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�e concept of bipolar-valued fuzzy relationships and their role in modeling bipolar-valued fuzzy social networks (BVFSN) are
discussed. �e goal of this study is to represent the bipolarity and fuzziness that are always present in the relationship between
actors. Ranking the most central actors to achieve maximum spreading ability has been a di�cult and critical topic thus far. Many
centrality measures have been proposed to determine the signi�cance of nodes in the central person detection process. In this
article, we proposed two new centrality measures, BF-degree centrality and BF-closeness centrality, based on the natural
characteristics of a bipolar-valued fuzzy social network.�e proposed centrality measures highlight the fuzziness and bipolarity of
the relationship. We consider the fuzzy stability index for direct connections here, as well as the strengths and weaknesses of the
relationship. With the help of the e�ective and total e�ective strength of the path, we �nd the favorable path in this centrality
measure. Moreover, to investigate the validity and reliability of these new centrality measures, we gathered Google Scholar data
and built a G-S Research network. Experimental results show that the model and centrality measures can be used to objectively
rank the most central node in the network.

1. Introduction

�e network structure is usually drawn in the form of
a graph with actors and their relationships. Graphs appear
naturally here because they are useful for showing how the
objects are linked together both biologically and socially.
Actors and relationships in social networking sites are
portrayed by vertices and edges in a graph, respectively. �e
concept of social network analysis (SNA) originated in the
western world, usually dated to 1930s and 1940s anthro-
pological and cognitive science research projects [1]. Social
network analysis is a series of rules and techniques used to
analyze the framework and characteristics of social re-
lationships. Due to its recent growth and its often-technical
character especially attractive to mathematically minded
people, it is widely regarded as the most recent innovation
and among a large number of specialized technical methods
used by sociologists. Many social network models [2–7] have

been proposed in recent years, including community de-
tection, online social media networks, clustering in social
networks, social networks including fuzziness, relational
networks based on intuitionistic fuzzy graph, and so on. �e
analysis of the relationship among actors in social platforms
aids in the integration of the correlation among individuals
and the social architecture of the system. Benevenunto et al.
[8] examined the use of online social network (OSN) fa-
cilities from the perspective of a social network aggregator,
providing an accurate picture of how users react when they
link to OSN web pages. Chen et al. [9] presented a feature set
that combines the feature of traditional heuristics and social
networking. Nair and Sarasamma [10] developed data
mining techniques and a new binary operation called
consolidation operation for the fuzzy social network.
Samanta and Pal [11] introduced a new concept of regis-
tration for a new user in the fuzzy social network so that the
chances of fake users may be reduced. Kundu and Pal [4]
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develop a unified framework based on the fuzzy granular
theory to demonstrate the social network model. Chu and
Wang [12] presented a fuzzy clustering-based method for
detecting social media communities, as well as three separate
conventional wisdom reaching techniques to maintain the
computational complexity.

In general, the relationship among actors is regarded as
a binary association in social network analysis, with “0”
indicating no relationship and “1” indicating there are re-
lationships [13]. We frequently feel that we cannot express
our relationship with two values 1 (yes) and 0 (no), even
though there may be various levels of relationship in social
environments, for example, we enjoy talking with some
friends and with some friends we try to avoid talking. ,e
important thing to remember here is that in both cases,
the relationship is friendship, but its dimension is dif-
ferent; additionally, in every relationship, bipolarity exists
as a strength and weakness of the relationship. Akram
[14, 15] introduced the notion of bipolar-valued fuzzy
relation and bipolar-valued fuzzy graph (BVFG) in 2011
after applying Zhang’s [16] bipolar-valued fuzzy sets
(BVFS) to graph theory. BVFSN’s motivation is to rep-
resent social actors and relationships with bipolar
membership grades, which are very useful for measuring
the extent and bipolarity of relationships. Many research
scholars have generalized the concepts, definitions, al-
gorithms, as well as characteristics of BVFG’s and de-
veloped new notions and results based on Zhang and
Akram’s bipolarity theory in recent years.

,e detection of influential nodes (node centrality
measure) is among the most critical topics in investigating
the nature of diffusion. Finding the appropriate actor is the
best way to prevent and control the spread of negative types
by protecting the most adequate actors [17]. For example, in
social network marketing, most of the ads are distributed in
few amount of time and with minimum effort by utilizing
the influential actors. According to popular belief, the person
with the most connections is the most important. However,
a person with just a large number of connections does not
necessarily spread information faster because the dissemi-
nation of information is dependent not only on the number
of connections but also depends on the strength and
weakness of the link. Our main assumption is that each
relationship has some positive and negative attributes that
affect the network’s spreading system. In the past few years,
various types of centrality measures have been introduced to
end this, but all of these measures ignore the presence of
bipolarity and fuzziness in the relationship. Bavelas [18]
developed the centrality measure for integrated networks
and suggested its use in the analysis of communication
networks. Shimble [19] introduced stress centrality as
a method for measuring the amount of communication
based on the shortest path. Kartz [20] introduced kartz
centrality to quantify a node’s corresponding level of in-
fluence inside a system. Freeman [21] first created a com-
putational formula related to the centrality that counts the
number of other vertices directly joining the target vertex. As
for the degree of relative power and centrality, Bonachich
[22] introduced a generalized concept of degree centrality.

Barrat et al. [23], Newman [24], and Opshl and Panzarasa
[25] generalized and extended the degree of the nodes by
taking the sum of the weights into account instead of the ties
number.

