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Tis paper proposes a new method to determine the viability of a switched system on a cone and an unbounded polyhedron. First,
we investigate the viability condition on a cone. Ten, a sufcient viability criterion for a polyhedron, which is expressed by
a convex hull of fnite number of extreme points and a nonnegative linear combination of fnite extreme directions, is presented by
using nonsmooth analysis. Based on this criterion, instead of all boundary points, just several extreme points and extreme
directions are needed to be verifed whether satisfying some conditions. Te advantage of the proposed methods is that de-
termining the viability for a switched system is easy to be implemented. Finally, an example is listed to illustrate the efectiveness of
the proposed methods.

1. Introduction

Viability is an important research topic in control theory,
and the viability of a dynamic system on a region means that
the system states stay inside the region under any initial
conditions in the region [1].Te research on viability focuses
on continuous evolution of a dynamic system within
a constraint region, aiming to maintain the system state
within the constraint region by describing the possible
trajectories and trying to select appropriate control, which
provides essential guarantee for the safe and continuous
evolution of the system, making the study of viability theory
of great importance. Viability theory has brought a new
research approach to the safe evolution of dynamic systems,
and it has now been applied to fshery ecosystems [2], re-
newable energy systems [3, 4], robot control [5, 6], and
system fault detection [7].

Te research on viability mainly includes two aspects. A
determining criterion for dynamic systems regarding
whether a given region satisfes viability is established
[8–10], and algorithms for computing the viability kernel of
dynamical systems are constructed [11–16]. Although the
author of [1] has given a sufcient and necessary condition

of determining the viability, it is difcult to implement and
not feasible in practice because each boundary points of
viability constraints have to be checked based on the dif-
ferential inclusions and the tangent cone. Tus, researchers
have considered the viability for some simple systems on
special forms of regions. In [8], the viability of a linear
system on a region with nonsmooth boundary is studied. In
[9], the viability of a class of diferential inclusion at a point is
verifed by determining the consistency of a system of linear
inequalities. A viability verifcation of a polyhedron for
a linear control system is researched in [17], and the method
of determining the viability for a bounded polyhedron,
which is expressed by a convex hull of a fnitely many points,
can be transformed into verifying the viability condition at
vertices. Chen has discussed the viability of a linear system
on a bounded polyhedron, and the method of determining
viability is transformed into solving a fnite number of linear
programming problems (see [18–20]) in [21]. Blanchini has
characterized the viability condition for a linear system on
polyhedral set and ellipsoidal set in [22]. Computation of the
viability kernel for dynamical systems is a fundamental
problem in the viability theory. It has traditionally been
computed using the viability kernel algorithm [12] and level
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set approach [23]. Mitchell et al. in [23] has presented an
algorithm by proofng that the reachable set is the zero
sublevel set of the viscosity solution of a particular time-
dependent Hamilton–Jacobi–Isaacs partial diferential
equation. Neznakhin has constructed the viability kernel for
a generalized dynamical system by an attainability set in [24]
and constructed the viability kernel in the phase constraints
for a nonlinear controlled system with a target set in [25].
However, these methods require gridding the state space,
and hence, their time and memory complexity grow ex-
ponentially with the state dimension. Tus, these methods
are feasible only for dynamical systems with low dimension.
Defuant et al. proposed an algorithm for computing the
approximation of the viability kernel by support vector
machines in [26]. It uses support vector machines as clas-
sifcation techniques and fnds a viable control at each time
step by gradient optimization techniques. Tis algorithm
allows us to avoid the exponential growth of the computing
time with the dimension of the control space.

