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In this paper, the settling time estimation of synchronization issues for inertial memristive neural networks (IMNNs) with mixed
time-varying delays is investigated. First, by using a new reduced order approach and introducing free-weighted coefcients ηi and
ξi into variable transformation, the original second-order derivative system is transformed into a frst-order diferential system.
Second, appropriate controllers are designed for IMNNs to guarantee the system synchronization in a settling time. In addition,
the settling time is explicitly estimated and dependent on time delays and the initial values of the coupled system. Finally, two
numerical examples are presented to demonstrate the efectiveness of the theoretical results.

1. Introduction

Te circuit memristors (as a contraction of memory and re-
sistor) were frst proposed in 1971 [1]. Te prototype of the
memristor was identifed and built [2]. Due to the feature that
rapid variation of voltage resulted in irregular change of
memristance, memristor behavior was introduced to integrate
circuit design [3]. Owing to some successful applications in
various areas, more and more people paid attention to the
dynamical characteristic analysis of memristor-based neural
networks. In [4], passivity analysis of memristor-based neural
networks has been considered by constructing appropriate
Lyapunov–Krasovskii functionals. However, using the in-
equality techniques and useful Lyapunov functionals, paper [5]
studied global exponential periodicity and stability of a class of
memristor-based recurrent neural networks with multiple
delays. Meanwhile, fnite-time synchronization of memristor-
based Cohen–Grossberg neural networks with time-varying
delays was investigated in [6]. By designing Lyapunov-like
function method and average dwell time technique, some
delay-dependent sufcient conditions were given to guarantee
the exponential stability of uncertain switched neural networks

in [7]. In addition, in [8], prescribed time synchronization of
coupled memristive neural networks was considered.

On the other hand, neural networks with inertial items
have a strong practical application background in biology and
engineering, and then most scholars started to pay more at-
tention to this realm [9–11]. Global exponential stability in
Lagrange sense for inertial neural networks was proposed [12].
In [13], matrix measure and Halanay inequality were used in
synchronization analysis of IMNNs. Trough impulses efect
and periodically intermittent control, the global exponential
synchronization of coupled IMNNs was investigated [14].
Synchronization of coupled IMNNs with reaction-difusion
terms was discussed by pinning sampled-data control in [15].

In recent years, many scholars have interest in various
types of synchronization problems of IMNNs with time
delays [16–20], and the solution theory of diferential
equation in the sense of Filippov has received great attention
[21]. Meanwhile, the fnite-time synchronization issues of
IMNNs with time delays via diferent control ways were
being given increasing amount of attention [22–26]. Te
fnite-time stabilization control problems were discussed in
present of discontinuous activations and several delays for
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IMNNs [27]. In IMNNs with discrete and distributed delays,
global synchronization and passivity analysis were in-
vestigated in [28, 29], respectively. In [30, 31], the dynamical
analysis employed adaptive control approach and the theory
of diferential equations with discontinuous right-hand
sides. Te authors investigated the fnite time and fxed
time synchronization of IMNNs using the Lyapunov sta-
bility theory and Filippov discontinuous theory [32]. In [33],
some novel and efective criteria were built to achieve as-
ymptotic synchronization and fnite synchronization in the
fractional-order model for IMNNs. Novel sufcient con-
ditions were given to guarantee fnite-time synchronization
with the drive and response delayed IMNNs [34].

As is well known, time delays in particular mixed time-
varying delays unavoidably appear during the fnite switching
speed of neurons. Ten, the IMNNs with mixed time-varying
delays have become a complicated switched delayed nonlinear
system, which means its dynamic analysis tends to be more
challenging. During modeling neural networks, mixed time-
varying delays are inevitably encountered in the signal
transmission among the neurons because of the fnite
switching speed of the neurons and amplifers [35]. Mean-
while, owing to the presence of an amount of parallel
pathways of kinds of axon sizes and lengths, it is desired that
continuously distributed delays are introduced over certain
duration of time, such that the distant past has less infuence
compared to the recent behavior of the state [36]. Hence, it is
necessary to pay close attention to discrete and distributed
time delays. Taking the infuence of actuator failures into
account for IMNNs with mixed time-varying delays, im-
proved delay-independent reliable controllers were designed
to guarantee fnite-time synchronization in [37]. However, to
the best of authors’ knowledge, there was little work reported

on settling time estimation of synchronization issues of
IMNNs with mixed time-varying delays.

Motivated by the abovementioned observations, we
consider the settling time estimation of synchronization for
IMNNs with mixed time-varying delays. Te main contri-
butions of this paper include the following aspects:

(1) A novel reduced order approach is proposed, and
free-weighted coefcients ηi and ξi are introduced
into variable transformation, which is less conser-
vative and extend existing results. In previous paper,
ξi was only introduced.

(2) However, designing new discontinuous controllers,
some recent conditions are given to realize the
settling time estimation of synchronization for
driven-response system for IMNNs with mixed
time-varying delays.

(3) Without using existing fnite-time stability theorems,
synchronization can obtain a settling time for
IMNNs via combining new Lyapunov–Krasovskii
functionals with recent inequality skills.

Tis paper is organized as follows: In section 2, model
description and preliminaries are presented. In Section 3, we
give the main results and its proof. In Section 4, two ex-
amples with simulations are presented to illustrate our main
results. Finally, the conclusion of this paper is given in
Section 5.

