
Research Article
Multivisit Drone-Vehicle Routing Problem with Simultaneous
Pickup and Delivery considering No-Fly Zones

Yan-Qiu Liu,1 Jing Han ,1 Ying Zhang,1 Yan Li,2 and Tao Jiang1

1School of Management, Shenyang University of Technology, Shenyang 110870, China
2School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

Correspondence should be addressed to Jing Han; hanjing@smail.sut.edu.cn

Received 17 April 2023; Revised 16 July 2023; Accepted 28 July 2023; Published 22 August 2023

Academic Editor: Hector Vazquez-Leal

Copyright © 2023 Yan-Qiu Liu et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te employment of drones for the distribution of goods represents a signifcant avenue for addressing logistical challenges at the end of
the supply chain.Te truck-drone cooperative delivery model overcomes drone limitations such as limited capacity and endurance and
has emerged as a crucial mode of drone participation in logistics delivery. Tis delivery model efectively reduces delivery costs and
shortens delivery times. Herein, we examine a variant of the truck-drone routing problem, which encompasses the strategic deployment
and routing of multiple feets of trucks, each equipped with an auxiliary drone. Te objective is to fulfll all the pickup and delivery
demands of a designated customer base while minimizing the overall route cost. Within this problem domain, drones are authorized to
serve multiple customers within their capacity and endurance limits, providing both pickup and delivery services during each trip.
However, the utilization of drones for servicing all customers is impeded by the existence of no-fy zones that have been implemented in
numerous cities worldwide.Tese prescribed no-fy zones cause signifcant challenges when attempting to optimize the routing of truck-
drone operations. Tus, this study constructs a mixed integer linear programming (MILP) model for the path optimization problem of
joint service of trucks and drones considering no-fy zones and simultaneous pickup and delivery. Given the intricacy of the MILP
model, we propose a two-stage heuristic algorithm based on a simulated annealing approach, combined with strategies for rectifying
infeasible solutions and expediting algorithmic processes. During the phase of computational experimentation, we explore the ad-
vantages derived from enabling drones to serve multiple customers and assess the efectiveness of the proposed model and two-stage
heuristic algorithm. Finally, sensitivity analysis is conducted on two key parameters.

1. Introduction

For a long time, the “last mile” has consistently been the
bottleneck in the efciency of the distribution process.
Improving the operational efciency of the “last mile” is
crucial to logistics companies and even society. Currently, in
the “last-mile” distribution, trucks often have low distri-
bution efciency due to urban trafc congestion or rugged
mountain roads, which pose signifcant challenges to lo-
gistics companies. However, the application of drones in the
distribution feld has the advantages of not being afected by
ground obstacles, fast delivery, and low cost; hence, it has
attracted increasing attention from the industry and re-
search scholars. Although the load capacity of drones is
small and battery technology cannot support long-range

delivery, the joint delivery of trucks (ground vehicles) and
drones can form a novel and efcient delivery mode [1]
which has led to research on the drone-vehicle routing
problem (DVRP). Furthermore, introducing pickup services
into this novel combination model could ofer a practical
and promising last-mile solution, given the growing demand
and practical importance of reverse logistics.

Te drone-vehicle routing problem with simultaneous
pickup and delivery (DVRPSPD) is a complex route plan-
ning problem. Tis problem aims to meet the pickup and
delivery requirements of a set of customers while mini-
mizing the route cost. Te characteristics of this problem are
as follows. First, joint delivery by trucks and drones is
considered. Te truck feets start and end at the depot, and
the drones are launched and retrieved from the depot or the
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truck they are transported to. Te trucks are responsible for
long-distance pickup and delivery tasks, while the drones
handle the same short-distance tasks. Tis service method
can greatly reduce labor and time costs while enhancing
service efciency. Additionally, it considers simultaneous
pickup and delivery for meeting the customer needs. Unlike
traditional parcel delivery, this method enables trucks and
drones to provide pickup and delivery services during the
same trip, which greatly reduces delivery time and improves
delivery efciency.