Switched systems, which consist of two or more sub-
systems and a switching rule orchestrating switching be-
tween these subsystems, have attracted extensive attention in
recent years. To the best of our knowledge, the viability of
switched systems has received little attention. Gao has
characterized the viability for a hybrid system in [27] and an
uncertain impulse system in [28]. Haimovich has developed
the problem of invariant set computation for a switched
linear system in [29]. Lv and Gao have proposed a method of
computing the viability kernel for a switched system in [14].
Lv et al. have studied the viability problem for switched
nonlinear systems in [30]. A determining approach of
a viable set and an attraction region for switched systems in
which Lyapunov functions are piecewise smooth has been
proposed. However, these results have not given a specifc
method for determining viability on an unbounded region.
Although method of determining the viability for switched
systems has been proposed in [10], it should be noted that
this work only considers a bounded polyhedron. In fact, an
unbounded region can also be regarded as the security re-
gion for a switched system. Determining the viability of an
unbounded region makes the viability criterion more
complex. However, this determining criterion plays an
important role in security evolution of systems. As we know,
any unbounded region can be approximated by some un-
bounded polyhedrons. Tus, considering the viability for
a switched system on an unbounded polyhedron is mean-
ingful and important. We study this problem in the paper
based on the results of [10]. Our contribution is extending
the results of [10] to a cone and an unbounded polyhedron.
It is not a natural extension due to the complex features of
a switched system. We have constructed the viability cri-
terion for a switched system on a cone and an unbounded
polyhedron by means of nonsmooth analysis theory.

Te rest of the paper is organized as follows: Section 2
provides some necessary preliminaries. Sections 3 and 4 are
presented the viability of a cone and an unbounded poly-
hedron, respectively. In Section 5, we give an example to
illustrate the efectiveness of the given methods. Section 6 is
the conclusion.

2. Preliminaries

Consider the following switched system

_x(t) � Aσx(t) + Bσu(t), (1)

where x ∈ Rn is the system state variable, the switching rule
σ(t): [t0, +∞)⟶Λ is a segmented constant-valued
function of time t, the indicator set is Λ � 1, 2, · · · , N{ },
and σ(t) � i(i � 1, 2, · · · , N) indicates that the i-th sub-
system _x(t) � Aix comes into play. u is a control variable.
Te system jumps at the moment of switching, and its so-
lution is continuous everywhere and nonsmooth.

Defnition 1 (see [1]). Let W ⊂ Rn be nonempty. If for any
initial state x0 ∈W, there exists a solution x(t) � x(t, x0) of
system (1), such that x(t) ∈W for all t≥ 0, then the set W is
called viable under system (1). Te solution x(t) is said to be
a viable solution.

Te tangent cone of the set is required in the viability
criterion, and it is defned as follows.

Defnition 2 (see [1]). Let W ⊂ Rn be nonempty and the
tangent cone of the set W at x ∈W is defned as

TW(x) � υ ∈ Rn liminf
t⟶0+

1
t
dW

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x + tυ) � 0􏼚 􏼛, (2)

where dW(x) represents the distance from x to W, i.e.,
dW(x) � infy∈W|x − y|.

It is convenient to have characterization of the tangent
cone in terms of sequences: υ ∈ TW(x) if and only if there
exist a sequence of hk > 0 converging to 0+ and a sequence of
υk ∈ Rn converging to υ such that

x + hkυk ∈W, ∀k> 0. (3)

Tangent cone is the generalization of tangent plane from
smooth case to nonsmooth case. We give some tangent
cones at some boundary points in Figure 1. With this notion,
a viability condition is given by the following lemma.

Lemma 1 (see [1]). Te nonempty closed set W ⊂ Rn is viable
under the system _x � f(x) if and only if

TW(x)∩f(x)≠∅,∀x ∈W, (4)

where ∅ is an empty set.

Applying Lemma 1 to the switched system, the following
conclusion is reached.

Theorem 1. Te nonempty closed set W ⊂ Rn is viable under
system (1), if and only if

TW(x)∩ ∪
m

i�1
Aix + Biu( 􏼁􏼒 􏼓≠∅ ∀x ∈W . (5)

According to the defnition of the tangent cone, when x is
an inner point of W, TW(x) � Rn, and then, equation (5)
always holds.Terefore, to determine whether the equation (5)
holds, it is only required to consider the boundary points of W.
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3. Viability Determining on a Cone

We will discuss the viability on a cone for switched system
(1) in this section. Let

W � cone d1, · · · , dm􏼈 􏼉, (6)

be a cone, where di ∈ Rn, 1≤ i≤m denote the extreme di-
rections. Figure 2 gives a cone represented by d1 � 1 0􏼂 􏼃

T

and d2 � 0 1􏼂 􏼃
T.