2. Preliminaries and Model Description

In this paper, the following inertial neural network is
considered:

d2xi(t)

dt
2 � − ai

dxi(t)

dt
− bixi(t) + 􏽘

n

j�1
cij xi(t)( 􏼁fj xj(t)􏼐 􏼑 + 􏽘

n

j�1
dij xi(t)( 􏼁fj xj t − τj(t)􏼐 􏼑􏼐 􏼑

+ 􏽘
n

j�1
hij xi(t)( 􏼁 􏽚

t

t− σ(t)
fj xj(s)􏼐 􏼑ds + Ii(t), t≥ 0,

(1)

where i � 1, 2, . . . , n, xi(t) represents the state of the ith
neuron at time t, and the second derivative is called an
inertial term of (1). ai > 0 and bi > 0 are constant. cij(xi(t)),

dij(xi(t)), and hij(xi(t)) are connection weights related to
the neurons without delays, with discrete delays and dis-
tributed delays, respectively. Tey are given as follows:

cij xi(t)( 􏼁 �
􏽢cij, xi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Ti,

čij, xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>Ti,

⎧⎨

⎩

dij xi(t)( 􏼁 �

􏽢dij, xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Ti,

ďij, xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>Ti,

⎧⎪⎨

⎪⎩

hij xi(t)( 􏼁 �

􏽢hij, xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Ti,

�hij, xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>Ti,

⎧⎪⎨

⎪⎩

(2)
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in which switching jump Ti > 0, and 􏽢cij, cij, 􏽢dij, dij,
􏽢hij, and hij

are known constants with respect to memristance. fj(t)

stands for neuron activation function of jth neuron at time t

with fj(0) � 0. Te τj(t) is the time-varying delay which

satisfes 0≤ τj(t)≤ τj, _τj(t)≤ μj < 1. σ(t) is the distributed
delay and 0≤ σ(t)≤ σ, _σ(t)≤ 􏽥σ < 1. Ii(t) is the external input
on the ith neuron at time t and |Ii(t)|≤ Ii. Ii is the: constant.
Te initial conditions of system (1) are as follows:

xi(s) � ϕi(s),
dxi(s)

dt
� φi(s), s ∈ [− τ, 0], τ � max τj, σ􏽮 􏽯, j � 1, 2, . . . , n, (3)

where ϕi(s) and φi(s) ∈ C([− τ, 0]; Rn).

Assumption 1. Te activation function fj(·) meets with the
Lipschitz condition, i.e., there exists positive constants li > 0
such that for any x, y ∈ R, the following inequalities hold:

fj(x) − fj(y)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ lj|x − y|, j � 1, 2, . . . , n, (4)

and there exists positive constants Fj such that |fj(·)|≤Fj.
Resorting to the following variable transformation,

yi(t) � ηi

dxi(t)

dt
+ ξixi(t), ηi ≠ 0, i � 1, 2, . . . , n, (5)

the inertial neural network (1) can be written as follows:

dxi(t)

dt
� −

ξi

ηi

xi(t) +
1
ηi

yi(t),

dyi(t)

dt
� − βiyi(t) + αixi(t) + ηi 􏽘

n

j�1
cij xi(t)( 􏼁fj xj(t)􏼐 􏼑 + ηi 􏽘

n

j�1
dij xi(t)( 􏼁fj xj t − τj(t)􏼐 􏼑􏼐 􏼑

+ ηi 􏽘

n

j�1
hij xi(t)( 􏼁 􏽚

t

t− σ(t)
fj xj(s)􏼐 􏼑ds + ηiIi(t), t≥ 0, i � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where αi � − (ξi
2/ηi) + αiξi − ηibi, βi � αi − (ξi/ηi). Te ini-

tial conditions can be written as follows:

xi(s) � ϕi(s),

yi(s) � ηiφi(s) + ξi(s)ϕi(s)≜ψi(s), s ∈ [− τ, 0], τ � max
j�1,2,...,n

τj, σ􏽮 􏽯.

⎧⎪⎨

⎪⎩
(7)

Remark 2. In [11], only ξi was introduced in certain variable
transformations, but we introduce free-weighted coefcients
ηi and ξi into variable transformation (5) in our paper. Te
diferent variable transformations can be obtained by
selecting ηi and ξi with diferent values, which make our
results less conservative.

Remark 3. In systems (1) and (6), since cij(t), dij(t), and
hij(t) are discontinuous, the classical defnition of the so-
lution for diferential equations cannot apply here. To solve
the problem, Filippov presented a solution concept for the
diferential equation with discontinuous right-hand side.
Based on the defnition, a diferential equation with dis-
continuous right-hand side has the same solution set as
certain diferential inclusion.

Now, we introduce the concept of Filippov solution [21].
Consider the following diferential system:

d
2
x

dt
2 � f(t, x), (8)

where f(t, x) is discontinuous in x.

Defnition 4. Consider the set-valuedmap F: R × Rn⟶ Rn

defned as follows:

F(t, x) � ∩
δ>0
∩

μ(N)�0
co f t,

B(x, δ)

N
􏼠 􏼡􏼢 􏼣, (9)

where B(x, δ) is the ball of center x and radius δ, μ(N) is the
Lebesgue of set N. A vector-value function x(t) defned on
a nondegenerate interval I ⊂ R is called a Filippov solution
of system (8), if it is absolutely continuous on any sub-
interval [t1, t2] of I and for a.a. t ∈ I. x(t) satisfes the
diferential inclusion as follows:
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d
2
x

dt
2 � F(t, x). (10)

Next, let us consider the diferential equation system (6).
Let the set-valued maps be as follows:

K cij xi(t)( 􏼁􏽨 􏽩 �
􏽢cij, xi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Ti,

čij, xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>Ti,

⎧⎨

⎩

K dij xi(t)( 􏼁􏽨 􏽩 �

􏽢dij, xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Ti,

ďij, xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>Ti,

⎧⎪⎨

⎪⎩

K hij xi(t)( 􏼁􏽨 􏽩 �

􏽢hij, xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Ti,

�hij, xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>Ti,

⎧⎪⎨

⎪⎩

(11)

for t ∈ R and i, j � 1, 2, . . . , n. It is obvious thatK[cij(xi(t))],
K[dij(xi(t))], and K[hij(xi(t))] are all closed, convex, and
compact.

