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In this article, a controller with delay impulse is applied to a neural network (NN) with time-varying delays. Firstly, the lag
synchronization of the system is discussed. In addition, a su�cient condition for guaranteed lag synchronization requiring all state
information is derived by using linear matrix inequality (LMI). In particular, the main results of neural networks (NNs) with time-
varying delays and partial unmeasured states are studied by using the delay impulsive control gain matrix derived from dimension
expansion. Finally, we will give two examples, both of which can con�rm the validity of the results.

1. Introduction

As the most important branch system in modern arti�cial
intelligence, the neural network (NN) [1–3] has always been
an important object of scholars’ research. In recent decades,
NN has made great progress in control systems, signal
analysis and processing, tra�c safety, pattern recognition,
and other �elds. However, when using NN to solve practical
problems, many scholars have found that the information
transmission mode between neurons is not continuous, and
the transmission of neurotransmitters may be delayed.�us,
it is necessary to discuss NNs with a time delay.

Time delay is a common phenomenon in many practical
NNs and a key factor that directly a�ects and determines the
synchronization of NNs. In [4], the lag synchronization of
NNs with time delays is studied by establishing appropriate
controllers. In [5], the asymptotic control of nonlinear NNs
with time delays is discussed by using adaptive mechanisms
and projection operators to estimate unknown time delays.
In [6], �xed time synchronization for delayed complex
dynamic NNs is studied. At present, the synchronization
analysis of linear systems with a constant delay has been
widely studied, but there are still many problems in the study

of time-varying delay cases. For example, it is di�cult to
establish su�cient and necessary conditions for the syn-
chronization of time-varying delay NNs, so it is particularly
important to seek synchronization conditions with mini-
mum conservatism.

As a branch of time-delay NNs, NNs with time-varying
delays have wide application prospects in pattern recogni-
tion, optimization calculation, and image processing. Over
the past three decades, it has been proved that linear matrix
inequality (LMI) methods can be used to obtain more
concise ideas and their interrelationships, such as the fea-
sibility of solutions, reversibility, and controller speci�cation
form. In [7], some su�cient conditions for the global ex-
ponential stability (GES) of high-order Cohen–Grossberg
NNs are derived by using induction and the properties of
nonsingular M-matrices. In [8], the synchronization prob-
lem of complex dynamic neural networks (CDNNs) with
time-varying delays is studied by using an impulse dis-
tributed control scheme. In [9], exponential adaptive syn-
chronization of time-varying delay NNs is discussed by
establishing the Lyapunov functional. It is not hard to �nd
that the synchronization of NNs in material transportation,
adaptive control, psychology, and transportation is still
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worth studying, in addition to the stability problems of a
large number of differential NNs with time-varying delays
directly proposed in engineering practice. +erefore, the
research on synchronization theory of NNs with time-
varying delays has an extensive practical engineering
background and profound theoretical value.

As one of the most important dynamic behaviors of
NNs, synchronization can be divided into quasi-synchro-
nization [10], lag synchronization [11], exponential syn-
chronization [12], and coupling synchronization [13]
according to different synchronization behaviors. In [14], a
new method of high-order NNs based on time delays and
impulses discrete is studied. In [15], an adaptive controller is
designed to study the adaptive synchronization problem of
NNs with time delays. In [16], the synchronization problem
of complex NNs with unknown bounded time-varying
delays using LMI is discussed. It is not hard to see that the lag
synchronization result of delayed impulsive control has
attracted the attention of many scholars. Current research
results concentrate on the complete state of information. In
other words, when the state of the NN is partial and im-
measurable, the above results do not apply to the case of the
NN with impulsive action. +erefore, it is a key problem to
realize lag synchronization of NNs, which refers to partial
unmeasured states under the delayed impulse of NNs with
time-varying delays. However, we find that the analysis of lag
synchronization of delayed impulses is still in its infancy.

Motivated by the above discussions, the purpose of this
article is to discuss the lag synchronization of time-varying
NNs with partial unmeasured states under the control of
delayed impulse. By increasing the unmeasurable state di-
mension and extending the measurable state dimension, the
unmeasurable state dimension and measurable state di-
mension can be unified. +e results show that some suffi-
cient conditions for lag synchronization of NNs with time-
varying delays can be obtained. +e main contributions to
this article include the following:

(1) A new time-varying delay differential NN is
established.

(2) +e state transition matrix is used to separate the
measurable state and the unmeasurable state, and the
dimensions of the two states obtained are consistent
through dimension expansion.

(3) +e result of lag synchronization is obtained by LMI
inequality. At the same time, compared with the
general nonlinear system, because of the complexity
of time-varying delay NNs, the design of impulsive
control gain is more difficult. Appropriate delay
impulsive gain can be obtained by using LMI.

+e remainder of the article is as follows: Section 2
provides an NN model with a time-varying delay, a defi-
nition, a hypothesis, and two useful lemmas. In Section 3,
some conditions for satisfying LMI are given, and some
theorems satisfying the main results are obtained. In Section
4, two numerical examples are discussed to illustrate the
feasibility of the conclusions. Finally, Section 5 is the con-
clusion of the article.