Many centrality measures, like degree centrality, close-
ness centrality, eigenvector centrality, sub-graph centrality,
K-shell centrality, neighborhood centrality, P-mean cen-
trality, H-index centrality, and others, are available in the
literature. Singh [26] summarizes a few of the centrality
measures that are widely used for mining social network data
and discusses multiple research directions related to such
measures. ,e main thing in social networks is the re-
lationships between actors. We have mostly seen that these
relationships are not fixed and that there is no technique to
measure the strengths of social relationships with one an-
other. For example, if the links between two actors are given
by “friendship,” the corresponding graph is not a classical
graph. ,e entire system can be expressed as a fuzzy graph,
which gives rise to the concept of social network with
fuzziness and has piqued the interest of several re-
searchers in fuzzified social relational networks. Nair and
Sarasamma [10] are the first researchers to discuss social
network fuzzy parameters. ,ey measured social actors
and their relationships using the fuzzy techniques in the
relational network. Qian and Zeng [27] discussed the
structural properties of centrality measures based on fuzzy
hypergraphs and defined some centrality measures such as
relative degree centrality, relative closeness centrality, and
relative betweenness centrality. ,e primary goal of this
research is to develop an effective and efficient bipolar
framework for modeling social networks that include the
degree of bipolarity and fuzziness of actors and their
relationships, namely bipolar-valued fuzzy social network
(BVFSN). In this article, we extend the concept of cen-
trality measure to BVFSN, proposing a few centrality
measurements such as BF-degree centrality and BF-
closeness centrality. To demonstrate the significance of
these centrality measures, we discuss an example of lo-
cating the most popular researcher in the G-S research
network.

,e rest of this article is designed as follows: Section 2
goes over previous relevant studies. Section 3 introduces
a bipolar-valued fuzzy social network model as well as some
definitions such as the fuzzy stability index, fuzzy effective
strength, and fuzzy total strength. Section 4 discusses the
proposed centrality measures, BF-degree centrality and BF-
closeness centrality. Section 5 presents the mathematical and
graphical analysis based on two different centrality measures
applied to the G-S Research Network. Section 6 wraps up the
article and provides a discussion.

2. Preliminaries

,e purpose of this section is to refresh your memory on the
fundamental concepts that appear frequently in this article.
In this section, we will go over the fundamental concept of
bipolarity with fuzziness, some basic centrality measures as
well as bipolar-valued fuzzy sets and graph-theoretical
concepts.
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,roughout the article, indicate IP � [0, 1], IN � [− 1, 0],
and unless stated separately, X always denote the universe of
discourse.

2.1. Bipolarity and Fuzziness. Fuzziness and bipolarity are
natural aspects of human psychology. On the one hand, the
fuzzy set theory has been developed to deal with imprecision
in a systematic manner that occurs when the boundaries of
a class of objects are not clearly defined. Bipolarity, on the
other hand, presumes the presence of the two reference
poles, P/N, such as good/bad, true/false, and effect/side
effect. Han and Shi [28] classified bipolarity into three
categories.

(1) Type I: in this type of bipolarity, the second tuple in
ordered pair is completely regarded as the comple-
ment of the first tuple, i.e., N � − P (bad � not good),
implying that the study of one tuple is sufficient to
know all the facts. In fuzzy case, although it is not
explicitly stated, the concept of the fuzzy set is closely
related to the concept of this type of bipolarity
βN(x) � − (βP(x)) � 1 − βP(x).

(2) Type II: these types of bipolarity share a similar
behavior in both poles, it is also naturally thought
that the consistency condition must be satisfied, i.e.,
no conflict exists between the two poles.,e negative
pole, on the other hand, may not be the positive
pole’s complement, i.e., N≠ − P (bad ≠ not good).
,roughout this situation, an element can neither
fulfill nor contradict a concept.

(3) According to the intuitionistic fuzzy set (IFS), if
βP(x) is viewed as the positive polarity’s member-
ship function and βN(x) is viewed as the negative
polarity’s membership function, then
βP(x) + βN(x)≤ 1 make sure the consistency con-
dition. IFS beautifully includes the concept of this
type of bipolarity in terms of semantics.

(4) Type III: both poles even now share a similar be-
havior in type II bipolarity, whereas bipolarity of
judgments is sometimes associated with using two
distinct valuation ranges, in other words, both poles
represents the degree of truthiness and the degree of
falsity, respectively, that are supposed to occur si-
multaneously and independently of each other. In
this regard, overall freedom of positive and negative
conditions is supposed, and controversy is assumed
to persist, implying that the IFS-assumed situation of
stability should be left in this scenario.

It is clear that none of the fuzzy set theories mentioned
above can assert this type of conflicting bipolarity. In this
context, BVFS, a new fuzzy set theory that combines
fuzziness with inconsistent bipolarity, was introduced.

2.2. Bipolar-Valued Fuzzy Set. A bipolar-valued fuzzy set
(BVFS) in X is defined by the mapping β �

(βP, βN): X⟶ IP × IN, x⟶ (βP(x), βN(x)), ∀x ∈ X,
where βP: X⟶ IP, x⟶ βP(x) ∈ IP and βN: X⟶ IN,

x⟶ βN(x) ∈ IN are membership functions. ,e positive
and negative membership degree (βP(x), βN(x)), re-
spectively, define the satisfaction degree of an element x ∈ X

as the corresponding property of BVFS β and some im-
plicit counter property of BVFS β. Note that, the in-
spiration of BVFS is nothing but simply join the bipolarity
and fuzziness, BVFS concentrates on expressing the bi-
polarity and extending the membership function from
IP⟶ IP × IN. It is obvious that IP × IN are mathemat-
ically equivalent, but as we mentioned, mathematically
equivalent is one thing and semantics is another thing. In
the semantic aspects of the real world, IP × IN is quite
appropriate for human behavior to express bipolarity than
IP × IP [28].

2.3. Bipolar-Valued Fuzzy Relation. Bipolar-valued fuzzy
relations are a couple of fuzzy relations, particularly re-
garding membership and non-membership functions that
reflect the benefits and drawbacks of the available data. Some
authors have also called bipolar-valued fuzzy relations
“bifuzzy relations” [28].

Let U be a reference set. A mapping α � (αP, αN): U ×

U⟶ [0, 1] × [− 1, 0] is said to be bipolar-valued fuzzy
relation on U such that αP(x, y) ∈ [0, 1] and
αN(x, y) ∈ [− 1, 0]. If α � (αP, αN) and β � (βP, βN) are
bipolar-valued fuzzy sets on U and if α is bipolar-valued
fuzzy relation on U, then α is said to be bipolar-valued fuzzy
relation of β if αP(x, y)≤min βP(x), βP(y)􏽮 􏽯 and
αN(x, y)≥max βN, βy

􏽮 􏽯∀x, y ∈ U.