We defne the Filippov solution of system (6) as follows.

Defnition 5. (Filippov solution [21]). A function x(t) is said
to be a solution of system (6) on [(0, T) with initial condition
(7), if x(t) is absolutely continuous on any compact interval
of [(0, T) and satisfes diferential inclusions

dxi(t)

dt
∈ −

ξi

η
xi(t) +

1
ηi

yi(t),

dyi(t)

dt
∈ − βiyi(t) + αixi(t) + ηi 􏽘

n

j�1
K cij xi(t)( 􏼁􏽨 􏽩fj xj(t)􏼐 􏼑

+ ηi 􏽘

n

j�1
K dij xi(t)( 􏼁􏽨 􏽩fj xj t − τj(t)􏼐 􏼑􏼐 􏼑

+ ηi 􏽘

n

j�1
K hij xi(t)( 􏼁􏽨 􏽩 􏽚

t

t− σ(t)
fj xj(s)􏼐 􏼑ds + ηiIi(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

or cij ∈ K[cij(xi(t))], ζ ij ∈ K[dij(xi(t))], and ]ij ∈ K

[hij(xi(t))] satisfy

dxi(t)

dt
� −

ξi

ηi

xi(t) +
1
ηi

yi(t),

dyi(t)

dt
� − βiyi(t) + αixi(t) + ηi 􏽘

n

j�1
cijfj xj(t)􏼐 􏼑 + ηi 􏽘

n

j�1
ζ ijfj xj t − τj(t)􏼐 􏼑􏼐 􏼑

+ ηi 􏽘

n

j�1
]ij 􏽚

t

t− σ(t)
fj xj(s)􏼐 􏼑ds + ηiIi(t),

for a.a.t ∈ [0, T), i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)
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Based on the concept of drive-response synchronization,
the corresponding response system of (13) is given in the
following form:

dmi(t)

dt
� −

ξi

ηi

mi(t) +
1
ηi

wi(t) + u1i(t),

dwi(t)

dt
� − βiwi(t) + αimi(t) + ηi 􏽘

n

j�1
􏽥cijfj mj(t)􏼐 􏼑 + ηi 􏽘

n

j�1

􏽥ζ ijfj mj t − τj(t)􏼐 􏼑􏼐 􏼑

+ ηi 􏽘

n

j�1
􏽥]ij 􏽚

t

t− σ(t)
fj mj(s)􏼐 􏼑ds + ηiIi(t) + u2i(t),

for a.a.t ∈ [0, T), i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where 􏽥cij ∈ K[cij(mi(t))], 􏽥ζ ij ∈ K[dij(mi(t))], and
􏽥]ij ∈ K[hij(mi(t))]. We defne error state e1i(t) � mi(t) −

xi(t) and e2i(t) � wi(t) − yi(t). Ten, we can obtain error
system from (13) and (14).

de1i(t)

dt
� −

ξi

ηi

e1i(t) +
1
ηi

e2i(t) + u1i(t),

de2i(t)

dt
� − βie2i(t) + αie1i(t) + ηi 􏽘

n

j�1
􏽥cijfj e1j(t)􏼐 􏼑

+ ηi 􏽘

n

j�1
􏽥cij − cij􏼐 􏼑fj xj(t)􏼐 􏼑 + ηi 􏽘

n

j�1

􏽥ζ ijfj e1j t − τj(t)􏼐 􏼑􏼐 􏼑

+ ηi 􏽘

n

j�1

􏽥ζ ij − ζ ij􏼐 􏼑fj xj t − τj(t)􏼐 􏼑􏼐 􏼑 + ηi 􏽘

n

j�1
􏽥]ij 􏽚

t

t− σ(t)
fj e1j(s)􏼐 􏼑ds

ηi 􏽘

n

j�1
􏽥]ij − ]ij􏼐 􏼑 􏽚

t

t− σ(t)
fj xj(s)􏼐 􏼑ds + u2i(t),

for a.a.t ∈ [0, T), i � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where fj(e1j(t)) � fj(mj(t)) − fj(xj(t)), fj(e1j(t − τj

(t))) � fj(mj(t − τj(t))) − fj(xj(t − τj(t))).

Defnition 6 (see [18]). Te system (13) is said to be syn-
chronized with (14) in a settling time under suitable
designed feedback controllers u1i(t) and u2i(t), if there exists
a constant t1 > 0 (t1 depends on the initial state vector error
value and time delay) such that limt⟶t1

(‖e1
(t)‖1 + ‖e2(t)‖1) � 0 and ‖e1(t)‖1 + ‖e2(t)‖1 � 0 for ∀t≥ t1,
where ‖e1(t)‖1 + ‖e2(t)‖1 � 􏽐

n
i�1|e1i(t)| + 􏽐

n
i�1|e2i(t)|,

e1(t) � (e11(t), e11(t), · · · , e1n(t))T, and e2(t) � (e21(t), e22
(t), . . . , e2n(t))T. t1 is called the settling time.

3. Results

In this section, suitable controllers are designed for the
fnite-time synchronization in (13) and (14). By using
Lyapunov functionals method and some analytical tech-
niques, several sufcient conditions to ensure synchroni-
zation of IMNNs are obtained.