Notations: in the whole article, R signifies real number
set, Rn, and Rn×q stand, respectively, the set of real numbers
and all n-dimensional and n × q-dimensional real spaces
equipped. A< 0(A> 0) denotes a negative (positive) definite
matrix. λmin(A)(λmax(A)), AT and A− 1 denote the mini-
mum (maximum) eigenvalue, the transpose and the inverse
of matrix A, respectively. Set α∨β be the maximum value of α
and β and α∧β denotes the minimum value. For any interval
I⊆R, set S⊆Rk(1≤ k≤ n), PC(I, S) � θ: I⟶ S{ }, where θ is
a continuous point except at the finite point t, exist θ(t+),
θ(t− ), and θ(t+) � θ(t). τ(t) denotes time-varying delay,
τ > 0 is time delay, PC([− τ, 0], Rn) represents the collection
of piecewise right-hand functions h: [− τ, 0]⟶ Rn with the
norm defined by ‖h‖τ � sup

− τ≤s≤0
‖h(s)‖. Λ � 1, 2, . . . , n{ } and

the symbol ★ denote a symmetric block in a symmetric
matrix.

2. Preliminaries

2.1. Model. First, time-varying delay NN can be considered
as

_z(t) � − Az(t) + Bz(t − τ(t)) + Cf(z(t)) + Df(z(t − τ(t))) + I, t> 0,

z(s) � ϕ(s), s ∈ [− τ, 0],
􏼨 (1)

where z(t) � (z1, . . . , zn)T ∈ Rn denotes neuron state vec-
tor; A � diag a1, . . . , an􏼈 􏼉 and B � diag b1, . . . , bn􏼈 􏼉 are di-
agonal matrices with ai, bi > 0, i ∈ Λ; C and D correspond to
the constant connection weight matrix;
f(z(t)) � (f1(z1(t)), . . . , fn(zn(t)))T denote the neuron

activation functions; assume that 0≤ τ(t)≤ τ, τ ≤∞; I is an
external input signal; ϕ(·) ∈ PC([− τ, 0], Rn) represents the
initial state.

Consider a time-varying delay NNs (1), its response NN
is as follows:

_w(t) � − Aw(t) + Bw(t − τ(t)) + Cf(w(t)) + Df(w(t − τ(t))) + I + u(t), t>d

w(s) � θ(s), s ∈ [− τ + d, d],
􏼨 (2)
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where the number of measurable states in the state part of
the response NN is q and θ(·) ∈ PC([− τ + d, d], Rn) is the
initial state. Let H � r1, . . . , rq􏽮 􏽯 ⊂ 1, . . . , n{ } and
G � rq+1, . . . , rn􏽮 􏽯 ⊂ 1, . . . , n{ } represent the collection of
measurable and unmeasurable states, respectively. +e lag

synchronization characteristic of the NN is w(t)⟶ z(t −

d) for exist d> 0. Assume that the error variable is
e(t) � w(t) − z(t − d). +us, the error dynamics NN of
drive and response NN is as follows:

_e(t) � − Ae(t) + Be(t − τ(t)) + Cg(e(t)) + Dg(e(t − τ(t))) + u(t), t>d

e(s) � θ(s) − ϕ(s − d), s ∈ [− τ + d, d],
􏼨 (3)

where g(e) � f(e(·) + z(·)) − f(z(·)). Let u(t) ∈ Rn be a
controller and

u(t) � 􏽘
k∈Z+

Ke t − ηk( 􏼁 − e(t)( 􏼁δ t − tk( 􏼁,
(4)

where tk􏼈 􏼉 denotes the impulse sequence, and it satisfies
inf tk − tk− 1, k ∈ Z+􏼈 􏼉> 0. Assume Θd is the impulse se-
quences, and it satisfies tk − tk− 1 ≤ ρ (ρ is any positive

constant), K ∈ Rn×n denotes the control gain matrix. δ(·)

denotes the Dirac delta function, when t � tk, δ(t) � 1;
otherwise, δ(t) � 0. ηk is delayed in the impulse, and it
satisfies 0≤ ηk ≤ η, η> 0.

Define ei(i ∈ H) as themeasurable state, we shift the ei in
front of e. It is not hard to find a matrix that T satisfies
ϑ(t) � Te(t), where T is a transition matrix; then, we can get

ϑ
·

(t) � − Aϑϑ(t) + Bϑϑ(t − τ(t)) + Cϑg(ϑ(t)) + Dϑg(ϑ(t − τ(t))), t≠ tk,

ϑ(t) � Kϑϑ t
−

− ηk( 􏼁, t � tk,

ϑ(s) � θϑ(s) − ϕϑ(s − d), s ∈ [(− τ + d)∧(− η + d), d],

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where ϑ � (er1
, . . . , erq

, erq+1
, . . . , ern

)T, Dϑ � TDT− 1,
Cϑ � TCT− 1, g(ϑ) � g(Te),Aϑ � TAT− 1, Bϑ � TBT− 1, ϕϑ �

Tϕ, θϑ � Tθ, Kϑ � TKT− 1. After obtaining the transformed
error system, we will discuss two different cases of error state
information.