2.4. Bipolar-Valued Fuzzy Graph. Let α � (αP, αN) and β �

(βP, βN) are the BVFS’s of U and 􏽦U2, respectively, for which
βP(xy)≤min αP(x), αP(y)􏼈 􏼉∀xy∈∈􏽦U2 and βN(xy)≥max
αN(x), αN(y)􏼈 􏼉∀xy ∈ 􏽦U2 and βP(xy) � βN(xy) � 0∀xy

∈ (U2 − E), then G � (U, α, β) is said to be bipolar-valued
fuzzy graph (BVFG) over the graph G∗ � (U, E) [14, 29], an
example of bipolar-valued fuzzy graph is shown in Figure 1.

Definition 1 (see [14]). A strong bipolar-valued fuzzy graph
􏽥G over the graph G∗ is an ordered triple 􏽥G � (U, α, β), where
α � (αP, αN): U⟶ [0, 1] × [− 1, 0] and β � (βP, βN):
􏽦U2⟶ [0, 1] × [− 1, 0] are the bipolar-valued fuzzy sets in U

and 􏽦U2, respectively, satisfies the following conditions

βP
x1x2( 􏼁 � min αP

x1( 􏼁, αP
x2( 􏼁􏽮 􏽯 ∀x1x2 ∈ U

2
,

βN
x1x2( 􏼁 � max αN

x1( 􏼁, αN
x2( 􏼁􏽮 􏽯 ∀x1x2 ∈ U

2
.

(1)

Definition 2 (see [5]). Let u1, u2 . . . um􏼈 􏼉 be the collection of
vertices in BVFG (U, α, β). A path ρ � u1u2 · · · um is a series
of distinguishable nodes that satisfy one of the following
conditions for all ui, uj in u1, u2 · · · um􏼈 􏼉.

(1) βP(uiuj)≥ 0 and βN(uiuj) � 0 for some i, j.
(2) βP(uiuj) � 0 and βN(uiuj)≤ 0 for some i, j.
(3) βP(uiuj)≥ 0 and βN(uiuj)≤ 0 for some i, j.
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Definition 3. Let G � (U, α, β) be a bipolar-valued fuzzy
graph (BVFG) over the graph G∗ � (U, E). Bipolar-valued
fuzzy strength of a path ρ � u1u2 · · · um is defined as
ξ(ρ) � [ξP

(ρ), ξN
(ρ)], where ξP

(ρ) � min βP(uij)􏽮 􏽯,

ξN
(ρ) � max βN(uij)􏽮 􏽯, (i, j � 1, 2, . . . n).

Definition 4. Bipolar-valued fuzzy connecting strength be-
tween two vertices ui and uj is given by CONN(ui, uj)

� (CONNP(ui, uj), CONNN(ui, uj)), where CONNP

(ui, uj) � max
ρ∈c(ui,uj)

SP(ρ)􏼈 􏼉 and CONNN(ui, uj) � min
ρ∈c(ui,uj)

SN(ρ)􏼈 􏼉. Here c(ui, uj) indicates the set of all possible paths
between the vertices ui and uj.

2.5. Some Basic Centrality Measures. Degree centrality:
a node’s degree centrality represents how many edges are
directly linked to the target node. Formally, degree centrality
is represented by Cd(i) � di, where di is the degree of node i

[30]. ,e degree centrality, however, demonstrates the
importance of vertices up to a certain level, but we cannot
say that vertices of the same degree perform the same
function in the network. Because the scope of this centrality
measure is limited and does not take into account the large-
scale relationships in the network, this measure does not
have a high level of accuracy.

2.5.1. Closeness Centrality. Sabidussi [31] introduced
closeness centrality as the inverse of the sum of the geodetic
distances of all nodes in the network from each node. ,e
closeness centrality of a node i is represented by
Cc(i) � 1/􏽐j∈Nd(i, j), where N is the collection of nodes in
a network. ,is method is preferable to degree centrality be-
cause it considers both direct and indirect connections between
vertices. If a network has disconnected components, this
measure cannot be used because the finite distance between
nodes in unconnected parts of the network cannot be calculated.

2.5.2. Betweenness Centrality. ,e goal of betweenness
centrality is to determine the significance of a node based on
the information flow in the graph. It is determined by the
number of times a node appears in the shortest paths be-
tween all pairs of nodes in the graph. ,e betweenness
centrality [32] of a vertex i in the network is given by
Cb(i) � 􏽐y≠z∈Nσyz(i)/σyz, where σyz(i) is the number of

shortest paths between pair of nodes y and z containing i,
and σyz is the number of all shortest paths between pair of
nodes y and z. ,is is a global centrality measure but very
complex in a large network.

3. BVFSN Model and Bipolar-Valued
Fuzzy Centrality

A social network comprises actors (such as individuals or
organizations) and other social instructions between actors.
,e purpose of social network analysis (SNA) is to un-
derstand the nature, structure, consequences, and conditions
of the relationship between actors. ,ese social network
relations are typically characterized by vague notions such
as “good,” “average,” “strong,” “very strong,” and “ex-
treme.” ,e fuzzy set comes normally here to solve this
problem. However, a wide variety of network analyses,
especially social network analysis is based on bipolar or
two-sided relationships, usually reflected as the strength
and weakness of the relationship. ,is leads us to model
a social network in terms of fuzziness with bipolarity. ,is
section introduces two centrality measures, BF-degree
centrality and BF-closeness centrality, which will be useful
in determining the central person in a bipolar-valued
fuzzy social network.

3.1. BeModel. Take a look at a social networking site, here
we assume that V is the collection of all actors and E is the
collection of ties between actors. ,e bipolar-valued fuzzy
graph over the graph G � (V, E) is defined as a couple (α, β),
where α � (αP, αN) and β � (βP, βN) are the bipolar-valued
fuzzy sets in V and 􏽦V2 satisfies the condition βP(v1v2)≤
min αP(v1), αP(v2)􏼈 􏼉, ∀xy ∈􏽦V2, βN(v1v2)≥ max αN(v1),􏼈

αN(v2)}∀v1v2 ∈􏽦V2, and βP(v1v2) � βN (v1v2) � 0∀xy ∈
􏽦V2 − E. ,us bipolar-valued fuzzy social network (BVFSN) is
represented by a triplet: B� (V, α, β), where

(1) V is the finite set of actors in the social network.
(2) α: V⟶ [0, 1] × [− 1, 0] is a bipolar-valued fuzzy

set, representing the bipolar satisfaction degree of
actors in social networks.