Te controllers are designed as follows:

u1i(t) � − K1ie1i(t) − Q1isgn e1i(t)( 􏼁,

u2i(t) � − K2ie2i(t) − Q2isgn e2i(t)( 􏼁,
􏼨 (16)

Discrete Dynamics in Nature and Society 5



where K1i(t), K2i(t), Q1i(t), and Q2i(t) are control gains,
and sgn(·) is the standard sign function.

Te following theorems and corollaries are our main
results.

Theorem 7. If f(·) meets Assumption 1, there exists Q1i > 0
and K1i, K2i, and Q2i satisfy the following inequalities:

K1i ≥ −
ξi

ηi

+ αi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

j�1
ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌c

+
jili + 􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − μi

d
+
jili + 􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − 􏽥σ
h

+
jiliσ, (17)

K2i ≥
1
ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− βi, (18)

Q2i >Mi. (19)

Ten, the systems (13) and (14) are synchronized in
a fnite-time under controllers (16). Moreover, the settling
time is estimated as follows:

t1 ≤
1
θ0

􏽘

n

i�1
e1i(0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

i�1
e2i(0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − μj

d
+
ij lj 􏽚

0

− τj

e1j(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds⎡⎢⎢⎣

· 􏽘
n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − 􏽥σ
hijlj 􏽚

0

− σ
􏽚
0

s
e1j(u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌duds] − max
j�1,2,...,n

τj, σ􏽮 􏽯,

(20)

where 􏽢cij, cij,
􏽢dij, dij,

􏽢hij, hij are known constants with respect
to memristance, c+

ij � max |cij|,􏽮 |􏽢cij|}, d+
ij � max |dij|,􏽮 |􏽢dij|},

h+
ij � max |hij|, |􏽢hij|􏽮 􏽯, Mi � |ηi|􏽐

n
j�1|cij − 􏽢cij|Fj + |ηi|􏽐

n
j�1|dij

− 􏽢dij| Fj + |ηi|􏽐
n
j�1|hij − 􏽢hij|Fjσ, θ0 � mini�1,2,...,n (Q2i − Mi),􏼈

Q1i}, αi � − (ξi
2/ηi) + αiξi − ηibi, and βi � αi − (ξi/ηi), i � 1,

2, . . . ,n.

Proof. Defne the following Lyapunov–Krasovskii
functional:

V(t) � 􏽘
3

i�1
Vi(t), (21)

where

V1(t) � 􏽘
n

i�

e1i(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘
n

i�

e2i(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

V2(t) � 􏽘
n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − μj

d
+
ijlj 􏽚

t

t− τj(t)
e1j(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds,

V3(t) � 􏽘
n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − 􏽥σ
h

+
ijlj 􏽚

0

− σ(t)
􏽚

t

t+s
e1j(u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌duds.

(22)

Considering the upper right-hand derivative ofVi(t)(i �

1, 2, 3) along the trajectory of the error system (15), the proof
of process will be given as follows:

_V1(t) � 􏽘
n

i�1
sgn e1i(t)( 􏼁 _e1i(t) + 􏽘

n

i�1
sgn e2i(t)( 􏼁 _e2i(t). (23)

Trough combining (15) with (23), we can obtain
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_V1(t) � 􏽘
n

i�1
sgn e1i(t)( 􏼁 −

ξi

ηi

e1i(t) +
1
ηi

e2i(t) − K1ie1i(t) − Q1isgn e1i(t)( 􏼁􏼢 􏼣

+ 􏽘

n

i�1
sgn e2i(t)( 􏼁 − βie2i(t) + αie1i(t) + ηi 􏽘

n

j�1
􏽥cijfj e1j(t)􏼐 􏼑 + ηi 􏽘

n

j�1
􏽥cij − cij􏼐 􏼑fj xj(t)􏼐 􏼑⎡⎢⎢⎣

+ ηi 􏽘

n

j�1

􏽥ζ ijfj e1j t − τj(t)􏼐 􏼑􏼐 􏼑 + ηi 􏽘

n

j�1

􏽥ζ ij − ζ ij􏼐 􏼑fj xj t − τj(t)􏼐 􏼑􏼐 􏼑 + ηi 􏽘

n

j�1
􏽥]ij 􏽚

t

t− σ(t)
fj e1j(s)􏼐 􏼑ds

+ ηi 􏽘

n

j�1
􏽥]ij − ]ij􏼐 􏼑 􏽚

t

t− σ(t)
fj xj(s)􏼐 􏼑ds − K2ie2i(t) − Q2isgn e2i(t)( 􏼁⎤⎥⎥⎦.

(24)

By Assumption 1, and let c+
ij � max |cij|,􏽮 |􏽢cij|}, d+

ij �

max |dij|, |􏽢dij|􏽮 􏽯, h+
ij � max |hij|, |􏽢hij|􏽮 􏽯, we can have

sgn e2i(t)( 􏼁 ηi 􏽘

n

j�1
􏽥cijfj e1j(t)􏼐 􏼑 + ηi 􏽘

n

j�1

􏽥ζ ijfj e1j t − τj(t)􏼐 􏼑􏼐 􏼑 + ηi 􏽘

n

j�1
􏽥]ij 􏽚

t

t− σ(t)
fj e1j(s)􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦ds

≤ ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

n

j�1
c

+
ij lj e1j(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

n

j�1
d

+
ijlj e1j t − τj(t)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

n

j�1
h

+
ijlj 􏽚

t

t− σ(t)
e1j(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds,

(25)

and

sgn e2i(t)( 􏼁 ηi 􏽘

n

j�1
􏽥cij − cij􏼐 􏼑fj xj(t)􏼐 􏼑 + ηi 􏽘

n

j�1

􏽥ζ ij − ζ ij􏼐 􏼑fj xj t − τj(t)􏼐 􏼑􏼐 􏼑 + ηi 􏽘

n

j�1
􏽥]ij − ]ij􏼐 􏼑 􏽚

t

t− σ(t)
fj xj(s)􏼐 􏼑ds

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤ ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

n

j�1
čij − 􏽢cij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Fj + ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

n

j�1
ďij − 􏽢dij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Fj + ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

n

j�1

�hij − 􏽢hij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Fjσ
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
sgn e2i(t)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � Mi sgn e2i(t)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(26)