Remark 1. During the past period, lag synchronization of
NNs has been investigated in the literature [8, 14, 15]. In
[15], lag synchronization of BAM NNs with impulses is
discussed. However, few studies consider the existence of
unmeasured states of time-varying delay NNs, so the above
results for lag synchronization are not applicable. +us, we
improve the known results and study the lag synchroniza-
tion problem of time-varying delay NNs in both measurable
and unmeasurable states. +erefore, we divide impulsive
control into two situations: the first is that the number of set
H is greater than the number of set G, namely, q> n − q; the
second is that the number of sets. H is less than or equal to
the number of sets G, namely, q≤ n − q.

Hypothesis 1. +e neuron activation function fi(·) satisfies

fi(u) − fi(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ li|u − v|, (6)

where u, v ∈ R, li is a positive constant and i ∈ Λ.

Definition 1. For any initial conditions z(s) � ϕ(s) and
w(s) � θ(s) satisfies

|z(t) − w(t − d)|⟶ 0. (7)

As t⟶ +∞, then it is said that the drive NN (1) and
response NN (2) achieve lag synchronization with the time
lag d.

Lemma 1 (see [16]). Assume that h(t) ∈ PC(R, R+) satisfies

dh(t)

dt
≤ λh(t) + δh(t − τ t( )), t≠ tk,

h(t)≤ θkh t − ηk( 􏼁, t � tk, k ∈ Z+,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

where λ ∈ R, δ ∈ R+, and θk ∈ R+. If there exist α, β, p are
constants, and α> 0, β> 0, p> 0, such that

α +|λ| + βδe
ατ < lnβ/p,

βe
αηθk ≤ 1, k ∈ Z+.

(9)

5en the solution of (5) satisfies the following:

h(t)≤ βh(0)e
− αt

, (10)

in Θd, where h(0) � sup− (τ∨η)≤s≤0h(s).

Proof. Similar to Lemma 2 proof in [16], setting
T � p, μ1 � exp(αT), μ2 � exp(ατ), μ3 � exp(αη), one may
derive Lemma 1. □

Lemma 2. For any real vectors z, ζ ∈ Rn and real matrix
P ∈ Rn×n , there exists an n × n real matrix M> 0 satisfies the
following:
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2z
T
Pζ ≤ z

T
PM

− 1
P

T
z + ζT

Mζ. (11)

3. Main Results

+is section presents the main theoretical results of the
article; that is, the lag synchronization problem of time-
varying delay NNs is proved by delayed impulse. To better
demonstrate the comprehensiveness of the results, two cases
will be considered, i.e., q> n − q and q≤ n − q, respectively.

Case 1. +e number of set H is greater than the number of
set G, namely, q> n − q.

First of all, we think about the lag synchronization of
time-varying delay NNs via delayed impulsive control, when
q> n − q. Considering the error states ϑ(t), ϑ � (ϑT

1 , ϑT
2 )T,

ϑ1 � (ϑ1T
1 , ϑ2T

1 )T, ϑ11 � (er1
, . . . , ern− q

)T,ϑ21 � (ern− q+1
, . . . , erq

)T,

ϑ2 � (erq+1
, . . . , ern

)T, g(ϑ11) � (gr1
(er1

(·)), . . . , grn− q

(ern− q
(·)))T,g(ϑ21) � (grn− q+1

(ern− q+1
(·)), . . . , grq

(erq
(·)))T, and

g(ϑ2) � (grq+1
(erq+1

(·)), . . . , grn
(ern

(·)))T. After expanding
the error state, NN (4) can be rewritten as

_ϑ(t) � −

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϑ11(t)

ϑ21(t)

ϑ2(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

B11 B12 B13

B21 B22 B23

B31 B32 B33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϑ11(t − τ(t))

ϑ21(t − τ(t))

ϑ2(t − τ(t))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g ϑ11(t)􏼐 􏼑

g ϑ21(t)􏼐 􏼑

g ϑ2(t)( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

D11 D12 D13

D21 D22 D23

D31 D32 D33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g ϑ11(t − τ(t))􏼐 􏼑

g ϑ21(t − τ(t))􏼐 􏼑

g ϑ2 � (t − τ(t))( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ϑ(t) � Kϑϑ t
−

− ηk( 􏼁, t � tk,

ϑ(s) � θϑ(s) − ϕϑ(s − d), s ∈ [(− τ + d)∧(− η + d), d],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where ϑ11, ϑ
2
1 ∈ ϑ1 and ϑ1 denote measurable state of the

neuron and ϑ2 denote unmeasurable state of the neuron.
Compared with the traditional impulsive controller, in this
article, unmeasurable and measurable state information are
discussed. In other words, state information can be divided
into unmeasurable state and measurable state information
by transformation matrix. +erefore, we can obtain the
control gain matrix as below:

Kϖ �

k
1
1 0 0

0 k
2
1 0

k2 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (13)

where k1
1, k2

1, and k2 are real matrices. When q> n − q, this
means that the dimension of the measurable state may be
greater than that of the unmeasurable state. When q> n − q,
extend the dimension of ϑ21 to the dimension of unmea-
surable state ϑ2, then we get ϑ2 � (ϑT