(3) β: V × V⟶ [0, 1] × [− 1, 0] is the bipolar-valued
fuzzy relation, representing the bipolar satisfaction
degree of ties between social actors.

a2

a5

a3

a4

a1

a6

(0.7, −0.8) (0.6, −0.4) (0.5, −0.8)

(0.7, −0.3)(1, −1)(0.8, −0.7)

(0.6, −0.7) (0.3, −0.1)
(0.5, −0.3)

(0.7, −0.5)

(0.6, −0.3)

(0.5, −0.1)

Figure 1: Example of the bipolar-valued fuzzy graph over graph G.
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3.2. Bipolar-Valued Fuzzy Adjacency Relations. Several
prescripts already have been presented to address the issue of
inadequate knowledge about the sharpness of the cor-
relation between pairs of elements. As an example,
a discrete measure may be adopted and each entry aij is
assigned a value to represent the sharpness of the re-
lationship between ai and aj. ,is method, depends on
the valued adjacency relations is commonly preferred to
solve the problems of un-valued relationships. Here, we
would like to attempt an alternative outlook through
bipolar-valued fuzzy set theory to obtain bipolar-valued
fuzzy adjacency relationship between actors. A bipolar-
valued fuzzy relation R on a non-empty set X is given by
a mapping R � (RP, RN): X × X⟶ [0, 1] × [− 1, 0] and
we write in short rij � R(ai, aj). By means of the matrix
M � [rij]n×n, we can easily represent the bipolar-valued
fuzzy relation in which each entry rij is given by the
bipolar satisfaction degree of the relation between ai and
aj. ,at is, the value of each entry rij is a response to the
question: “what are the degree of strengths and weakness
in the relationship between ai and aj?” ,erefore, in the
context of BVFSN

R ai, aj􏼐 􏼑 �

0, if ai is not related to aj,

(0, 1], degree of strength in the relationship between ai and aj,

[− 1, 0), degree of weakness in the relationship between ai and aj.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

To be more specific, suppose X is a universe of dis-
course, R is a bipolar-valued fuzzy relation on X, and thus
a bipolar-valued fuzzy relation is frequently expressed by
the matrix:

MR �

r
P
11, r

N
11􏼐 􏼑 r

P
12, r

N
12􏼐 􏼑 . . . r

P
1n, r

N
1n􏼐 􏼑

r
P
21, r

N
21􏼐 􏼑 r

P
22, r

N
22􏼐 􏼑 . . . r

P
2n, r

N
2n􏼐 􏼑

⋮ ⋮ ⋱ ⋮

r
P
n1, r

N
n1􏼐 􏼑 r

P
n2, r

N
n2􏼐 􏼑 . . . r

P
nn, r

N
nn􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where (rP
ij, rN

ij ) ∈ [0, 1] × [− 1, 0] represents the degree of
strength and weakness in the relationship between ai and aj.

Definition 5. Let us B � (V, α, β) be a bipolar-valued fuzzy
social network. ,e stability of actors is important in any
network; for example, if ai is any actor in BVFSN, then we
define the fuzzy stability index of ai is given by

S ai( 􏼁 �

d

η
, if d< η,

1, if d≥ η,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

where d is the number of direct connections of ai and η is the
stable connection number that is constant in the network.

Definition 6. ,e connectivity index of a BVFSN
B � (V, α, β) over the bipolar-valued fuzzy graph G denoted
by CI(B) � (CIP(B), CIN(B)), where CIP(B) �

􏽐a,b∈VαP(a)αP(b)CONNP(a, b) and CIN(B) �

􏽐a,b∈VαN(a)αN(b)CONNN(a, b).

Definition 7. Suppose aih1
, ah1h2

, ah2h3
. . . ahj is any path

between the vertices ai and aj then bipolar-valued fuzzy
effective strength of the path is given by

a1

a2

a3

a4

a5

a6

(0.6, −0.3)

(0.5, −0.4)

(0.7, −0.1)

(0.5, −0.5)

(0.4, −0.2)

(0.8, −0.2)

(0.4, −0.3)

(0.3, −0.1)

(0.3, −0.2)
(0.4, −0.1)

(0.3, −0.1)
(0.5, −0.1)

Figure 2: Bipolar-valued fuzzy social network (BVFSN).
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τ ai, aj􏼐 􏼑 �
min a

P
ih1

+ a
N
ih1

􏼐 􏼑, . . . , a
P
hj + a

N
hj􏼐 􏼑􏽮 􏽯

Number of edges between ai and aj

. (5)

Definition 8. Suppose aih1
, ah1h2

, ah2h3
. . . ahj is any path

between the vertices ai and aj then the fuzzy total strength of
the path is given by

τ ∗ ai, aj􏼐 􏼑 �
a

P
ih1

+ a
N
ih1

+ · · · + a
P
hj + a

N
hj

Number of edges between ai and aj

. (6)

3.3. Bipolar-Valued Fuzzy Centrality Measures. At the mo-
ment, information about the entire world can be obtained in
a fraction of a second, and social networks play a significant
part in this process. Identifying the influential broadcasters
to maximize broadcast potential has been a difficult and
important topic so far. Most traditional influence measures
evaluate the significance of adjacent nodes in a graph based
on their functional and spatial characteristics and are un-
concerned with the merits, strengths, and weaknesses of the
relationship. As a result, we proposed two basic centrality
measures based on bipolar-valued fuzzy relations: BF-degree
centrality and BF-closeness centrality.

3.4. BF-Degree Centrality. Shaw was the first to introduce
degree centrality as a critical vertex index, which was later
defined by Niemann. Freeman was the first to propose
centrality as a mathematical model based on the number of
ties connected to a vertex. In fact, a node with a higher
degree is considered more important. To some extent, this
measure would demonstrate the significance of nodes, but it
does not consider the strength and weakness present in the
relationship, also we observe that vertices with the same
degree do not necessarily play equal importance in the
network.