When e1i(t)≠ 0, we will fnd that
− sgn(e1i(t))Q1isgn(e1i(t)) � − Q1i, otherwise − sgn(e1i(t))

Q1isgn(e1i (t)) � 0. Similarly, − sgn(e2i(t))Q2isgn(e2i(t)) �

− Q2i for e2i(t)≠ 0 and − sgn(e2i(t))Q2isgn(e2i(t)) � 0 for
e2i(t) � 0. Terefore,

− sgn e1i(t)( 􏼁Q1isgn e1i(t)( 􏼁 � − Q1iλ1i, (27)

− sgn e2i(t)( 􏼁Q2isgn e2i(t)( 􏼁 � − Q2iλ2i, (28)

where λ1i � 1 if e1i(t)≠ 0, otherwise λ1i � 0; λ2i � 1 if
e2i(t)≠ 0, otherwise λ2i � 0.

Substituting the systems (25–28) into (24), it is derived
that

_V1(t)≤ 􏽘
n

i�1
−
ξi

ηi

− K1i + αi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼠 􏼡 e1i(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

n

j�1
c

+
ijlj e1j(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

n

j�1
d

+
ij lj e1j t − τj(t)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

+ ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

n

j�1
h

+
ijlj 􏽚

t

t− σ(t)
e1j(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds +
1
ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− βi − K2i􏼠 􏼡 e2i(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Q1iλ1i + Mi − Q2i( 􏼁λ2i

⎫⎪⎬

⎪⎭
.

(29)
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It is obtained from V2(t), V3(t) that

_V2(t) � 􏽘
n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − μj

d
+
ij lj e1j(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 􏽘
n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 1 − _τj(t)􏼐 􏼑

1 − μj

d
+
ijlj e1j t − τj(t)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ 􏽘
n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − μj

d
+
ijlj e1j(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 􏽘
n

i�1
􏽘

n

j�1
ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌d

+
ijlj e1j t − τj(t)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(30)

and

_V3(t) � 􏽘
n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − 􏽥σ
h

+
ij ljσ(t) e1j(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 􏽘
n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 1 − _σj(t)􏼐 􏼑

1 − 􏽥σ
h

+
ijlj 􏽚

t

t− σ(t)
e1j(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds

≤ 􏽘
n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − 􏽥σ
h

+
ij ljσ(t) e1j(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 􏽘
n

i�1
􏽘

n

j�1
ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌h

+
ijlj 􏽚

t

t− σ(t)
e1j(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds.

(31)

From (29–31), one has

_V(t) ≤ 􏽘
n

i�1
−
ξi

ηi

− K1i + αi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

j�1
ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌c

+
ji li + 􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − μj

d
+
jili + 􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − σ
h

+
ji liσ⎛⎝ ⎞⎠ e1i(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ 􏽘
n

i�1

1
ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− βi − K2i􏼠 􏼡 e2i(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

i�1
Mi − Q2i( 􏼁λ2i − Q1iλ1i􏼂 􏼃.

(32)

When ‖e1(t)‖1 + ‖e2(t)‖1≠ 0. From (17–19) and (32), we
can obtain that

_V(t)≤ 􏽘
n

i�1
Q2i − Mi( 􏼁λ2i − Q1iλ1i􏼂 􏼃≤ − θ0 < 0, (33)

where θ0 � minj�1,2,...,n (Q2i − Mi), Q1i􏼈 􏼉.

Integrating both sides of the inequality (33) from 0 to t,
we can get the following inequality:

V(t) − V(0)≤ − θ0t. (34)

Tere exists t1 ∈ (0, +∞) such that

lim
t⟶ t1

e1(t)
����

����1 + e2(t)
����

����1􏼐 􏼑

� 0 and e1(t)
����

����1 + e2(t)
����

����1 ≡ 0,∀t≥ t1.

(35)

By virtue of (34) and (35), there obviously exists t2 � t1+

maxj�1,2,...,n πj, σ􏽮 􏽯 such that

lim
t⟶ t2

V(t) � 0 and V(t) ≡ 0, ∀t≥ t2. (36)

From (33) and (36), we can get that _V(t)≤ − θ0 for t< t2.

Integrating both sides of the inequality from 0 to t2 obtains
that

t2 ≤
V(0)

θ0
�

1
θ0

􏽘

n

i�1
e1i(0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

i�1
e2i(0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − μj

d
+
ijlj 􏽚

0

− τj

e1j(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds + 􏽘
n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − 􏽥σ
h

+
ijlj 􏽚

0

− σ
􏽚
0

s
e1j(u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌duds
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (37)

According to t1 � t2 − maxj�1,2,...,n τj, σ􏽮 􏽯, the inequality
(20) can easily be derived. Tis completes the proof. □

Remark 8. In [6, 22, 25, 26], the authors considered fnite-
time synchronization by fnite-time stability theorem based
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on the inequality _V(x)≤ − αVη(x), where α> 0, 0 < η < 1
are constants, α1(|x|)≤V(x)≤ α2(|x|) with κ − class
function α1(∙) and α2(∙). V(x) is a continuous and positive
defnite function. In this paper, some recent inequality
techniques are used to guarantee the system synchronizing
in a settling time, which is explicitly estimated and de-
pendent on time delays and initial values of the coupled
system. On the other hand, the discontinue controllers are
designed. Ten, the error system is not discussed with using
existing fnite-time stability theorems.