In 2013, Amazon’s drone delivery plan marked the
earliest instance of drone involvement in delivery services.
Tree years later, the Prime Air drone by Amazon suc-
cessfully delivered its frst order. In subsequent tests, drone
delivery services have shown to be efective in certain sce-
narios. For instance, in Shenzhen, China, drones have been
utilized to deliver goods and food from stores or restaurants
to customers, ofering residents near business districts
a novel “3 km 15min” service experience in response to the
boom in instant retail [2]. Furthermore, some companies
began exploring synchronous collaboration systems that
combine trucks and drones. Mercedes–Benz’s Vision Van,
for instance, includes a fully automated cargo space and two
rotor drones for autonomous delivery.

While the purpose of these tests was to address the
technical hindrances associated with drone delivery services,
certain researchers have delved into the issue from an op-
erational standpoint. For example, Kim et al. [3] placed
emphasis on the planning of drone-assisted healthcare
services, which involves drones being utilized for delivering
medicine to patients and collecting samples such as blood or
urine tests. Ham [4] extended the parallel drone scheduling
traveling salesman problem (PDSTSP), considering the
drone’s cargo and pickup functions. Tis means that the
drone can either return to the depot after completing
a delivery or directly move to another customer to pick up
goods. Wikarek et al. [5] also explored the capacitated ve-
hicle routing problem with drones, which involves drones
delivering packages to customers while also retrieving
packages from them using multiple mobile depots to launch
and retrieve drones. However, their study only used drones
for pickup and delivery independently rather than in syn-
chronous conjunction with trucks. Current research on
combinatorial problems primarily focuses on delivery ser-
vices [6–13]. In light of this, Zhang and Li [14] introduced
the pickup and delivery service into the collaborative dis-
tribution system of trucks and drones to maximize drone
usage. However, their study does not take into account the
capacity constraint of the truck and restricts the launch and
retrieve node of the drone to be the same node, which
simplifes the problem and increases the waiting time. Meng
et al. [15] broke this limitation and extended the problem to
the vehicle routing problem with simultaneous pickup and
delivery (VRPSPD) for the study.

Despite the advantages of using drones for delivery and
pickup operations, implementing such services is still in its
infancy and limited to specifc scenarios. Tere are some
obstacles to wider adoption, as numerous cities have in-
stituted no-fy zones to ensure the safety of drone deliveries

and protect the public interest. Tese no-fy zones restrict
drones from entering sensitive areas, such as airports, nu-
clear power plants, and government buildings, to avoid
potential security threats, infringement of the legal rights of
others, and interference with the normal operation of public
facilities. In the joint distribution path planning problem of
drones and trucks, the existence of no-fy zones limits the
movement range and path selection of drones and increases
the complexity and difculty of the problem, which is
suitable for the actual drone delivery scene. Terefore, the
existence of no-fy zones in the joint delivery of trucks and
drones is necessary.

To increase the utilization rate of drones, some tech-
nically feasible operations can be considered, such as
allowing drones to carry multiple packages per trip and
providing simultaneous pickup and delivery services, not
just delivery, which can increase the utility of the drone.
Currently, there is no literature that considers the existence
of no-fy zones in the study of the DVRPSPD.Terefore, this
study considers the impact of no-fy zones on path planning
based on the DVRPSPD and allows drones to provide pickup
and delivery services for multiple customers within their
capacity and endurance. Tis problem is known as the
multivisits drone-vehicle routing problem with simulta-
neous pickup and delivery considering no-fy zones
(MDVRPSPDNF). We built a discrete optimization model
with the goal of minimizing the route cost, aiming to provide
theoretical support for improving the logistics company’s
response to customers’ various needs and the normal de-
livery of drones. Furthermore, we propose a two-stage
heuristic algorithm based on the simulated annealing
(SA) algorithm, which includes a path encoding method that
can represent the branch structure, an adjustment method
for infeasible solutions, and an algorithm acceleration
strategy. Tis algorithm is fast and efective in solving the
MDVRPSPDNF problem. Finally, we observe through
computational experiments that a combined truck-drone
system allowing multiple visits per trip saves signifcant
delivery costs. Te results of these numerical experiments
indicate that logistics enterprises would not only achieve cost
reduction and increase efciency from route optimization
but also consider the rationality of fexible and efective
distribution vehicles and resource allocation.