Bipolar-valued fuzzy degree centrality emphasizes the
degree of the node as well as the sum of the strengths and
weaknesses of the relationship. Bipolar-valued fuzzy degree
centrality of a vertex ai is given by

BFd ai( 􏼁 � S + 􏽘
j∈N

a
P
ij􏼐 􏼑

q1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − a
N
ij􏼐 􏼑

q2
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (7)

where S is the fuzzy stability index as we defined in Defi-
nition 5 and q1, q2 are positive real numbers that are used to
ensure the consistency of positive and negative satisfaction
degrees. If q1 and q2 are the same numbers, the ranking of
influential actors remains unchanged. We can choose dif-
ferent values of q1 and q2 based on network properties to
maintain uniformity. For example, if we have a terrorism
network, negativity is much higher than positivity; similarly,
if we have a social welfare network, positivity is much higher
than negativity. ,ese numbers are only used to adjust the
values of positive and negative satisfaction degrees. By de-
fault, these can be interpreted as unity.

3.5. BF-Closeness Centrality. Bavelas proposed the closeness
centrality measure, which Sabidusi defined as the inverse of
the sum of the geodesic distances from each vertex in the
network to every other vertex. It is a centrality measure
based on distance, and distance is measured using the
shortest paths. Closeness centrality refers to the ease and
convenience of connecting the focused node to the other
nodes. Using Dijkstra’s algorithm for shortest paths, New-
man generalized closeness centrality to weighted networks.

Under this segment, we introduce the idea of bipolar-
valued fuzzy closeness centrality, which recognizes not just
the shortest distance of a path, but as well as its effective and
total strength, as the inverse of the sum of the number of

Collect the data from any social network. 

Find the bipolar membership degrees
of nodes through equation (4).

Find the bipolar membership degrees
of edges through equations (5) and (6).

Draw the bipolar-valued fuzzy social network. 

Start

Find the stability index of all nodes and the
favourable path between each node in the network.

Stop

Find BF-degree centrality and BF-closeness centrality
of each node using equations (1) and (3).

Ranking the nodes according to their centrality. 

Select the most central node in the network. 

Figure 3: Flowchart to determine the most central actor in BVFSN.

6 Discrete Dynamics in Nature and Society



edges in the favorable path between two vertices and the sum
of the relationship’s strength and weaknesses.

If there are two or more paths between vertices then we
take the favorable path. A path is said to be favorable if the
effective strength of the path is maximum. ,e effective
strength of the path aih1

, ah1h2
, ah2h3

. . . ahj is given by

τ aih1
, ahj􏼐 􏼑 �

min a
P
ih1

+ a
N
ih1

􏼐 􏼑, . . . , a
P
hj + a

N
hj􏼐 􏼑􏽮 􏽯

No. of edges between aih1
and ahj

. (8)

If the effective strength of two or more paths is equal, we
can calculate the total strength of the path, which is given by

τ∗ aih1
, ahj􏼐 􏼑 �

a
P
ih1

+ a
N
ih1

+ · · · + a
P
hj + a

N
hj

No. of edges between aih1
and ahj

. (9)

If aih1
, ah1h2

, . . . , ahj is the favorable path between ai and
aj, then the bipolar fuzzy distance is denoted by δ(ai, aj) and
defined as

δ ai, aj􏼐 􏼑 � λ􏽘1 − a
P
ih

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + λ􏽘 a
N
ih

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (10)

where λ is the number of the edges between the nodes ai and
aj in the favorable path. If positive membership degree of
edges in the path between ai and aj are maximum then the
bipolar fuzzy distance is minimum and if negative mem-
bership degree of edges in the path between ai and aj are
maximum then the bipolar fuzzy distance is maximum.

Bipolar-valued fuzzy closeness centrality of a vertex ai is
given by

BFc ai( 􏼁 �
n − 1

􏽐aj∈Nδ ai, aj􏼐 􏼑
, (11)

where δ(ai, aj) is the bipolar-valued fuzzy distance and n is
the number of vertices in the network.

3.6. Example. Suppose G � (V, E) be the graph, where V �

v1, v2, v3, v4, v5, v6􏼈 􏼉 and E � v1v2, v2v3, v3v4, v3v5, v5v6,􏼈

v6v2}. ,en bipolar-valued fuzzy social network and

bipolar-valued membership degrees of actors and ties are
represented in Figure 2 and Table 1.

3.7. Bipolar Fuzzy Centrality Measures

3.7.1. BF-Degree Centrality. Bipolar fuzzy degree centrality
of a node ai is given by

BFd ai( 􏼁 � S + 􏽘
j∈N

a
P
ij􏼐 􏼑

q1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − a
N
ij􏼐 􏼑

q2
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (12)

where S is the fuzzy stability index, here we may take stable
connection number d�maximum degree of a node in the
network that is 3 and q1, q2 are positive real numbers. For
simplicity, let us take q1 � q2 � 1.
BFd a1( 􏼁 �

1
3

+(0.4 − 0.3) � 0.43,

BFd a2( 􏼁 � 1 +[(0.4 − 0.3) +(0.3 − 0.1) +(0.5 − 0.1)] � 1.70,

BFd a3( 􏼁 � 1 +[(0.5 − 0.1) +(0.3 − 0.1) +(0.4 − 0.1)] � 1.90,

BFd a4( 􏼁 �
1
3

+[(0.3 − 0.1)] � 0.53,

BFd a5( 􏼁 �
2
3

+[(0.4 − 0.1) +(0.3 − 0.2)] � 1.07,

BFd a6( 􏼁 �
2
3

+[(0.3 − 0.1) +(0.3 − 0.2)] � 0.96.

(13)

Figure 2 shows that nodes a1 and a4 have the same
number of directly connected edges, and the positive
membership degree of node a1′s edge is higher than the
positive membership degree of node a4′s edge, but the bipolar
fuzzy degree centrality of node a4 is higher than the bipolar
fuzzy degree centrality (BF-degree centrality) of node a1.
,is is because bipolar fuzzy degree centrality takes into
account not only the direct connection but also the strength
and weaknesses of the relationship. Ranking of the nodes

R1 R2

R3 R4

R5 R6

R7

R8

R9

R10

R11

R12

R13 R14

R15

Figure 4: Bipolar-valued fuzzy G-S Research Team.
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according to BF-degree centrality is given as
a3 > a2 > a5 > a6 > a4 > a1.