2 , ϑ2T
1 )T. Redefine var-

iables after dimension expansion, then one has
ϑ � (ϑ

T

1 , ϑ
T

2 )T, ϑ1 � ϑ1, g(ϑ1 (·)) � (g(ϑ11(·))T, g(ϑ21(·))T)g

(ϑ2(·)) � (g (ϑ2(·))T, g(ϑ21(·))T), which means that ϑ1, ϑ2
have the same dimension. Hence, NN (6) can be indicated as
follows:

ϑ � − Aϑ(t) + Bϑ(t − τ(t)) + Cg(ϑ(t)) + Dg(ϑ(t − τ(t))), t≠ tk,

ϑ(t) � Kϑ t
−

− ηk( 􏼁, t � tk,

ϑ(s) � φ(s) − ϕ(s − d), s ∈ [(− τ + d)∧(− η + d), d],

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

where
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A �
A11 A12

A21 A22

⎛⎝ ⎞⎠, B �
B11 B12

B21 B22

⎛⎝ ⎞⎠, C �
C11 C12

C21 C22

⎛⎝ ⎞⎠, D �
D11 D12

D21 D22

⎛⎝ ⎞⎠,

A11 �
A11 A12

A21 A22
􏼠 􏼡, A12 �

A13 0

A23 0
􏼠 􏼡, A21 �

A31 A32

A21 A22
􏼠 􏼡, A22 �

A33 0

A23 0
􏼠 􏼡,

B11 �
B11 B12

B21 B22
􏼠 􏼡, B12 �

B13 0

B23 0
􏼠 􏼡, B21 �

B31 B32

B21 B22
􏼠 􏼡, B22 �

B33 0

B23 0
􏼠 􏼡,

C11 �
C11 C12

C21 C22
􏼠 􏼡, C12 �

C13 0

C23 0
􏼠 􏼡, C21 �

C31 C32

C21 C22
􏼠 􏼡, C22 �

C33 0

C23 0
􏼠 􏼡,

D11 �
D11 D12

D21 D22
􏼠 􏼡, D12 �

D13 0

D23 0
􏼠 􏼡, D21 �

D31 D32

D21 D22
􏼠 􏼡, D22 �

D33 0

D23 0
􏼠 􏼡.

(15)

It can be seen that measurable state ϑ1 and unmeasurable
state ϑ2 of NN (12) have the same dimension. +erefore, the
lag synchronization problem of partial unmeasured time-
varying delay NNs can be studied under delayed impulsive
control, and control gain matrix K∈ R2q×2q is shown below:

K �
K1 0

K2 0
􏼠 􏼡, (16)

where K1 �
k
1
1 0
0 k

2
1

􏼠 􏼡, K2 �
k2 0
0 k

2
1

􏼠 􏼡. +en, the error

dynamical system is given as

ϑ � − Aϑ(t) + Bϑ(t − τ(t)) + Cg(ϑ(t)) + Dg(ϑ(t − τ(t))), t≠ tk,

ϑ1(t) � K1ϑ1 t
−

− ηk( 􏼁, t � tk,

ϑ2(t) � K2ϑ1 t
−

− ηk( 􏼁, t � tk,

ϑ(s) � θ(s) − ϕ(s − d), s ∈ [(− τ + d)∧(− η + d), d].

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

Theorem 1. Assume that Hypothesis 1 is satisfied, there exist
(n − q) × (n − q) real matrices N1 > 0,Φ1 > 0,Ψ11,Ψ21, (2q −

n) × (2q − n) real matrices N2 > 0,Φ2 > 0,Ψ12,Ψ22, 2q × 2q

diagonal matrices U1 > 0, U2 > 0, and
c> 0, δ > 0, β> 1, p> 0, α> 0 are constants sufficing

α +|λ| + βδe
ατ <

lnβ
p

,

Ω ΥC ΥD

⋆ − U1 0

⋆ ⋆ − U2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 0,

B
TΥ + ΥB + LU2L − δΥ≤ 0,

− βN Ψ1 Ψ2

⋆ − N 0

⋆ ⋆ − Φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 0,

(18)

where β � β− 1e− αη and

N � diag N1, N2􏼈 􏼉,Ω

L � diag lr1, . . . , lrq
, lrq+1

, . . . , lrn
, lrn− q+1

, . . . , lrq
􏼚 􏼛,

Φ � diag Φ1,Φ2􏼈 􏼉,Υ

Ψ1 � diag Ψ11,Ψ12􏼈 􏼉,Ψ2

(19)

5is signifies that NN (2) is globally lag synchronized with
the drive NN (1) for

K � T
− 1

N
− 1
1 Ψ

T
11 0 0

0 N
− 1
2 Ψ

T
12 0

Φ− 1
1 Ψ

T
21 + N

− 1
1 Ψ

T
11 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠T, (20)

in Θd, where real matrix T is n × n.

