for colorectal
cancer,” Clinical Oncology, vol. 6, pp. 1–8, 2021.

[9] L. Leilani, S. Silvia, W. Mathias, H. B. Doris, K. Marko, and
L. Johannes, “Diagnostic and prognostic value of CEA and
CA19-9 in colorectal cancer,” Diseases, pp. 1–12, 2021.

[10] C. S. Huang, C. Y. Chen, L. K. Huang, W. S. Wang, and
S. H. Yang, “Prognostic value of postoperative serum carci-
noembryonic antigen levels in colorectal cancer patients who
smoke,” PLoS One, vol. 6, no. 5, pp. 1–14, 2020.

[11] K. Bruno, M. O. Andrea, P. M. Allen, M. N. Catherine,
A. S. Matthew, and T. Lorenzo, “Looking under the hood:
deep neural network visualization to interpret whole-slide
image analysis outcomes for colorectal polyps,” in Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern
RecognitionWorkshops, Honolulu, HI, USA, July 2017.

[12] P. Krushi, L. Kaidong, T. Ke et al., “A comparative study on
polyp classification using convolutional neural networks,”
PLoS One, vol. 7, no. 30, pp. 1–16, 2020.

[13] K. Yoriaki, H. Hisashi, W. Tomohiro et al., “Computer-aided
diagnosis based on convolutional neural network system for
colorectal polyp classification: preliminary experience,” On-
cology, vol. 93, pp. 30–34, 2017.

[14] Y. Atsuo, N. Ryota, O. Keita, A. Tomonori, and K. Kazuhiko,
“Automatic detection of colorectal neoplasia in wireless colon
capsule endoscopic images using a deep convolutional neural
network,” Endoscopy, vol. 53, pp. 832–836, 2021.

[15] W. Liuli, Z. M. Liu, and Z. T. Huang, “Deep convolution
network for direction of arrival estimation with sparse prior,”
IEEE Signal Processing Letters, vol. 26, pp. 1688–1692, 2019.

[16] D. D. Pukale, S. G. Bhirud, and V. D. Katkar, “Content based
image retrieval using deep convolution eural network,” IEEE
Xplore, pp. 1–5, 2017.

[17] A. Z. Lotfi, “Fuzzy sets,” Information and Control, vol. 8,
pp. 338–353, 1965.

[18] A. Z. Lotfi, “Outline of a new approach to the analysis of
complex systems and decision processes,” Man and Cyber-
netics, vol. 3, pp. 28–44, 1973.

[19] S. K. Halgamuge and M. Glesner, “Neural networks in de-
signing fuzzy systems for real world applications,” Fuzzy Sets
and Systems, vol. 65, no. 1, pp. 1–12, 1994.

[20] C. Tanjia, “Fuzzy logic based expert system for detecting
colorectal cancer,” International Research Journal of Engi-
neering and Technology, vol. 05, pp. 389–393, 2018.

[21] S. Karen and Z. Andrew, “Very deep comvolutional networks
for large-scale image recognition,” in Proceedings of the
Conference Paper at International Conference on Learning
Representations (ICLR), San Diego, CA, USA, May 2015.

12 Discrete Dynamics in Nature and Society