We consider the viability for the switched system (1) on
the cone represented by (6). Let the control input set be
a cone. Based on the nonsmooth analysis, an approach for
determining the viability on a cone has proposed.

Theorem  . Let the nonempty cone W be given by (6). If
there exists a subsystem Ak(k ∈ Λ) of (1) such that Ak satisfes
the viability condition at any direction on each facet of W,
then switched system (1) is viable on W.

Proof. By the literature [31], the cone W can be expressed as

W � x c
T
i x≤ 0, i � 1, · · · , p

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (7)

Defne the following index set:

I(x) � i c
T
i x � 0, i ∈ 1, · · · , p􏼈 􏼉

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (8)

According to constraint qualifcations shown in [10], the
tangent cone can be expressed as

TW(x) � y ∈ Rn
c
T
i y≤ 0, i ∈ I(x)

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (9)

We only need to consider the viability for boundary
points of W. In other words, we need to consider the points
which make the index set to be nonempty. If the index set
I(x)≠∅, then x is on the one of the facet of W. Assuming
that x is on the facet H,

H � cone di1
, · · · , diq

􏼚 􏼛, i1, · · · , iq ∈ 1, · · · , m{ }, (10)

then, there exist μi(x)> 0, i � 1, · · · , q, such that

x � μ1(x)di1
+ · · · + μq(x)diq

. (11)

By known condition, there exist ui ∈ U, i � 1, · · · , q, such
that the following formulas hold:

TW di1
􏼐 􏼑∩ Akdi1

+ Bku1􏼐 􏼑≠∅, · · · , TW diq
􏼒 􏼓

∩ Akdiq
+ Bkuq􏼒 􏼓≠∅.

(12)

In nonsmooth optimization, two frequently used con-
straint qualifcations are shown as follows. Let the function
g(x)≤ 0 be the boundary of the region W. Ten, we have

Constraint Qualifcation 1 Tere exists y0 ∈ Rn, such
that g′(x; y0)< 0.
Constraint Qualifcation 2 clc(x) � Γ(x), where

c(x) � y ∈ Rn
g
′
(x; y)< 0

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

Γ(x) � y ∈ Rn
g
′
(x; y)≤ 0

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛.

(13)

In fact, the set W satisfes Constraint Qualifcation 1 or 2
at x ∈ Rn, and then, TW(x) � Γ(x). On the other hand, the
cone can be expressed as W � x | ci

Tx≤ 0, i � 1, · · · , p􏼈 􏼉, and
then,

TW(x) � y ∈ Rn
ci
T
y≤ 0, i ∈ I(x)

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (14)

Substituting tangent cone given by (14) into (12), we will
get

y ∈ Rn
c
T
i y≤ 0, i ∈ I di1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌􏼚 􏼛∩ Akdi1

+ Bku1􏼐 􏼑≠∅,

y ∈ Rn
c
T
i y≤ 0, i ∈ I di2

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌􏼚 􏼛∩ Akdi2

+ Bku2􏼐 􏼑≠∅,

· · · · · · · · · ,

y ∈ Rn
c
T
i y≤ 0, i ∈ I diq

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼚 􏼛∩ Akdiq

+ Bkuq􏼒 􏼓≠∅.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

W

x1

x2

Figure 2: A cone generated by d1 � 1 0􏼂 􏼃
T and d2 � 0 1􏼂 􏼃

T.