2. Related Literature

Tis section provides a synopsis of the pertinent literature
that previously explored concepts in relation to the research
presented in this study. For a more extensive summary and
survey, we direct the reader to studies conducted by Otto
et al. [16], Khouf et al. [17], Macrina et al. [18], and Madani
and Ndiaye [19].

Murray and Chu [6] initially proposed the fying sidekick
traveling salesman problem (FSTSP), which serves as
a cornerstone for the joint truck-drone route optimization
problem, garnering considerable attention from both in-
dustry and academia. In this problem, a truck carries a drone
for delivery purposes, with each drone fight serving only
one customer. Based on FSTSP, Ha et al. [7] solved the
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FSTSP problem by modifying the objective function from
minimizing delivery time to minimizing delivery costs. Tey
proposed two heuristic methods—TSP-local search (TSP-
LS) and greedy randomized adaptive search procedure
(GRASP)—to address this issue. Agatz et al. [8] proposed the
traveling salesman problem with drone (TSPD), where they
set the drone retrieve node limit and the drone launch node
limit to the same node, and designed a hybrid algorithm that
combines local search and dynamic programming to solve
the problem. Later, Mario et al. [20] explored the possibility
of along-route operations in the TSPD, allowing the drone to
serve a broader area. Chang and Lee [21] highlighted the
importance of fnding a better route based on the TSPD to
achieve a larger drone delivery area. Tey established
a nonlinear planning model and demonstrated its efec-
tiveness. Yurek and Ozmutlu [22] proposed a de-
composition-based iterative algorithm for moderately
sized TSPD problems. Kim andMoon [23] introduced drone
stations to the TSPD, creating the traveling salesman
problem with drone stations. Wang et al. [24] examined the
TSPD from a manager’s perspective, with biobjectives of
operating cost and completion time, and proposed an im-
proved nondominated sorting genetic algorithm to solve the
problem. Additionally, several studies focused on exploring
precise methods for the FSTSP/TSPD [25–28] and heuristic
algorithms [29, 30].

Kitjacharoenchai et al. [9] extended the FSTSP problem,
proposing a new variant of a truck carrying multiple drones.
To this end, they established a mixed integer programming
(MIP) model and heuristic algorithm. Murray and Raj [31]
conducted an in-depth study of the multiple fying sidekicks
traveling salesman problem (MFSTSP), considering the
energy consumption model of drones with respect to the
package weight, speed, and operation time. Tey proposed
a three-stage iterative heuristic algorithm that can handle up
to 100 customer instances. Furthermore, Peng et al. [32]
proposed a truck-assisted multidrone package delivery
method and provided a hybrid genetic algorithm to solve the
problem. Freitas and Penna [33] proposed a novel MFSTSP
for parcel delivery services using parking-assisted truck-
drones as an alternative to FSTSP. Dell’Amico et al. [34],
Gavani et al. [35], Lu et al. [36], and Tinic et al. [37] studied
exact and heuristic algorithms to solve MFSTSP problems.