Remark 9. Teorem 1 is achieved on the basis of 1-norm and
the inequality (33) is the key step.Te inequality (33) cannot
be obtained if we use the 2-norm-based Lyapunov functions
as those in [6, 22, 25, 26], and we draw inspiration from the
ideas of [18, 27]. So, we get some new results about fnite-
time synchronization for IMNNs with time-varying delays.

When ηi � 1(i � 1, 2, . . . , n), we will get the following
master system:

dxi(t)

dt
� − ξixi + yi(t),

dyi(t)

dt
� − 􏽢βiyi(t) + 􏽢αixi(t) + 􏽘

n

j�1
cijfj xj(t)􏼐 􏼑 + 􏽘

n

j�1
ζ ijfj xj t − τj(t)􏼐 􏼑􏼐 􏼑

+ 􏽘

n

j�1
]ij 􏽚

t

t− σ(t)
fj xj(s)􏼐 􏼑ds + Ii,

for a.a.t ∈ [0, T), i � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

where 􏽢αi � − ξ2i + αiξi − bi, 􏽢βi � αi − ξi, i � 1, 2, . . . , n. By the
system (38), we can get slave system and give Corollary 10.

Corollary  0. If f(·) meets Assumption 1, there exists
Q1i > 0, and K1i, K2i, and Q2i satisfy the following
inequalities:

K1i ≥ − ξi + 􏽢αi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

j�1
c

+
ji li + 􏽘

n

j�1

1
1 − μi

d
+
ji li + 􏽘

n

j�1

1
1 − 􏽥σ

h
+
ji liσ,

K2i ≥ 1 − 􏽢βi,

Q2i > 􏽢Mi.

(39)

Ten, the master-slave-based systems are synchronized
in a fnite-time under controllers (16). Moreover, the settling
time is estimated as follows:

t1 ≤
1
􏽢θ0

􏽘

n

i�1
e1i(0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

i�1
e2i(0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

i�1
􏽘

n

j�1

1
1 − μj

d
+
ij lj 􏽚

0

− τj

e1j(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds⎡⎢⎢⎣

+ 􏽘
n

i�1
􏽘

n

j�1

1
1 − 􏽥σ

h
+
ijlj 􏽚

0

− σ
􏽚
0

s
e1j(u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌duds⎤⎥⎥⎦ − max
j�1,2,...,n

τj􏽮 , σ􏽯,

(40)

where 􏽢Mi � 􏽐
n
j�1 |cij − 􏽢cij|Fj + 􏽐

n
j�1 |dij − 􏽢dij|Fj + 􏽐

n
j�1

|hij − 􏽢hij|Fjσ, i, j � 1, 2, . . . , n, 􏽢αi � − ξ2i + αiξi − bi, 􏽢βi � αi

− ξi, and θ0 � mini�1,2,...,n (Q2i − Mi), Q1i􏼈 􏼉.
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Remark 11. When ηi � 1 (i� 1, 2, . . . n), the system (38)
becomes the system in [27, 38]. Corollary 10 considers the
external input and expands the existing results.

When hij(xi(t)) � 0 (i, j � 1, 2, . . . , n), we will get the
following master system:

dxi(t)

dt
� −

ξi

ηii

xi +
1
ηi

yi(t),

dyi(t)

dt
� − 􏽢βiyi(t) + 􏽢αixi(t) + ηi 􏽘

n

j�1
cijfj xj(t)􏼐 􏼑 + ηi 􏽘

n

j�1
ζ ijfj xj t − τj(t)􏼐 􏼑􏼐 􏼑 + ηiIi(t),

for a.a.t ∈ [0, T), i � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

where αi, βi(i, j � 1, 2, . . . , n) are the same as the system (13);
we can get slave system and we will give Corollary 12.

Corollary  2. If f(·) meets Assumption 1, the Q1i > 0, K1i,
K2i, and Q2i satisfy the following inequalities:

K1i ≥ −
ξi

ηi

+ �αi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

j�1
ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌c

+
jili + 􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − σ
d

+
ji li,

K2i ≥
1
ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− �βi,

Q2i > �Mi.

(42)

Ten, the master-slave-based systems are synchronized
in a fnite time under controllers (16). Moreover, the settling
time is estimated as follows:

t1 ≤
1
�θ0

􏽘

n

i�1
e1i(0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

i�1
e2i(0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

i�1
􏽘

n

j�1

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − μj

d
+
ijlj 􏽚

0

− τj

e1j(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds⎡⎢⎢⎣ ⎤⎥⎥⎦ − max
j�1,2,...,n

τj􏽮 􏽯, (43)

where Mi � |ηi|􏽐
n
j�1|cij − 􏽢cij|Fj + |ηi|􏽐

n
j�1|dij − 􏽢dij|Fj,

mini�1,2,...,n (Q2i − Mi), Q1i􏼈 􏼉, αi � − (ξi
2/ηi) + αiξi − ηibi,

–βi � αi − (ξi/ηi), i, j � 1, 2, . . . , n, and θ0 � mini�1,2,...,n

(Q2i − Mi), Q1i􏼈 􏼉.
Defne the following Lyapunov–Krasovskii functional:

�V(t) � 􏽘
2

i�1
Vi(t), (44)

where V1(t) and V2(t) are the same as defnition of (21).Te
means of the proof are similar to Teorem 7.