Proof. Consider Lyapunov functions

V(t) � ϑ
T

1 (t)Nϑ1(t) + ϑ2(t) − ϑ1(t)􏼐 􏼑
T
Φ ϑ2(t) − ϑ1(t)􏼐 􏼑

� ϑ(t)Yϑ(t).

(21)

When t ∈ [tk− 1, tk), taking the derivative of V(t) in NN
(14), we can get
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_V(t) � ϑ
.

(t)
TΥϑ(t) + ϑ(t)

TΥϑ
.

(t)

� ϑ(t)
T

− A
TΥ − ΥA􏼒 􏼓ϑ(t) + ϑ(t − τ(t))

T

B
TΥ + ΥB􏼒 􏼓ϑ(t − τ(t))

+ 2ϑ(t)
TΥCg(ϑ(t)) + 2ϑ(t)

TΥDg(ϑ(t − τ(t))).

(22)

According to Hypothesis 1 and Lemma 2, we can get

2ϑ(t)
TΥCg(ϑ(t))

≤ ϑ(t)
TΥCU

− 1
1 C

TΥϑ(t) + g
T
(ϑ(t))U1g(ϑ(t))

≤ ϑ(t)
TΥCU

− 1
1 C

TΥϑ(t) + ϑT
(t)LU1Lϑ(t),

2ϑ(t)
TΥDg(ϑ(t − τ(t)))

≤ ϑT
(t)ΥDU

− 1
2 D

TΥϑ(t) + g
T
(ϑ(t − τ(t)))U2g(ϑ(t − τ(t)))

≤ ϑ(t)
TΥDU

− 1
2 D

TΥg(ϑ(t)) + ϑT
(t − τ(t))LU2Lϑ(t − τ(t)).

(23)

Substituting the above inequality into (19), considering
inequalities (16) and (17), we obtain

_V(t)≤ ϑ
.

(t)
T

− A
TΥ − ΥA + LU1L + ΥCU

− 1
1 C

TΥ + ΥDU
− 1
2 D

TΥ􏼒 􏼓ϑ(t)

+ ϑ
T
(t − τ(t)) B

TΥ + ΥB + LU2L􏼒 􏼓ϑ(t − τ(t))

≤ λϑT
(t)Υϖ(t) + δϑ

T
(t − τ(t))Υϑ(t − τ(t)).

(24)

When t � tk, by (11), we can get

V t
+
k( 􏼁 � ϑ1 tk − ηk( 􏼁

T
K

T
1 NK1ϑ1 tk − ηk( 􏼁

+ ϑ1 tk − ηk( 􏼁
T

K2 − K1( 􏼁
TΦ K2 − K1( 􏼁ϑ1 tk − ηk( 􏼁

≤ βe
αη

( 􏼁
− 1

V t
−
k − ηk( 􏼁.

(25)

Considering the inequality in the condition, and using
Lemma 1, we can get

V(t)≤ βsups≤s≤dV(s)e
− αt

, (26)

which implies that

|ϑ(t)|≤

��������
βλmax(Y)

λmin(Y)

􏽳

ϑ(d)exp −
α
2

t􏼒 􏼓, t≥ t0, (27)

where ϑ(d) � sups≤s≤dϑ(s), s � (− τ + d)∧(− η + d). From
the above proof, it follows that error NN (17) converges
exponentially to zero. +at is, the coupled NN with time-
varying delay achieves lag synchronization. +e proof has
been completed. □

Case 2. +enumber of setH is less than or equal the number
of set G; i.e., q≤ n − q.

+en we consider the lag synchronization of NNs with
time-varying delayed impulsive control, under the q≤ n − q.
Considering error sates ϑ, set ϑ � (ϑT

1 , ϑT
2 )T , ϑ1 �

(er1
, . . . , erq

)T, ϑ2 � (ϑ1T
2 , ϑ2T

2 )T, ϑ12 � (ern− q+1
, . . . , er2q

)T, ϑ22 �

(er2q+1
, . . . , ern

)T, g(ϑ1(·)) � (gr1
(er1

(·)), . . . , grq
(erq

(·)))T,

g(ϑ12) � (grq+1
(erq+1

(·)), . . . , gr2q
(er2q

(·)))T, and g(ϑ22) �

(gr2q+1
(er2q+1

(·)), . . . , grn
(ern

(·)))Tss. After expanding the
error state, NN (4) can be rewritten as

_ϑ(t) � −

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϑ1(t)

ϑ12(t)

ϑ22(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

B11 B12 B13

B21 B22 B23

B31 B32 B33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϑ1(t − τ(t))

ϑ12(t − τ(t))

ϑ22(t − τ(t))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g ϑ1(t)( 􏼁

g ϑ12(t)􏼐 􏼑

g ϑ22(t)􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

D11 D12 D13

D21 D22 D23

D31 D32 D33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g ϑ1(t − τ(t))( 􏼁

g ϑ12(t − τ(t))􏼐 􏼑

g ϑ22(t − τ(t))􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ϑ(t) � Kϑϑ t
−

− ηk( 􏼁, t � tk,

ϑ(s) � θϑ(s) − ϕϑ(s − d), s ∈ [(− τ + d)∧(− η + d), d],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)
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where ϑ12, ϑ
2
2 ∈ ϑ2, since q≤ n − q, and the control gain matrix

is shown below:

Kϑ �

k1 0 0

k
1
2 0 0

0 k
2
2 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (29)

where k1, k1
2, and k2

2 are real matrices. When q≤ n − q, this
means that the dimension of measurable state may be
smaller than the value of unmeasurable state. For the sake of
easy, the dimension of measurable state is extended to ϑ1part

of measurable state erq
, and then we get 􏽥ϑ

.