Gonzalez et al. [10] expanded on the FSTSP problem,
also known as the truck-drone team logistics problem, by
considering the number of customers a drone visits during
a single trip. Tis approach allows drones to visit multiple
customers, which reduces delivery costs. Luo et al. [38]
delved further into the issue with their study of the multivisit
traveling salesman problem with multidrones, considering
drone energy consumption factors such as fight time, self-
weight, and payload. Tey proposed a multistart tabu search
algorithm to solve the problem for up to 100 customers.
Windras Mara et al. [39] introduced a new mathematical
formulation and a heuristic algorithm based on adaptive
large-scale neighborhood search (ALNS) techniques to
optimize the route for combined systems. Mahmoudi and
Eshghi [40] explored the energy-constrained multivisit
traveling salesman problem for multiple drones at

noncustomer rendezvous locations, providing a mathemat-
ical model and heuristic algorithm for large-scale examples.

Wang et al. [11] expanded the single-truck feet problem
to encompass multiple trucks and designated it as the vehicle
routing problem with drone (VRPD) to better ft the
practical distribution scenarios of enterprises. Masmoudi
et al. [12] analyzed the operational expenses of VRPD and
devised an ALNS algorithm to handle issues with up to 250
customers. Ulmer and Tomas [13] centered their VRPD
research on the same-day delivery. Wang and Sheu [41],
Tamke and Buscher [42], and Zhen et al. [43] each employed
exact algorithms to solve the VRPDmodel. Euchi and Sadok
[44] proposed a hybrid genetic sweeping algorithm for
addressing the VRPD problem involving up to 200 cus-
tomers. Lei et al. [45] adopted a novel dynamic artifcial bee
colony algorithm to minimize overall operating costs for the
VRPD. Schermer et al. [46] broadened the VRPD to include
multiple drones per truck to serve all customers. Masmoudi
et al. [12] extended the VRPD to a feet of drones equipped
with payload bays for serving more customers during
a single trip. In Kuo et al. [47] study, a biobjective math-
ematical model of the VRPD was established to minimize
delivery completion time and carbon emissions. Tey
proposed a nondominated sorting-based genetic algorithm
to solve this problem.

Kuo et al. [48] explored the VRPD with customer time
windows by minimizing travel costs in their study that
integrates multiple factors. Tey developed a variable
neighborhood search algorithm to solve a ffty-customer
problem. Dayarian et al. [49] proposed a delivery service
based on the VRPD, where trucks meet the needs of cus-
tomers who placed orders, while drones fulfll newly
emerging dynamic needs. Kim et al. [3] focused on drone-
assisted medical services that deliver medicine to patients
and retrieve test kits such as blood or urine samples. Ham [4]
extended the PDSTSP to include the delivery and pickup of
the drone. Wikarek et al. [5] studied the capacity vehicle
routing problem with drones that not only deliver but also
accept packages from customers and used several mobile
depots for drone launch and retrieval. Lu et al. [50] per-
formed an advantageous study on the cooperative distri-
bution system of trucks and drones in the multiobjective
humanitarian routing problem. In their study, customers are
defned as demand points or replenishment points. In
contrast, in Zhang and Li’s study [14], the customer is both
a demand point and a replenishment point, and it is re-
stricted that the launch and retrieve node of the drone must
be the same. But their study did not take into account the
capacity constraints of trucks. However, Meng et al. [15]
allowed the launch and retrieve node of the drone to be
diferent and extended this problem to the VRPSPD for
research. Jeong et al. [51] considered two critical practical
issues, namely, the impact of package weight on drone
energy consumption and no-fy zones, and extended the
previous vehicle routing model to hybrid delivery systems.

However, there are no VRPD studies that simultaneously
addressed pickup and delivery in no-fy zones. Numerous
cities in the world have designated no-fy zones, preventing
drones from visiting customers within them. Tis imposes
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greater demands and obstacles on the route planning of both
trucks and drones. Our approach allows each drone to serve
multiple customers on a single trip, making joint route
optimization between trucks and drones more practical.
Hence, the fexibility of the MDVRPSPDNF yields new
practical pickup and delivery models. Recent research results
in this feld are summarized in Table 1.