W

x3

x2

x5

x4

x1

TW (x2)
TW (x4)

TW (x5)

TW (x3)

TW (x1)

Figure 1: Tangent cones at points on set W.
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Tus,

y ∈ Rn
c
T
i Akdi1

+ Bku1􏼐 􏼑≤ 0, i ∈ I di1
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛≠∅,

y ∈ Rn
c
T
i Akdi2

+ Bku2􏼐 􏼑≤ 0, i ∈ I di2
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛≠∅,

· · · · · · · · · ,

y ∈ Rn
c
T
i Akdiq

+ Bkuq􏼒 􏼓≤ 0, i ∈ I diq
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼚 􏼛≠∅.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Tey are equivalent to the consistency of some linear
inequalities as follows:

c
T
i Akdi1

+ c
T
i Bku1 ≤ 0, i ∈ I di1

􏼐 􏼑,

c
T
i Akdi2

+ c
T
i Bku2 ≤ 0, i ∈ I di2

􏼐 􏼑,

⋮

c
T
i Akdiq

+ c
T
i Bkuq ≤ 0, i ∈ I diq

􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Since the extreme directions di1
, · · · , diq

on the same facet
of W, then I(di1

)∩ · · · ∩ I(diq
)≠∅ and (17) is meaningful.

Multiplying μ1(x), · · · , μq(x) on each inequality of (17),
respectively, and adding up, we can obtain

c
T
i Ak μ1(x)di1

+ · · · + μq(x)diq
􏼒 􏼓

+ c
T
i Bk μ1(x)u1 + · · · + μq(x)uq􏼐 􏼑≤ 0.

(18)

Letting u � μ1(x)u1 + · · · + μq(x)uq. Since the set U is
a cone and ui ∈ U(i � 1, · · · , q), μi > 0(i � 1, · · · , q),
according to the defnition of the cone, then u∈ U. Tus, (18)
can be rewritten as

c
T
i Akx + Bku( 􏼁≤ 0, i ∈ I di1

􏼐 􏼑∩ · · · ∩ I diq
􏼒 􏼓. (19)

It implies that

TW(x)∩ Akx + Bku( 􏼁≠∅. (20)

Tis concludes the proof of the theorem.
Teorem 2 has presented a method of determining the

viability of a cone for the switched system. For each facet of
the cone, we can fnd all the extreme directions contained in
this facet. We next determine whether the viability condition
on these directions is satisfed for each subsystem. If there
exists a subsystem satisfying the viability condition at any
direction on a facet of the cone, then the points on the facet
are viable. If each facet of the cone satisfes the viability
condition, then the cone is a viable region.

4. Viability Determining on an
Unbounded Polyhedron

We restrict our attention to determining the viability on an
unbounded polyhedron in this section.

Te representation of an unbounded polyhedron is
presented below. Let a1, · · · , am ∈ Rn, λi ≥ 0, i � 1, · · · , m, and
􏽐

m
i�1λi � 1, a � 􏽐

m
i�1λiai is called a convex combination of

a1, · · · , am. Te convex hull of the set S, denoted coS, is a set
formed by all convex combinations in S. In other words,

a ∈ coS, if and only if a can be expressed as a � 􏽐
k
i�1λiai,

where k is a positive integer, 􏽐
k
i�1λi � 1 and

ai ∈ S, λi ≥ 0, i � 1, · · · , k. For the set a1, · · · , am􏼈 􏼉, where
ai ∈ Rn, i � 1, · · · , m, its convex hull co a1, · · · , am􏼈 􏼉 can be
expressed as

co a1, · · · , am􏼈 􏼉 � 􏽘
m

j�1
λiai 􏽘

m

i�1
λi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 1, λi ≥ 0, i � 1, · · · , m

⎫⎬

⎭

⎧⎪⎨

⎪⎩
.

(21)

All bounded convex polyhedron in space Rn can be
expressed in the form of the above equation, where ai(i �

1, · · · , m) is geometrically seen as the vertices of the corre-
sponding polyhedron. An unbounded polyhedron can be
expressed in the following form:

W � co w1, · · · , wm􏼈 􏼉 + cone d1, · · · , dn􏼈 􏼉, (22)

where w1, · · · , wm represent the extreme points, and
d1, · · · , dn represent the extreme directions of the poly-
hedron. According to (22), for any x ∈W, there exists
μi ≥ 0, ηj ≥ 0, i � 1, · · · , m; j � 1, · · · , n, 􏽐

m
i�1μi � 1 such that

x � 􏽘

m

i�1
μiwi + 􏽘

n

j�1
ηjdj, (23)

holds. Figure 3 presents an unbounded polyhedron repre-
sented by the convex hull of w1, w2 and the nonnegative
linear combination of d1, d2, where w1 � 0 0􏼂 􏼃