Remark 13. When ηi � 1 and hij(xi(t)) � 0 (i, j� 1, 2, . . ., n),
the system (1) is same to the system in [11, 24]. Corollary 12
obtains the condition of fnite-time synchronization for the
system (41) with ηi (ηi is not a constant). Terefore, our
paper is more general.

Remark 14. When ηi � 1 (i, j� 1, 2, . . . n),
hij(xi(t)) � h(h is a constant, i, j � 1, 2, . . . , n), we can gain
the result which is similar to Teorem 2 in [17].

Remark 15. In the above theorems and corollaries, since
cij(t), dij(t), and hij(t) are discontinuous, the solution way
for diferential equations in [24] cannot apply here. To solve
the problem, Filippov et al. have presented a solution
concept for the diferential equations with discontinuous
right-hand side [23, 27]. Based on the defnition, a difer-
ential equation with discontinuous right-hand side has the
same solution set as certain diferential inclusion.

4. Illustrative Examples

In this section, two examples are given to present the ef-
fectiveness of our results achieved in this paper.
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Example 1. Consider the following IMNNs:

d2x1(t)

dt
2 � −

dx1(t)

dt
− 2x1(t) + 􏽘

2

j�1
c1j x1(t)( 􏼁fj xj(t)􏼐 􏼑

+ 􏽘
2

j�1
d1j x1(t)( 􏼁fj xj t − τj(t)􏼐 􏼑􏼐 􏼑 + 􏽘

2

j�1
h1j x1(t)( 􏼁 􏽚

t

t− σ(t)
fj xj(s)􏼐 􏼑ds + I1(t),

d2x2(t)

dt
2 � − 2

dx2(t)

dt
− 4xi(t) + 􏽘

2

j�1
c2j x2(t)( 􏼁fj xj(t)􏼐 􏼑

+ 􏽘
2

j�1
d2j x2(t)( 􏼁fj xj t − τj(t)􏼐 􏼑􏼐 􏼑 + 􏽘

2

j�1
h2j x2(t)( 􏼁 􏽚

t

t− σ(t)
fj xj(s)􏼐 􏼑ds + I2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

with fi(xi) � cos(xi), τ1(t) � τ2(t) � 0.5 sin(t) + 0.5, σ(t)

� 0.5 cos
(t) + 0.5, I1(t) � 100 + 5 sin(t), I2(t) � 100 + 5 cos(t),
where

c11 x1(t)( 􏼁 �
− 0.2, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

0.2, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0.5,

⎧⎨

⎩ c12 x1(t)( 􏼁 �
2.0, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

3.0, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0.5,

⎧⎨

⎩

c21 x2(t)( 􏼁 �
3.0, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

2.0, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0.5,

⎧⎨

⎩ c22 x2(t)( 􏼁 �
− 0.1, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

0.1, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0.5,

⎧⎨

⎩

d11 x1(t)( 􏼁 �
− 0.1, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

0.2, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0.5,

⎧⎨

⎩ d12 x1(t)( 􏼁 �
2.0, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

2.5, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0.5,

⎧⎨

⎩

d21 x2(t)( 􏼁 �
3.0, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

2.5, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0.5,

⎧⎨

⎩ d22 x2(t)( 􏼁 �
− 0.1, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

− 0.2, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0.5,

⎧⎨

⎩

h11 x1(t)( 􏼁 �
− 0.2, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

0.1, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0.5,

⎧⎨

⎩ h12 x1(t)( 􏼁 �
2.0, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

3.0, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0.5,

⎧⎨

⎩

h21 x2(t)( 􏼁 �
3.0, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

2.5, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0.5,

⎧⎨

⎩ h22 x2(t)( 􏼁 �
− 0.2, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

0.2, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0.5.

⎧⎨

⎩

(46)

Due to τ1(t) � τ2(t) � 0.5 sin(t) + 0.5 and σ(t) � 0.5
cos(t) + 0.5, we can let τ1 � τ2 � 1, μ1 � μ2 � 0.5, σ � 1, 􏽥σ �

0.5. According to Assumption 1, we let l1 � l2 � 1, F1 � F2 �

1, ξ1 � 2, ξ2 � 4, η1 � 1, η2 � 2. Trough simple computing,
we get α1 � − 4, α2 � − 8, β1 � − 1, β2 � 0, K11 ≥ 33, K12 ≥
21.8, K21 ≥ 2, K22 ≥ 0.5, M1 � 3.5, M2 � 5.4, Q21 > 3.5, Q22
> 5.4.

When Q11 > 0, Q12 > 0, we let K11 � 33, K12 � 22, K21 �

2, K22 � 1, Q21 � 6, Q22 � 8, Q11 � 2, Q12 � 2. Ten, we can
obtain θ0 � 2. In the case that initial conditions are chosen as
x � (0.5, 1)T, y � (− 3, 3)T, trajectories of drive system (45)
are presented in Figure 1. We choose the initial value of the
response system as m � (− 0.5, 1)T, w � (− 2, 2)T, t ∈ [− 1, 0].
So, |e11(0)| � |e12(0)| � |e21(0)| � |e22(0)| � 1 and t1 < 14.9.
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Moreover, we know that the synchronization can be realized
before 14.9 by Figure 2. Te theoretical analysis of Teorem
7 is verifed.

