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)is paper mainly studies the bifurcation and single traveling wave solutions of the variable-coefficient Davey–Stewartson system.
By employing the traveling wave transformation, the variable-coefficient Davey–Stewartson system is reduced to two-dimensional
nonlinear ordinary differential equations. On the one hand, we use the bifurcation theory of planar dynamical systems to draw the
phase diagram of the variable-coefficient Davey–Stewartson system. On the other hand, we use the polynomial complete
discriminant method to obtain the exact traveling wave solution of the variable-coefficient Davey–Stewartson system.

1. Introduction

Partial differential equations (PDEs) play a major role in the
fields of plasma, quantummechanics, and engineering [1]. In the
study of PDEs, the most important thing is to analyze the
dynamic behavior and find the exact traveling wave solution. In
recent years, the study of exact traveling wave solutions of
nonlinear PDEs with the variable coefficients has always been
the focus of mathematicians and physicists, and many experts
and scholars [2, 3] have proposed many methods to find PDEs
with the variable coefficients, such as variable-coefficient ex-
tended mapping method [4], Hirota’s bilinear method [5], Lax
integrability [6], and dynamical system approach [7, 8].

One of the most important PDEs is the variable-coef-
ficient Davey–Stewartson system. In this paper, we consider
the variable-coefficient Davey–Stewartson system [9, 10]:
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where u � u(t, x, y) is the complex wave envelope,
v � v(t, x, y) is the real forcing function, a1(t) and a2(t) are
real functions with respect to time t, which stand for group
velocity dispersion terms, b1(t) and b2(t) represent the
quadratic nonlinearity and cubic nonlinear coefficient term,
respectively, and s1 and s2 are constants. When the coeffi-
cients in equation (1) are constant, equation (1) is called the
Davey–Stewartson system [11–15]. It is a very important
nonlinear Schrödinger equation, which is usually used to
describe the nonlinear wave packet of finite depth.

In [10], Wei and her collaborators investigated equation
(1) by the Lie group method and obtained the periodic
solutions and elliptic function solutions. In [9], El-Shiekh
and Gaballah obtained the dark soliton solutions and bright
soliton solutions of equation (1) by the modified sine-
Gordon equation method. Although some exact solutions of
equation (1) have been obtained in references [9, 10], the
analysis of the dynamic behavior and the classification of
traveling wave solutions of this kind of equation have not
been reported. )erefore, in this paper, we will further study
the above two problems.

)e structure of this paper is as follows. In Section 2, we
use the bifurcation theory of planar dynamical systems to
draw the phase diagram of the variable-coefficient Davey–
Stewartson system. In Section 3, we construct the
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classification of all single traveling wave solutions of the
variable-coefficient Davey–Stewartson system by the com-
plete discrimination system. In Section 4, we give a
summary.

2. Bifurcation Analysis of System (1)

Consider the traveling wave transformation as follows:

u(t, x, y) � U(ξ)e
iη

,

v(t, x, y) � V(ξ),

ξ � μ1x + μ2y − λ(t),

η � k1x + k2y − θ(t),

(2)

where μ1, μ2, k1, and k2 are constants and λ(t) and θ(t) are
functions defined on t.

Substituting (2) into (1) and separating the real and
imaginary parts, we obtain
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2
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In order to eliminate the terms U′(ξ), we set
λ(t) � 2(μ1k1a1(t) + μ2k2a2(t))dt, θ(t) � (k2

1a1(t)+

k2
2a2(t))dt + θ0, b1(t) � b1(μ21a1(t) + μ22a2(t)), and

b2(t) � b2(μ21a1(t) + μ22a2(t)), where b1, b2, and θ0 are ar-
bitrary constants. )en, equation (3) can be reduced to

U″(ξ) − b1U
3
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Integrating the second equation of (4) twice with respect
to ξ, we have

V(ξ) �
s2μ

2
1
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2
1 − μ22

U
2
(ξ) + c1ξ + c0, (5)

where c0 and c1 are integration constants. Substituting
equation (5) into the first equation of (4), we obtain
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Next, by assuming (dU/dξ) � ψ, we can rewrite equation
(6) as the following planar dynamical system:
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with the Hamiltonian system
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Here, we assume that G(U) � − ((s2μ21b2/(s1μ21−
μ22)) − b1)U

3(ξ) − b2c0U(ξ). When ((s2μ21b2/
(s1μ21 − μ22)) − b1)b2c0 < 0, we easily obtain three zeros of
G(U) including U0 � 0, U1 �������������������������������������

− (b2c0(s1μ21 − μ22)/(s2μ21b2 − b1((s1μ21 − μ22)))


, and U2 � −
�����������������������������������

− (b2c0(s1μ21 − μ22)/(s2μ21b2 − b1(s1μ21 − μ22)))
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((s2μ21b2/s1μ

2
1 − μ22) − b1)b2c0 > 0, we obtain U3 � 0.)en, we

suppose that Mi(Ui, 0) are the equilibrium points of
equation (8), and we obtain thatMi(Ui, 0) is the saddle point
when G′(Ui)> 0; Mi(Ui, 0) is the degraded saddle point
when G′(Ui) � 0; Mi(Ui, 0) is the center point when
G′(Ui)< 0. With the help of Maple software, we draw the
phase portraits of (8) as shown in Figure 1.