T,
w2 � 0 1􏼂 􏼃

T, d1 � 1 0􏼂 􏼃
T, and d2 � 1 1􏼂 􏼃

T.
Viability of the switched system (1) on a region depends

on whether the boundary points of the region satisfy the
viability condition, that is, for each boundary point, whether
there exists a subsystem Ak, where k ∈ Λ, such that the vi-
ability condition holds. However, this method is not feasible
in practice as the region has infnite number of boundary
points. In what follows, the viability of the switched system on
an unbounded polyhedron is studied, and a sufcient viability
criterion has proposed based on nonsmooth analysis.

Let the control input set of the switched system (1) be
a convex set. Te viability condition of the unbounded
polyhedron W is presented as follows.

Theorem 3. Let the nonempty unbounded polyhedron W be
given by equation (22), H be any facet of W, and
H � co w1, · · · , wp􏽮 􏽯 + cone d1, · · · , dq􏽮 􏽯, if there exists a sub-
system Ak(k ∈ Λ) of (1) such that Ak satisfes the viability
condition at extreme points w1, · · · , wp, and for any extreme
directions d1, · · · , dq, there exist λr ≥ 0(r � 1, · · · , q) such that
Akdj � 􏽐

q
r�1λrdr holds, then the system (1) is viable on W.

Proof. It is sufcient to prove that the boundary points of W

satisfy the viability condition. Let x be any boundary point of
W, then x must be located on a facet of W. Let x be on the
facet H of W, then we have

x � 􏽘

p

i�1
μiwi + 􏽘

q

j�1
ηjdj, (24)
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where μi ≥ 0, 􏽐
p
i�1μi � 1, ηj ≥ 0, j � 1, · · · , q. Let us prove that

the system (1) satisfes the viability condition at x.
Since the subsystem Ak satisfes the viability condition at

the extreme points w1, · · · , wp, i.e., there exist ui ∈ U, i �

1, · · · , p such that

Akwi + Bkui( 􏼁 ∈ TW wi( 􏼁, i � 1, · · · , p. (25)

By the defnition of tangent cone, if y ∈ TW(x), there
exist s> 0, ξ ∈W such that y � s(ξ − x) holds.Terefore, for
each wi in (25), there exist si > 0, ξi ∈W such that

s1 ξ1 − w1( 􏼁 � Akw1 + Bku1,

s2 ξ2 − w2( 􏼁 � Akw2 + Bku2,

· · ·

sp ξp − wp􏼐 􏼑 � Akwp + Bkup,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(26)

where

ξi � 􏽘
m

k�1
aikwk + 􏽘

n

j�1
bijdj, i � 1, · · · , p,

􏽘

m

k�1
aik � 1, aik ≥ 0, bij ≥ 0, j � 1, · · · , n.

(27)

Take s � max
1≤i≤p

si􏼈 􏼉, and let

ci � wi +
si

s
ξi − wi( 􏼁, i � 1, · · · , p. (28)

Substituting ξi into the above equation, we will get

ci � wi +
si

s
􏽘

m

k�1
aikwk + 􏽘

n

j�1
bijdj − wi

⎛⎝ ⎞⎠,

ci � 1 −
si

s
􏼒 􏼓wi + 􏽘

m

k�1

si

s
aikwk + 􏽘

n

j�1

si

s
bijdj, i � 1, · · · , p.