1 � (ϑT
1 , ϑ
∧T

1 )T,

where ϑ
∧

1 � (erq
, erq

, . . . , erq
)T. So, we can get

􏽥ϑ � (􏽥ϑ
T

1 , 􏽥ϑ
T

2 )T, 􏽥ϑ2 � ϑ2, g(􏽥ϑ1(·)) � s(g(ϑ1(·))T, g (ϑ
∧

1(·))T)T,

g(􏽥ϑ2(·)) � g(ϑ2(·)), which means that 􏽥ϑ1 and 􏽥ϑ2 have the
same dimension. When q � n − q, that is, H has the same
dimension as G, 􏽥ϑ1 � ϑ1 and 􏽥ϑ2 � ϑ2. Hence, NN (26) can be
indicated as follows:

􏽥ϑ � − 􏽥A􏽥ϑ(t) + 􏽥B􏽥ϑ(t − τ(t)) + 􏽥Cg(􏽥ϑ(t)) + 􏽥Dg(􏽥ϑ(t − τ(t))), t≠ tk,

􏽥ϑ(t) � 􏽥K􏽥ϑ t
−

− ηk( 􏼁, t � tk,

􏽥ϑ(s) � 􏽥θ(s) − 􏽥ϕ(s − d), s ∈ � [(− τ + d)∧(− η + d), d],

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

where

􏽥A �
􏽥A11

􏽥A12

􏽥A21
􏽥A22

⎛⎝ ⎞⎠, 􏽥B �
􏽥B11

􏽥B12

􏽥B21
􏽥B22

⎛⎝ ⎞⎠, 􏽥C �
􏽥C11

􏽥C12

􏽥C21
􏽥C22

⎛⎝ ⎞⎠, 􏽥D �
􏽥D11

􏽥D12

􏽥D21
􏽥D22

⎛⎝ ⎞⎠,

􏽥A11 �
A11 0

A
∧
1 0

⎛⎝ ⎞⎠, 􏽥A12 �
A12 A13

A
∧
2 A
∧
3

⎛⎝ ⎞⎠, 􏽥A21 �
A21 0

A31 0
􏼠 􏼡, 􏽥A22 �

A22 A23

A32 A33
􏼠 􏼡,

􏽥B11 �
B11 0

B
∧
1 0

⎛⎝ ⎞⎠, 􏽥B12 �
B12 B13

B
∧
2 B
∧
3

⎛⎝ ⎞⎠, 􏽥B21 �
B21 0

B31 0
􏼠 􏼡, 􏽥B22 �

B22 B23

B32 B33
􏼠 􏼡,

􏽥C11 �
C11 0

C
∧
1 0

⎛⎝ ⎞⎠, 􏽥C12 �
C12 C13

C
∧
2 C
∧
3

⎛⎝ ⎞⎠, 􏽥C21 �
C21 0

C31 0
􏼠 􏼡, 􏽥C22 �

C22 C23

C32 C33
􏼠 􏼡,

􏽥D11 �
D11 0

D
∧
1 0

⎛⎝ ⎞⎠, 􏽥D12 �
D12 D13

D
∧
2 D
∧
3

⎛⎝ ⎞⎠, 􏽥D21 �
D21 0

D31 0
􏼠 􏼡, 􏽥D22 �

D22 D23

D32 D33
􏼠 􏼡,

A
∧
1 �

arq,1
· · · arq,q

⋮ ⋮ ⋮

arq,1
· · · arq,q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, A
∧
2 �

arq,q+1
· · · arq,2q

⋮ ⋮ ⋮

arq,q+1
· · · arq,2q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, A
∧
3 �

arq,2q+1
· · · arq,n

⋮ ⋮ ⋮

arq,2q+1
· · · arq,n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(31)

and B
∧

i, C
∧

i, D
∧

i, i � 1, 2, 3, similar to A
∧
1, A
∧
2, A
∧
3.

+e control gain matrix 􏽥K is shown below:

􏽥K �
K1 0

K2 0
􏼠 􏼡, (32)

where k
∧

1 is a real matrix,

K1 �
k1 0

0 k
∧

1
􏼠 􏼡, andK2 �

k
1
2 0
0 k

2
2

􏼠 􏼡.