3. Traveling Wave Solutions of System (1)

)e complete discriminant system method was first in-
troduced by Lu and his collaborators in 1996 [16]. In
recent years, many experts and scholars [17–22] have
applied this method to construct the exact traveling wave
solutions of partial differential equations. In this section,
we intend to use this method to analyze the exact traveling
wave solution of the variable-coefficient Davey–
Stewartson system.

In fact, in Section 2, we have simplified equation (1) to
nonlinear equation (6). Next, multiply both ends of equation
(6) by U′ and integrate once, and we obtain

U′( 
2

� d4U
4
(ξ) + d2U

2
(ξ) + d0, (9)

where d4 � − 1/2((s2μ21b2/s1μ
2
1 − μ22) − b1), d2 � − b2c0, and

d0 is the integration constant.
Consider the following transformations:

2 Discrete Dynamics in Nature and Society



U � ±
����������

4d4( 
− (1/3)

w



,

p � 4d2 4d4( 
− (2/3)

,

q � 4d0 4d4( 
− (1/3)

,

ξ1 � 4d4( 
(1/3)ξ.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

)en, equation (9) can be rewritten as

wξ1 
2

� w w
2

+ pw + q . (11)

Integrating equation (11) once, we obtain
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w w

2
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 , (12)

where ξ0 is an integration constant. Setting
F(w) � w2 + pw + q, its complete discrimination system is

Δ � p
2

− 4q. (13)

According to the root of equation (13), the traveling
wave solution of equation (1) has four cases.

Case 1. Assume that Δ � 0. Since w> 0, we can obtain
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If p< 0, the explicit solution of equation (1) is
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If p> 0, the explicit solution of equation (1) is

u3(t, x, y) �
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If p � 0, the explicit solution of equation (1) is
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Case 2. Assume that Δ> 0 and q � 0. Since w> − p, we can
obtain
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w
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Figure 1: Phase portraits of system (7). (a)(s2μ21b2/s1μ
2
1 − μ22) − b1 > 0, (b2c0/2)< 0. (b)(s2μ21b2/s1μ

2
1 − μ22) − b1 < 0, (b2c0/2)> 0.
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According to Case 1, the solution of equation (18) is as
follows.

If p> 0, the explicit solution of equation (1) is

u5(t, x, y) � ±
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If p< 0, the explicit solution of equation (1) is

u7(t, x, y) �
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Case 3. Assume that Δ> 0, q≠ 0, and α< β< c, where one of
α, β, and c is zero, and the rest of them are the two roots of
F(w). Since α<w< β, make the transformation
w � α + (β − α)sin2 φ. It can be obtained from equation (13)
that
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2

�����
c − α√ 

dφ
�����������

1 − m
2sin2 φ

 , (21)

where m2 � ((β − α)/(c − α)).
According to equation (21) and the definition of Jaco-

bian elliptic function sn, the explicit solution of equation (1)
is

u8(t, x, y) �
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Make the transformation w � ((− β sin2 φ + c)/cos2 φ)

and substitute it into equation (12). Similarly, the explicit
solution of equation (1) can be obtained:
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Case 4. Assume that Δ< 0. Since w> 0, we can make the
following transformation:

w �
�
q

√
tan2

φ
2

. (24)

Substituting equation (24) into equation (13), we obtain
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− (1/4)
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1 − k
2sin2 φ

 , (25)

where m2 � (1/2)(1 − (p/2 �
q

√
)).

According to equation (25) and the definition of Jaco-
bian elliptic function cn, we obtain

cn (q)
(1/4) ξ1 − ξ0( , m  � cos φ. (26)

From equation (24), we have

cos φ �
2 �

q
√

w +
�
q

√ − 1. (27)

Comparing equation (26) with equation (27), we can
obtain the explicit solution of equation (1):
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e
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Remark 1. In this paper, we obtained one of the solutions
(u(t, x, y)) of equation (1). Using relation (5), we can obtain
another solution v(t, x, y) of equation (1).

4. Conclusion

In this paper, the bifurcation and single traveling wave
solutions of the variable-coefficient Davey–Stewartson sys-
tem have been investigated by employing the bifurcation
theory of planar dynamical systems and the polynomial
complete discriminant method. )e phase portraits of the
variable-coefficient Davey–Stewartson system are shown in
Figure 1. Moreover, a series of new single traveling wave
solutions is obtained. Compared with the published litera-
ture [9], this study not only obtains the hyperbolic function
solution, trigonometric function solution, and rational
function solution but also obtains the Jacobi function so-
lution. We believe that the study of the variable-coefficient
Davey–Stewartson system in the paper will help mathe-
maticians and physicists.
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