(29)

Since the coefcient (1 − si/s) + si/s􏽐
m
k�1aik � 1, and

1 − si/s≥ 0, (si/s)aik ≥ 0, (si/s)bij ≥ 0, that is, ci can be
expressed as a convex combination of extreme points of W

and a nonnegative linear combination of extreme directions.
Terefore, ci ∈W, and

ci � wi +
si

s
ξi − wi( 􏼁⟹ s ci − wi( 􏼁 � si ξi − wi( 􏼁. (30)

According to equations (26) and (30), we get

s ci − wi( 􏼁 � Akwi + Bkui, i � 1, · · · , p, (31)

where ci ∈W. Let

ci � 􏽘
m

k�1
μikwk + 􏽘

n

j�1
ηijdj, i � 1, · · · , p,

􏽘

m

k�1
μik � 1, μik ≥ 0, ηij ≥ 0, j � 1, · · · , n.

(32)

Substituting ci into equation (31), we have

s 􏽘

m

k�1
μikwk + 􏽘

n

j�1
ηijdj − wi

⎛⎝ ⎞⎠ � Akwi + Bkui, i � 1, · · · , p,

s 􏽘
m

k�1
μikwk + 􏽘

n

j�1
ηijdj

⎛⎝ ⎞⎠ − swi � Akwi + Bkui, i � 1, · · · , p,

s 􏽘
m

k�1
μikwk + 􏽘

n

j�1
ηijdj

⎛⎝ ⎞⎠ � Ak + sI( 􏼁wi + Bkui,

i � 1, · · · , p.

(33)

Both ends of the above equation are multiplied by μ1
when i � 1, and multiplied by μp when i � p, we get

s 􏽘
m

k�1
μ1μ1kwk + 􏽘

n

j�1
μ1η1jdj

⎛⎝ ⎞⎠ � Ak + sI( 􏼁μ1w1 + Bkμ1u1,

· · · · · · · · ·

s 􏽘
m

k�1
μpμpkwk + 􏽘

n

j�1
μpηpjdj

⎛⎝ ⎞⎠ � Ak + sI( 􏼁μpwp + Bkμpup.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

Adding up the above p equations, we obtain

s 􏽘

p

i�1
μi 􏽘

m

k�1
μikwk

⎛⎝ ⎞⎠ + 􏽘
n

j�1
􏽘

p

i�1
μiηij

⎛⎝ ⎞⎠dj
⎛⎝ ⎞⎠

� Ak + sI( 􏼁 􏽘

p

i�1
μiwi( 􏼁 + Bk 􏽘

p

i�1
μiui( 􏼁.

(35)

Add Ak(􏽐
q
j�1ηjdj) to both ends of the above equation,

then

W
(0,1)

x2

x1

Figure 3: An unbounded polyhedron.
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s 􏽘

p

i�1
μi 􏽘

m

k�1
μikwk

⎛⎝ ⎞⎠ + 􏽘

n

j�1
􏽘

p

i�1
μiηij

⎛⎝ ⎞⎠dj
⎛⎝ ⎞⎠ + Ak 􏽘

q

j�1
ηjdj

⎛⎝ ⎞⎠

� Ak + sI( 􏼁 􏽘

p

i�1
μiwi( 􏼁 + Bk 􏽘

p

i�1
μiui( 􏼁 + Ak 􏽘

q

j�1
ηjdj

⎛⎝ ⎞⎠,

s 􏽘

p

i�1
μi 􏽘

m

k�1
μikwk

⎛⎝ ⎞⎠ + 􏽘
n

j�1
􏽘

p

i�1
μiηij

⎛⎝ ⎞⎠dj
⎛⎝ ⎞⎠ + s

1
s
Ak 􏽘

q

j�1
ηjdj

⎛⎝ ⎞⎠

� Ak 􏽘

p

i�1
μiwi( 􏼁 + 􏽘

q

j�1
ηjdj

⎛⎝ ⎞⎠ + Bk 􏽘

p

i�1
μiui( 􏼁 + s 􏽘

p

i�1
μiwi( 􏼁,

s 􏽘

p

i�1
μi 􏽘

m

k�1
μikwk

⎛⎝ ⎞⎠ + 􏽘
n

j�1
􏽘

p

i�1
μiηij

⎛⎝ ⎞⎠dj − 􏽘

p

i�1
μiwi +

1
s

􏽘

q

j�1
ηjAkdj

⎛⎝ ⎞⎠

� Ak 􏽘

p

i�1
μiwi + 􏽘

q

j�1
ηjdj

⎛⎝ ⎞⎠ + Bk 􏽘

p

i�1
μiui.