Example 2. Consider the following IMNNs:

d2x1(t)

dt
2 � − 4

dx1(t)

dt
− 8x1(t) + 􏽘

2

j�1
c1j x1(t)( 􏼁fj xj(t)􏼐 􏼑

+ 􏽘
2

j�1
d1j x1(t)( 􏼁fj xj t − τj(t)􏼐 􏼑􏼐 􏼑 + 􏽘

2

j�1
h1j x1(t)( 􏼁 􏽚

t

t− σ(t)
fj xj(s)􏼐 􏼑ds + I1(t),

d2x2(t)

dt
2 � − 6

dx2(t)

dt
− 12xi(t) + 􏽘

2

j�1
c2j x2(t)( 􏼁fj xj(t)􏼐 􏼑

+ 􏽘
2

j�1
d2j x2(t)( 􏼁fj xj t − τj(t)􏼐 􏼑􏼐 􏼑 + 􏽘

2

j�1
h2j x2(t)( 􏼁 􏽚

t

t− σ(t)
fj xj(s)􏼐 􏼑ds + I2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

with fi(xi) � tan h(xi), τ1(t) � τ2(t) � 0.5 sin(t) + 1.5, σ
(t) � 0.5 cos(t) + 0.5, I1(t) � 200 + 10 sin(t), I2(t) � 200+

10 cos(t), where

c11 x1(t)( 􏼁 �
1.0, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

2.0, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩ c12 x1(t)( 􏼁 �
2.0, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

3.0, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

c21 x2(t)( 􏼁 �
0.8, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

1.0, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩ c22 x2(t)( 􏼁 �
1.8, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

0.8, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

d11 x1(t)( 􏼁 �
− 1.5, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

− 1.2, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩ d12 x1(t)( 􏼁 �
1.0, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

0.8, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

d21 x2(t)( 􏼁 �
0.8, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

1.0, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩ d22 x2(t)( 􏼁 �
− 1.4, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

− 1.6, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

h11 x1(t)( 􏼁 �
− 0.5, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

− 1.0, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩ h12 x1(t)( 􏼁 �
2.0, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

3.0, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

h21 x2(t)( 􏼁 �
1.0, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

2.0, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩ h22 x2(t)( 􏼁 �
− 1.6, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

− 1.2, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1.

⎧⎨

⎩

(48)

Due to τ1(t) � τ2(t) � 0.5 sin(t) + 1.5 and σ(t) � 0.5
cos (t) + 0.5, we can let τ1 � τ2 � 2, μ1 � μ2 � 0.5, σ � 1,
􏽥σ � 0.5. By Assumption 1, let l1 � l2 � 1, F1 � F2 � 1, ξ1 �

4, ξ2 � 6, η1 � 2, η2 � 2. After simple computing, we get α1 �

− 8, α2 � − 6, β1 � 2, β2 � 3, K11 ≥ 34, K12 ≥ 41.4, K21 ≥ −

1.5, K22 ≥ − 2.5, M1 � 8, M2 � 6, Q21 > 8, Q22 > 6.
When Q11 > 0, Q12 > 0, let K11 � 34, K12 � 42, K21

� 2, K22 � 1, Q21 � 10, Q22 � 8, Q11 � 2, Q12 � 2. Ten, we
can obtain θ0 � 2. In the case that initial conditions are
chosen as x � (0.5, 1)T, y � (− 3, 3)T, trajectories of drive
system (47) are presented in Figure 3. We choose the initial
value of the response system as m � (0.7, 0.5)T, w � (− 2,

2.2)T, t ∈ [− 2, 0]. So, |e11(0)| � 0.2, |e12(0)| � 0.5, |e21(0)| �

1, |e22(0)| � 0. 8 and t1 < 16.05. Moreover, we know that the
synchronization can be realized before 16.05 by Figure 4. Te
theoretical analysis of Teorem 7 is verifed.

Remark 16. When η1 is the selected diferent values and
other coefcients are invariant in the abovementioned
examples, we get diferent K11 andK12 thought simple
computing. Ten, the settling time is explicitly estimated,
which depends on time delays and initial values of the
coupled system. Moreover, we can fnd the appropriate
value of ηi, which makes the system synchronize more
quickly. Te system dynamical characteristic with ηi for
IMNNs would have specifc physical meanings and bi-
ological backgrounds.

Remark 17. In Example 1, if ηi is selected diferent values, we
can obtain diferent K11, K12, K21, K22, M1, M2, Q21, and
Q22. Accordingly, the settling time t1 is estimated when other
parameters remain unchanged. Changed parameters under
diferent ηi are shown in Table 1.
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Figure 1: Trajectories of x(t) and y(t) of (45) with initial conditions x � (0.5, 1)T, y � (− 3, 3)T.
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Figure 2: State responses of error system under the feedback controllers (16).
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Figure 3: Trajectories of x(t) and y(t) of (47) with initial conditions x � (0.5, 1)T, y � (− 3, 3)T.
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5. Conclusion

In this paper, the settling time estimation of synchronization
issues for IMNNs with mixed time-varying delays is dis-
cussed. By designing appropriate controllers and Lyapu-
nov–Krasovskii functionals, sufcient conditions are
obtained to guarantee synchronization in a settling time
without using existing fnite-time stability theorem. Due to
taking free-weight coefcients into account, the conserva-
tism is reduced and synchronization between master and
slave system can be quicker. Meanwhile, the obtained
conditions are more general and expend some existing re-
sults in [17, 27, 37]. As we all know, various disturbances and
uncertainties are unavoidable in lots of practical systems for
IMNNs. Future work would concern the fnite-time syn-
chronization of IMNN with stochastic disturbances and
parameter mismatch. On the other hand, pining impulsive
control approaches are a hot topic of concern [38, 39]. Ten,
we would also pay close attention to them for IMNNs.
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