3.7.2. BF-Closeness Centrality. If aih1
, ah1h2

, . . . , ahj is the
favorable path between ai and aj then

δ ai, aj􏼐 􏼑 � λ􏽘 1 − a
P
ih

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + λ􏽘 a
N
ih

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (14)

where λ is the number of the edges between ai and aj in the
favorable path. Bipolar-valued fuzzy closeness centrality of
a vertex ai is given by

BFc ai( 􏼁 �
n − 1

􏽐aj∈Nδ ai, ai( 􏼁
, (15)

where δ(ai, aj) is the bipolar-valued fuzzy distance and n is
the number of vertices in the network.

δ a1, a2( 􏼁 � 1 × 0.6 + 1 × 0.3, δ a1, a3( 􏼁 � 2 ×(0.6 + 0.5) + 2 ×(0.3 + 0.1),

δ a1, a4( 􏼁 � 3 ×(0.6 + 0.5 + 0.7) + 3 ×(0.3 + 0.1 + 0.1),

δ a1, a5( 􏼁 � 3 ×(0.6 + 0.5 + 0.6) + 3 ×(0.3 + 0.1 + 0.1), δ a1, a6( 􏼁 � 2 ×(0.6 + 0.7) + 2 ×(0.3 + 0.1),

BFc a1( 􏼁 �
5

0.90 + 3.00 + 6.90 + 6.60 + 3.40
,

�
5

20.8
� 0.240.

(16)

Similarly,

BFc a2( 􏼁 �
5

0.90 + 0.60 + 2.80 + 2.60 + 0.80

�
5

7.70
� 0.649,

BFc a3( 􏼁 �
5

3.00 + 0.60 + 0.80 + 0.70 + 2.80

�
5

7.90
� 0.633,

BFc a4( 􏼁 �
5

6.90 + 2.80 + 0.80 + 3.00 + 6.60

�
5

20.1
� 0.248,

BFc a5( 􏼁 �
5

6.60 + 2.60 + 0.70 + 3.00 + 0.90

�
5

13.80
� 0.362,

BFc a6( 􏼁 �
5

3.40 + 0.80 + 2.80 + 6.60 + 0.90

�
5

14.50
� 0.345.

(17)

Closeness centrality refers to how close a node is to other
nodes in a network using the shortest distance, but only the
shortest distance cannot be used to measure two nodes’
closeness. When the distance between two nodes is small,
but their relationship is poor, they are not close. By using
a favorable path, BF-closeness centrality considers the

shortest distance as well as the path’s strength and weakness.
According to BF-closeness centrality ranking of the node in
Figure 2 is given as a2 > a3 > a5 > a6 > a4 > a1.

4. Application and Analysis of BVFSN

Inside this portion, we demonstrate how the presented
Bipolar-valued fuzzy social network framework and cen-
trality measures can provide a solution to a well-known
social network analysis problem, namely, detecting the most
central node. We present an application related to the G-S
Research network here and explain the process of finding the
most central actor in Figure 3.

We select 15 authors from Google Scholar, as shown in
Tables 2 and 3, which have coauthor relationship with one
another. ,e two poles in this bipolar-valued fuzzy social
network represent each author’s publications number and
citations number from 1998 to 2016. B � (V15, α, β) is
a BVFSN of G-S Research Team, where V15 � R1, R2, . . . ,􏼈

R15} is a set of 15 authors, α � (αP, αN): V15⟶ [0, 1] ×

[− 1, 0] and β � (βP, βN): V15 × V15⟶ [0, 1] × [− 1, 0] are
bipolar-valued fuzzy sets and bipolar-valued fuzzy relations
on V15, respectively.

4.1. Description of Bipolar Membership Grades. In Figure 4
each node is treated as an author, the bipolar membership
grade of the nodes, representing the degree of publications
and the degree of citations. Here, we determine that the
maximum number of article publications and citations per
article within the period 1998 to 2016 are 500 and 30,
respectively.

,e positive and negative membership grades of the
nodes shown in Table 4 are determined by
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α+
Ri( 􏼁 �

ki

500
, if ki < 500,

1, if ki ≥ 500,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

and α−
Ri( 􏼁 �

− 1 −
hi

30
􏼠 􏼡, if hi < 30,

0, if hi ≥ 30,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(18)

where ki and hi represent the number of publications and
citations of an author Ri as shown in Table 2.

Each edge in this network represents a coauthorship
relationship between two nodes. Following the collection of
data fromGoogle Scholar, we determined that themaximum
number of publications and citations per article as a co-
author is 25 and 30, respectively.

,e positive and negative membership grades of edges
shown in Table 5 are determined by

β+
Rij􏼐 􏼑 �

pij

25
× min α+

Ri( 􏼁, α+
Rj􏼐 􏼑􏽮 􏽯, if pij < 25,

min α+
Ri( 􏼁, α+

Rj􏼐 􏼑􏽮 􏽯, if pij ≥ 25,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

And

β−
Rij􏼐 􏼑 �

1 −
gij

30
􏼒 􏼓 × max α−

Ri( 􏼁, α−
Rj􏼐 􏼑􏽮 􏽯, if gij < 30,

max α−
Ri( 􏼁, α−

Rj􏼐 􏼑􏽮 􏽯, if gij ≥ 30.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

As shown in Table 3, pij and gij represent the number of
publications and citations for which Ri and Rj are coauthors.

We calculate the BF-degree centrality and BF-closeness
centrality of each node in the network after modeling the
problem in BVFSN. First, we fix the stable connection
number η � 6 for G-S Research network and use Definition
5 to calculate the stability index of all nodes. Find the fa-
vorable path between any two nodes in the network and
calculate the bipolar fuzzy distance between them. Finally,
using (7) and (11), wemay calculate BF-degree centrality and
BF-closeness centrality for each node. We also compute
degree centrality and closeness centrality in the crisp sense at
the same time for comparative analysis. ,e four centrality
measurements of the G-S Research Team are listed in Ta-
ble 6. ,e ranking of actors are also highlighted. In Figures 5
and 6, we also present detailed information about these
15 researchers based on the four centrality measures,
with the x-axis representing the researchers and the y-axis

corresponding to their scores. As we will see, R7 has the
highest BF-degree centrality score. It means that R7 is the
central researcher who has better interpersonal relationships
with others, i.e., R7 is liked by other researchers with good
influence. While R9 has the lowest BF-degree centrality
score. It means that R9 is the researcher whose strength of
relationship with other researchers is weak. R6 receives the
highest BF-closeness centrality score. ,is means that R6 is
the closest researcher, having the shortest bipolar fuzzy
distance with the majority of the researchers. R10, on the
other hand, receives the lowest score based on BF-closeness
centrality, which reflects R10′ s low connectivity from the
people present in the network.