(36)

Substitute the given Akdj � 􏽐
q
r�1λrdr into the left end of

equation (36), then

s 􏽘

p

i�1
μi 􏽘

m

k�1
μikwk

⎛⎝ ⎞⎠ + 􏽘
n

j�1
􏽘

p

i�1
μiηij

⎛⎝ ⎞⎠dj +
1
s

􏽘

q

j�1
ηj 􏽘

q

r�1
λrdr − 􏽘

p

i�1
μiwi

⎛⎝ ⎞⎠

� Ak 􏽘

p

i�1
μiwi + 􏽘

q

j�1
ηjdj

⎛⎝ ⎞⎠ + Bk 􏽘

p

i�1
μiui,

s 􏽘

p

i�1
μi 􏽘

m

k�1
μikwk

⎛⎝ ⎞⎠ + 􏽘
n

j�1
􏽘

p

i�1
μiηij

⎛⎝ ⎞⎠dj +
1
s

􏽘

q

j�1
ηj 􏽘

q

r�1
λrdr + 􏽘

q

j�1
ηjdj − 􏽘

p

i�1
μiwi + 􏽘

q

j�1
ηjdj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� Ak 􏽘

p

i�1
μiwi + 􏽘

q

j�1
ηjdj

⎛⎝ ⎞⎠ + Bk 􏽘

p

i�1
μiui.

(37)

Since U is a convex set, where ui ∈ U, μi ≥ 0, i �

1, · · · , p, 􏽐
p
i�1μi � 1, let u � 􏽐

p
i�1μiui, then u∈ U. According

to (24), the above equation is transformed to

s 􏽘

p

i�1
μi 􏽘

m

k�1
μikwk

⎛⎝ ⎞⎠ + 􏽘
n

j�1
􏽘

p

i�1
μiηij

⎛⎝ ⎞⎠dj +
1
s

􏽘

q

j�1
ηj 􏽘

q

r�1
λrdr + 􏽘

q

j�1
ηjdj − x⎛⎝ ⎞⎠ � Akx + Bku, (38)

Te left of the above equation shows
􏽐

p
i�1μi(􏽐

m
k�1μikwk) � 􏽐

m
k�1(􏽐

p
i�1μiμik)wk, and the coefcient

of the extreme points wk satisfy

􏽘

m

k�1
􏽘

p

i�1
μiμik � 􏽘

p

i�1
μi 􏽘

m

k�1
μik � 􏽘

p

i�1
μi � 1. (39)
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It implies 􏽐
p
i�1μi(􏽐

m
k�1μikwk) is a convex combination of

extreme points of W. On the other hand,

􏽘

n

j�1
􏽘

p

i�1
μiηij

⎛⎝ ⎞⎠dj +
1
s

􏽘

q

j�1
ηj 􏽘

q

r�1
λrdr + 􏽘

q

j�1
ηjdj, (40)

is a nonnegative linear combination of the extreme di-
rections dj(j � 1, · · · , n) of W. Letting

ζ � 􏽘

p

i�1
μi 􏽘

m

k�1
μikwk

⎛⎝ ⎞⎠ + 􏽘
n

j�1
􏽘

p

i�1
μiηij

⎛⎝ ⎞⎠dj

+
1
s

􏽘

q

j�1
ηj 􏽘

q

r�1
λrdr + 􏽘

q

j�1
ηjdj.

(41)

Ten, ζ ∈W, and we have

s(ζ − x) � Akx + Bku, (42)

It shows that for any x, we can obtain s> 0, ζ ∈W, u∈ U,
such that equation (42) holds, i.e.,

Akx + Bku∈ TW(x). (43)

Terefore, the system satisfes the viability condition at
x, and by the arbitrariness of x, we know that the switched
system (1) is viable on W. Tis concludes the proof of the
theorem.