+en, the error dynamical system is given as

􏽥ϑ � − 􏽥A􏽥ϑ(t) + 􏽥B􏽥ϑ(t − τ(t)) + 􏽥Cg(􏽥ϑ(t)) + 􏽥Dg(􏽥ϑ(t − τ(t))), t≠ tk,

􏽥ϑ1(t) � K1
􏽥ϑ1 t

−
− ηk( 􏼁, t � tk,

􏽥ϑ2(t) � K2
􏽥ϑ1 t

−
− ηk( 􏼁, t � tk,

􏽥ϑ(s) � 􏽥φ(s) − 􏽥ϕ(s − d), s ∈ [(− τ + d)∧(− η + d), d].

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(33)
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Theorem 2. Assume that Hypothesis 1 is satisfied, there exist
q× q realmatricesN1 > 0,Φ1 > 0,Ψ11,Ψ21, (n − 2q) × (n − 2q)

real matrices N2 > 0,Φ2 > 0,Ψ12,Ψ22, 2(n − q) × 2(n − q) di-
agonal matrices U1 > 0, U2 > 0, and
c> 0, δ > 0, β> 1, p> 0, α> 0 are constants sufficing

α +|λ| + βδe
ατ <

lnβ
p

,

Ω ΥC ΥD

⋆ − U1 0

⋆ ⋆ − U2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 0,

B
TΥ + ΥB + LU2L − δΥ≤ 0,

− βN Ψ1 Ψ2

⋆ − N 0

⋆ ⋆ − Φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 0,

(34)

where β � β− 1e− αη, and
N � diag N1, N2􏼈 􏼉,Ω � − A

TΥ − ΥA − λΥ + LU1L,

L � diag 1r1
, . . . , 1rq

, 1rq
, . . . , 1rq

, 1rn− q+1
, . . . , 1rn

􏼚 􏼛,

Φ � diag Φ1,Φ2􏼈 􏼉,Υ �
N +Φ − Φ

− Φ Φ
􏼠 􏼡,

Ψ1 � diag Ψ11,Ψ12􏼈 􏼉,Ψ2 � diag Ψ21,Ψ22􏼈 􏼉.

(35)

5en, it signifies that NN (2) is globally lag synchronized
with the drive NN (1) for

K � T
− 1

N
− 1
1 Ψ

T
11 0 0

Φ− 1
1 Ψ

T
21 + N

− 1
1 Ψ

T
11 0 0

0 Φ− 1
2 Ψ

T
22 + N

− 1
2 Ψ

T
12 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠T,

(36)

over the class Θd, where real matrix T is n × n.

Proof. Similarly, the proof of +eorem 2 is similar to
+eorem 1. □

Remark 2. Compared with the general time delay NN, due
to the complex structure of NN, it is particularly difficult to
design delayed impulsive control for time-varying delay
NNs, so in order to overcome this problem, this article
designs two controllers, which make it easier to monitor the
measurable status of the impulsive time information. In
other words, when the state of the NN is not measurable, the
information of the instantaneous measurable state can also
be adopted through impulsive control.

Remark 3. +roughout the article, we solve the global lag
synchronization problem on different dimensions of mea-
surable and unmeasurable states using +eorems 1 and 2. It
can be seen from this article that, in +eorem 1, when the

dimension of the measurable state is greater than that of the
unmeasurable state, we extend the dimension of the un-
measurable state and get lag synchronization; in +eorem 2,
the dimension of the measurable state is less than the un-
measurable state, and we obtain the lag synchronization
result by extending the dimension of the measurable state.

Remark 4. In [11], LMI is used to derive some sufficient
conditions for lag synchronization of NNs with time-
delayed. However, studies on NNs with time-varying delays
are excluded. Our results not only study the lag synchro-
nization of NNs with time-varying delays but also relax the
restrictions on upper and lower bounds, which greatly re-
duces the time to reach the lag synchronization.

4. Examples

At last, a 2D and a 3D example are used to verify the main
results of this article.

e1
e2

-5
-4
-3
-2
-1
0
1
2
3
4
5

St
at
e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20
Time

Figure 1: +e trajectory of an error NN (12) with control inputs.

0 1 2 3 4 5 6
Time

-5
-4
-3
-2
-1
0
1
2
3
4
5

St
at
e

e1
e2
e3

Figure 2: +e trajectory of an error NN (26) with control inputs.
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Example 1. Consider the 2D autonomous time-varying
delay NNs

_z(t) � − Az(t) + Bz(t − τ(t)) + Cf(z(t)) + Df(z(t − τ(t))) + J, t> 0

z(s) � ϕ(s), s ∈ [− τ, 0],
􏼨 (37)

where A � B � I, f1 � f2 � tanh(s), τ(t) � 1/2|cos(t)| and

C �
3.0 − 0.1

− 4.0 2.0
􏼠 􏼡,

D �
− 2.0 − 0.2

− 0.1 1.5
􏼠 􏼡.