4.2. Comparative Analysis. If there is a relationship between
nodes in a crisp graphical model, the score value is 1,
otherwise, it is 0. However, in real-life relationships, we must

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15
0

0.2

0.4

0.6

0.8

1

1.2

BF-closeness centrality
Closeness Centrality

Figure 6: Scattered chart marked with lines depending on BF-
closeness and closeness centrality measures (normalized) on G-S
Research network.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15
0

0.2

0.4

0.6

0.8

1

1.2

BF-degree centrality
Degree Centrality

Figure 5: Scattered chart marked with lines depending on BF-degree
and degree centrality measures (normalized) on G-S Research network.
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recognize that some positive and negative properties exist,
which we cannot judge with only two degrees 0 and 1. We
present the BVFSN model, which has nodes and edges with
bipolar membership degrees. We extend the membership
degrees \{0, 1}\ in this network to the interval [0, 1] × [− 1, 0],
which allows us to model the problem with fuzziness and
bipolarity. ,e main difference between crisp centrality
measures and our centrality measures is that it only takes
into account the number of direct connections and shortest
distances, but nodes with the same number of direct con-
nections do not necessarily have the same strength, and it
also does not take into account the bipolarity of the re-
lationship, which is always present in real life. ,e strengths,
connectivity, and stability of paths are also important factors
that we take into account in our proposed method. ,e
differences between our proposed centrality measures and
other centrality measures are shown in Table 6.

In case of degree centrality the ranking of influential
authors from Figure 5 is given by R6 >R7 � R11 >R14 � R8 >
R1 � R3 � R12 � R13 � R15 >R2 >R4 � R5 � R10 >R9, the
main issue is that it only depends on the number of con-
nections, so most of the authors have the same rank. While
a ranking of influential authors based on BF-degree centrality
is provided here. R7 >R6 > R11 >R14 >R8 >R3 >R15 >R13 >
R4 >R12 >R1 >R2 >R10 > R5 > R9, which is more accurate
than degree centrality. According to degree centrality R6 is the
most influential author, but according to BF-degree centrality
R7 is the most influential author. R6 has a direct connection
with six authors, and R7 has a direct connection with five
authors, however the author R7 connections strength is much
better than the author R6 connections strength.

In view of closeness centrality, from Figure 6 ranking
of the authors is given as R6 >R7 >R11 >R13 > R14 >R8 >
R1 >R3 � R5 >R15 >R12 >R2 >R4 >R9 � R10. According to

Table 2: Authors publications and citations since 1998 to 2016.

Author Publication Citation
R1 184 19407
R2 97 2514
R3 240 7578
R4 219 4594
R5 104 1720
R6 396 8833
R7 444 8761
R8 334 3816
R9 118 1291
R10 123 1748
R11 592 8839
R12 354 3092
R13 310 4822
R14 414 5104
R15 193 4590

Table 3: Coauthors publications and citations since 1998 to 2016.

Coauthor Publication Citation Coauthor Publication Citation
R1, R2 6 137 R6, R11 19 353
R1, R6 11 256 R6, R13 13 340
R1, R12 14 211 R7, R8 32 348
R2, R6 21 490 R7, R13 8 279
R3, R7 25 533 R7, R14 28 437
R3, R8 17 441 R8, R11 15 234
R3, R15 14 387 R9, R14 13 315
R4, R8 13 321 R10, R12 12 297
R4, R11 18 341 R11, R14 21 366
R5, R6 9 193 R11, R15 18 410
R5, R10 16 297 R12, R13 14 279
R6, R7 23 446 R14, R15 26 419

Table 1: Bipolar-valued fuzzy membership degrees.

V a1 a2 a3 a4 a5 a6

degree (0.6, − 0.3) (0.5, − 0.4) (0.7, − 0.1) (0.5, − 0.5) (0.4, − 0.2) (0.8, − 0.2)

E a1a2 a2a3 a3a4 a2a6 a6a5 a5a3

degree (0.4, − 0.3) (0.5, − 0.1) (0.3, − 0.1) (0.3, − 0.1) (0.3, − 0.2) (0.4, − 0.1)
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BF-closeness centrality, the authors are ranked as follows:
R6 >R7 >R11 >R14 >R13 >R8 >R1 >R3 >R5 >R15
>R2 >R4 >R12 >R9 >R10.We can easily see that the ranking
of authors has changed significantly using both centrality
measures. ,e main reason for the disparities in ranking is
the capability of centrality measures; closeness centrality
only considers the shortest distance between two nodes,
whereas BF-closeness centrality considers the shortest dis-
tances as well as the effective and total strength of the path
between two nodes. For example, there are two shortest
paths between the nodes R6 and R8 such as
R6⟶ R7⟶ R8 and R6⟶ R11⟶ R8. According to
closeness centrality, we may consider any of the path both

have same importance, but in the BF-closeness centrality,
effective strength of the path R6⟶ R7⟶ R8 is maximum
and it is most favorable path between these two nodes.

5. Conclusion

We named the bipolar-valued fuzzy social network (BVFSN)
after a novel modeling technique based on the bipolar-
valued fuzzy set theory that we used to describe the network
with fuzziness and bipolarity. ,e determination of the most
central node in a complex network is a critical and un-
resolved problem. As a result, new measures for identifying
central nodes with greater accuracy are appealing. In this

Table 6: BF-degree centrality, BF-closeness centrality, degree centrality, and closeness centrality with ranking of authors.