Teorem 3 has constructed a viability criterion for the
switched system on an unbounded polyhedron which
expressed by a convex hull of fnite number of extreme
points and a nonnegative linear combination of fnite ex-
treme directions. We have extended and developed the
viability criterion. Te method we have proposed has three
advantages. First, determining the viability for the switched
system is transformed into determining the consistency of
a system of linear inequalities. It can be implemented in
practice easily, and the method is feasible. Second, the
method we have proposed only needs to verify the viability
condition for some of the extreme points and some of the
extreme directions for an unbounded polyhedron.Tird, the
method has less computational operations in some
special cases.

5. Example

In this section, an example is employed to illustrate the
efectiveness of the proposed methods.

For the switched system _x(t) � Aσx(t), where, x ∈ R3,
σ ∈ 1, 2{ },

A1 �

1 1 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A2 �

1 0 0

1 1 0

0 0 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(44)

Te extreme points and extreme directions of W are

w1 � 0 0 0􏼂 􏼃
T
, w2 � 0 0 1􏼂 􏼃

T
,

d1 � 1 0 0􏼂 􏼃
T
, d2 � 0 1 0􏼂 􏼃

T
.

(45)

In fact, W is an unbounded polyhedron obtained from
the intersection of the frst quadrant in the space rectangular
coordinate system and x3 � 1.

In what follows, we will determine the viability of the
switched system on W. To facilitate presentation, the facet
where the x1x3-coordinate plane intersects W is denoted as
H1, the x1x2-coordinate plane is denoted as H2, the facet
where the x2x3-coordinate plane intersects W is denoted as
H3, and the facet where x3 � 1 intersects W is denoted as
H4. We discuss the viability for each facet, respectively.

For H1, it can be expressed as

H1 � co w1, w2􏼈 􏼉 + cone d1􏼈 􏼉. (46)

Since A2w1 � 0 0 0􏼂 􏼃
T, A2w2 � 0 0 −1􏼂 􏼃

T, then

A2w1 ∈ TW w1( 􏼁, A2w2 ∈ TW w2( 􏼁. (47)

On the other hand, A2d1 � d1 + d2, according to Te-
orem 3, the subsystem A2 is viable on H1.

For H2, it can be expressed as

H2 � cone d1, d2􏼈 􏼉. (48)

Since A1d1 � d1, A1d2 � d1 + d2, the subsystem A1 is
viable on H2, and the subsystem A2 also satisfes the viability
condition on H2.

For H3, it can be expressed as

H3 � co w1, w2􏼈 􏼉 + cone d2􏼈 􏼉. (49)

Since A2w1 ∈ TW(w1), A2w2 ∈ TW(w2), and A2d2 � d2,
the subsystem A2 is viable on H3. However, since

A1w2 � 0 0 1􏼂 􏼃
T ∉ TW w2( 􏼁, (50)

the subsystem A1 does not satisfy the viability condition on
H3. Tus, when the state reaches the facet H3, it is sufcient
to switch the system to the subsystem A2. Similarly, we can
calculate and obtain that the subsystem A2 satisfes the vi-
ability condition on H4. All of these show that the switched
system is viable on W. Te example implies that the pro-
posed method is feasible and efective. For the case of
complex unbounded polyhedron, we can determine it in the
same way.

6. Conclusion

We discuss the problem of determining the viability for the
switched system on a cone and an unbounded polyhedron.
Based on nonsmooth analysis, we have proposed two
methods of determining the viability for a cone and an
unbounded polyhedron, respectively. We only need to verify
the viability condition on the some of the extreme points and
extreme directions on the facet of the unbounded poly-
hedron. Tese methods presented in the paper are simple
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and feasible and can be directly used to determine viability.
Te results are the improvement and development of the
viability criterion. Tere are still several research directions.
For instance, determining the viability on the other regions
is also important and meaningful. Te viability for hybrid
systems is also a challenging problem, which leads to strong
mathematical difculties. Finally, viability theory is still not
completely explored in practice applications. Tis deserves
more attention and more research activity on the subject in
the future.
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