(38)

In the simulation, the initial values of NN (36) are set as
ϕ � (0.5, 0.8)T. +e response NN is as follows:

_w(t) � − Aw(t) + Bw(t − τ(t)) + Cf(w(t))

+Df(w(t − τ(t))) + I + u(t), t> d,

w(s) � θ(s), s ∈ [− τ + d, d],

⎧⎪⎪⎨

⎪⎪⎩
(39)

where the initial conditions of NN (37) are set as
θ(s) � (1.3, − 1.8)T, d � 1. +e error dynamical system is
given as

_e(t) � − Ae(t) + Be(t − τ(t)) + Cg(e(t)) + Dg(e(t − τ(t))) + u(t), t>d

e(t) � Ke t
−

− ηk( 􏼁, t � tk,

e(s) � θ(s) − ϕ(s − d), s ∈ [(− τ + d)∧(− η + d), d],

⎧⎪⎪⎨

⎪⎪⎩
(40)

where K �
0.1286 0
0.678 0􏼠 􏼡, supk∈Z+

tk − tk− 1􏼈 􏼉 � 0.1, ηk � 0.03.

Let α � 0.02, λ � 11, δ � 1, β � 15. According to +eo-
rem 3.1, via solving the LMI matrix, we can get

Υ �
7.7063 − 0.0799

− 0.0799 0.0799
􏼠 􏼡,

U1 �
39.2851 0

0 39.2851
􏼠 􏼡

U2 �
21.3584 0

0 21.3584
􏼠 􏼡,

Ψ1 � 1.0714,

Ψ2 � 0.0954.

(41)

In the example, the condition in +eorem 1 holds, so on
the basis of+eorem 1, NNs with time-varying delays are lag
synchronization.

+en the numerical simulation is shown in Figure 1.

Example 2. Consider the 3D autonomous time-varying
delayed NNs involving unmeasurable states w1 and w3
with

C �

1.3 − 3 − 3

− 3 1.2 − 4.5

− 3 4.5 1.5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

D �

6.5 − 8 − 3

− 2.8 1.4 − 5

− 3 − 4.6 − 2.5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(42)

According to +eorem 2, it can be known that the
number of measurable states is less than or equal to that of
unmeasurable states. In order to get same dimensions, the
impulsive control gain matrix is designed by

K �

0 0.5236 0

0 0.1997 0

0.5236 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (43)

where A � B � I,τ(t) � 1/2|sint| +1/3,f1 � f2 � f3 � tanh
(s),ϕ � (0.2,0.2, − 0.4)T,θ� (− 0.5,0.5,0.3)T, and Θd: t2n− 1 �

0.04n +0.4, t2n � 0.04n +0.5. So, we can easily get

T �

0 1 0

1 0 0

0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (44)

+e error system is transformed to

ϑ
·

(t) � − Aϑϑ(t) + Bϑϑ(t − τ(t)) + Cϑg(ϑ(t)) + Dϑg(ϑ(t − τ(t))), t≠ tk,

ϑ(t) � Kϑϑ t
−

− ηk( 􏼁, t � tk,

ϑ(s) � θϑ(s) − ϕϑ(s − d), s ∈ [(− τ + d)∧(− η + d), d],

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(45)
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where ϑ � (ϑ1, ϑ2)
T, ϑ1 � x2, and ϑ2 � (ϑ12, ϑ

1
2)

T � (x1, x3)
T,

Cϑ �

1.2 − 3.0 − 4.5

− 3.0 1.3 − 3.0

4.5 − 3.0 1.5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Dϑ �

1.4 − 2.8 − 5

− 8 6.5 − 3

4.6 − 3 − 2.5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Kϑ �

0.1997 0 0

0.5236 0 0

0 0.5236 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (46)

+erefore, a new error system can be obtained

ϑ � − Aϑ(t) + Bϑ(t − τ(t)) + Cg(ϑ(t)) + Dg(ϑ(t − τ(t))), t≠ tk,

ϑ1(t) � K1ϑ1 t
−

− ηk( 􏼁, t � tk,

ϑ2(t) � K2ϑ1 t
−

− ηk( 􏼁, t � tk,

ϑ(s) � θ(s) − ϕ(s − d), s ∈ [(− τ + d)∧(− η + d), d],

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(47)

where

K1 �
0.1997 0

0 0.1997
􏼠 􏼡, K2 �

0.5236 0

0 0.5236
􏼠 􏼡,

􏽥C �

1.2 0 − 3.0 − 4.5

1.2 0 − 3.0 − 4.5

− 3 0 1.3 − 3.0

4.5 0 − 3.0 1.5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 􏽥D �

1.4 0 − 2.8 − 5

1.4 0 − 2.8 − 5

− 8 0 6.5 − 3

4.6 0 − 3 − 2.5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(48)

Set α � 0.01, λ � 82, δ � 7, and β � 8. From Example 1,
similarly, we can see that it is not hard to check that LMI in
+eorem 3 holds.

In the example, the condition in +eorem 2 holds, so on
the basis of+eorem 2, NNs with time-varying delays are lag
synchronization.

+en the numerical simulation is shown in Figure 2.

5. Concluding Remarks

Looking through the article, we study the synchronization
problem of delay impulsive control for time-varying delay
NNs. In this article, the measurable state and the unmea-
surable state are separated by a transformation matrix. In
+eorems 1 and 2, we use different methods to extend the
dimension to obtain sufficient conditions for lag synchro-
nization of NNs with time-varying delays derived from the
control gain matrix. Finally, we also give two examples to
confirm the validity of the theoretical results.
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