Author
BF-degree centrality BF-closeness centrality degree centrality closeness centrality

with rank with rank with rank with rank
BFd (Ri) BFc (Ri) d (Ri) C (Ri)

R1 0.517 (11) 0.231 (7) 0.214 (4) 0.437 (7)
R2 0.486 (12) 0.192 (11) 0.142 (5) 0.400 (10)
R3 1.499 (6) 0.230 (8) 0.214 (4) 0.424 (8)
R4 0.712 (9) 0.169 (12) 0.142 (5) 0.389 (11)
R5 0.295 (14) 0.227 (9) 0.142 (5) 0.424 (8)
R6 2.678 (2) 0.459 (1) 0.428 (1) 0.636 (1)
R7 2.916 (1) 0.450 (2) 0.357 (2) 0.583 (2)
R8 1.759 (5) 0.246 (6) 0.285 (3) 0.451 (6)
R9 0.179 (15) 0.136 (14) 0.071 (6) 0.325 (12)
R10 0.317 (13) 0.129 (15) 0.142 (5) 0.325 (12)
R11 2.404 (3) 0.365 (3) 0.357 (2) 0.538 (3)
R12 0.606 (10) 0.159 (13) 0.214 (4) 0.400 (10)
R13 0.832 (8) 0.291 (5) 0.214 (4) 0.500 (4)
R14 2.124 (4) 0.292 (4) 0.285 (3) 0.482 (5)
R15 1.235 (7) 0.210 (10) 0.214 (4) 0.412 (9)

Table 5: Bipolar-valued fuzzy membership degrees of coauthor relations.

E R1,2 R1,6 R1,12 R2,6 R3,7

degree (0.048, − 0.033) (0.162, − 0.057) (0.207, − 0.310) (0.168, − 0.030) (0.480, − 0.014)

E R3,8 R3,15 R4,8 R4,11 R5,6

degree (0.326, − 0.007) (0.218, − 0.004) (0.228, − 0.054) (0.316, − 0.111) (0.075, − 0.072)

E R5,10 R6,7 R6,11 R6,13 R7,8

degree (0.134, − 0.175) (0.726, − 0.087) (0.600, − 0.097) (0.322, − 0.032) (0.670, − 0.217)

E R7,13 R7,14 R8,11 R9,14 R10,12

degree (0.198, − 0.340) (0.830, − 0.163) (0.402, − 0.255) (0.124, − 0.112) (0.120, − 0.095)

E R11,14 R11,15 R12,13 R14,15

degree (0.697, − 0.210) (0.281, − 0.052) (0.347, − 0.163) (0.390, − 0.098)

Table 4: Bipolar-valued fuzzy membership degrees of authors.

V R1 R2 R3 R4 R5 R6

degree (0.37, − 0.65) (0.20, − 0.14) (0.48, − 0.05) (0.44, − 0.30) (0.21, − 0.45) (0.79, − 0.25)

V R7 R8 R9 R10 R11 R12

degree (0.89, − 0.34) (0.67, − 0.62) (0.24, − 0.63) (0.25, − 0.53) (1.00, − 0.50) (0.72, − 0.62)

V R13 R14 R15

degree (0.62, − 0.48) (0.71, − 0.68) (0.39, − 0.21)
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article, we extend the centrality theory to BVFSN and in-
vestigate some of its fundamental properties. First, in
BVFSN, we define the concepts of the fuzzy stability index,
effective strength, total strength, and connectivity strength.
We can find the favorable path between any two authors in
the BVFSN based on their effectiveness and total strength.
,en, for the BVFSN, we propose two new centrality
measures: BF-degree centrality and BF-closeness centrality.
To determine the most central actor in BVFSN, BF-degree
centrality measures combine the degree of the node, bi-
polarity of the relations, and the fuzzy stability index of the
network. ,e second one is the BF-closeness centrality
measure, which combines bipolar fuzzy distance and ef-
fective path strength to help us choose the closest node in the
network. We used the G-S Research network to assess the
performance of our centrality measures. ,e mathematical
results demonstrate that our method can clearly choose the
most central node to evaluate the coauthor relationship. We
discovered that our centrality measure could better rank
actors based on their popularity in the network. ,is study
adds to the centrality theory and lays the theoretical
groundwork for future research on BVFSN.
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[23] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and
A. Vespignani, “,e architecture of complex weighted net-
works,” Proceedings of the National Academy of Sciences,
vol. 101, no. 11, pp. 3747–3752, 2004.

[24] M. E. J. Newman, “Analysis of weighted networks,” Physical
Review, vol. 70, no. 5, Article ID 56131, 2004.

[25] T. Opsahl and P. Panzarasa, “Clustering in weighted net-
works,” Social Networks, vol. 31, no. 2, pp. 155–163, 2009.

[26] R. R. Singh, “Centrality measures: a tool to identify key actors
in social networks,” in Principles of Social Networking,
pp. 1–27, Springer, Berlin, Germany, 2022.

12 Discrete Dynamics in Nature and Society

mailto:email-vivek112000@gmail.com
mailto:email-vivek112000@gmail.com
https://doi.org/10.1016/j.asoc.2020.106858
https://doi.org/10.1016/j.asoc.2020.106858


[27] Q. Wang and Z.-T. Gong, “Structural centrality in fuzzy social
networks based on fuzzy hypergraph theory,” Computational
& Mathematical Organization Beory, vol. 26, no. 2,
pp. 236–254, 2020.

[28] Y. Han, P. Shi, and S. Chen, “Bipolar-valued rough fuzzy set and
its applications to the decision information system,” IEEE
Transactions on Fuzzy Systems, vol. 23, no. 6, pp. 2358–2370, 2015.

[29] H.-L. Yang, S.-G. Li, W.-H. Yang, and Y. Lu, “Notes on
“bipolar fuzzy graphs”,” Information Sciences, vol. 242,
pp. 113–121, 2013.

[30] K. Das, S. Samanta, and M. Pal, “Study on centrality measures
in social networks: a survey,” Social network analysis and
mining, vol. 8, no. 1, p. 13, 2018.

[31] G. Sabidussi, “,e centrality index of a graph,” Psychometrika,
vol. 31, no. 4, pp. 581–603, 1966.

[32] L. C. Freeman, “A Set of Measures of Centrality Based on
Betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

Discrete Dynamics in Nature and Society 13