T represents the number of trucks, D represents the
number of drones carried on each truck or the number of
drones when serving customers independently with the
truck, and m is the abbreviation of “Multiple.” SV/MV
represents the number of customers per trip (i.e., single visit
or multiple visits). SPD represents whether the problem
considers both demand for pickup and delivery at the same
time. NF represents whether the problem considers no-fy
zones. Te above literature suggests that the joint distri-
bution problem of drones and trucks can be regarded as
adding drones to the VRP. Terefore, there are also nu-
merous types of research worth learning in this regard
[52, 53].

3. Model

3.1. Problem Description. We examine the scenarios of
forward and reverse terminal logistics distribution in the
presence of no-fy zones as the subject of research. Te
distribution route is optimized through the use of a co-
operative distribution mode of trucks equipped with drones,
as shown in Figure 1. Tis optimization aims to achieve
wider distribution and more efcient package delivery.

Te problem is defned as follows: there is a depot and
multiple customers, some of whom are situated within no-fy
zones. Te demand and recycling volume of each customer,
as well as the distance between the depot and the customers
and between any two customers, is known. Te depot
possesses an unlimited number of homogeneous trucks and
drones. A single drone can transport goods to multiple
customers within its maximum loading capacity and farthest
fying distance. Customers can be serviced only once by one
truck or one drone. Te depot dispatches several trucks and
drones to transport goods to customers. Te trucks are sent
out from the depot, each carrying a drone, and the cargo load
of the truck must not exceed its maximum loading capacity.
Te drone can be launched and retrieved from the depot or
the truck carrying it, and it returns to the depot or its truck
after delivering and receiving goods to several customers.
Te objective of this study is to devise a routing scheme for
truck and drone services that minimize the routing cost.

MDVRPSPDNF can be described as an edge selection
problem in a directed and connected network graph. Let G �

(V, A) be a directed graph, where V � 0, 1, 2, · · · , n, n + 1{ }

represents the node set, node 0, n + 1 represents the depot,

the rest of the nodes represent customers, and A represents
the arc set, A � (i, j) | i ∈ V, j ∈ V, i≠ j􏼈 􏼉. On directed graph
G, a reasonable delivery route must start from node 0 and
end at node n + 1. C � V\ 0, n + 1{ } represents the customer
set, K � 1, 2, · · · , k{ } represents the set of delivery trucks, and
P � 1, 2, · · · , p􏼈 􏼉 represents the set of drone trips.
F � 1, 2, · · · , f􏼈 􏼉 refers to the gathering of customers in no-
fy zones. According to the customer’s demand and the
weight of the recycled volume, all customers are divided into
two categories: customer set CT: CT � i | qi􏼈

>Qu‖ri >Qu, i ∈ C} only served by trucks, and customer set
CU: CU � C/CT served by both trucks and drones. In set CU,
when customer i’s demand qi and recycling volume ri do not
exceed the maximum loading capacity Qu of the drone and
the travel distance after adding customer i does not exceed
its farthest fying distance Dmax, drone delivery is preferred.
If the above conditions are met but the route cost of using
drones for distribution is higher than that of using trucks,
priority is given to trucks for delivery.

Te parameters and decision variables involved in the
MDVRPSPDNF model are shown in Table 2.

Before building a mathematical model, some basic as-
sumptions must be established:

(i) If either the truck or the drone arrives earlier, they
must wait for the other to arrive before restarting
the pickup/delivery process

(ii) Because the drone fies almost in a straight line,
Euclidean distance is used for calculation; the truck
is limited by the road network such that it is as-
sumed that the distance of the truck is dt

ij � δ · du
ij,

where δ is a constant, which represents the road
tortuosity

(iii) Drones are not allowed to enter no-fy zones
(iv) When the drone is delivering, the truck proceeds to

the next customer node to complete the pickup and
delivery needs

(v) Te battery is replaced immediately after the drone
meets the truck to ensure endurance in the next
drone fight

(vi) Te truck and drone maintain a constant speed
during the delivery process

3.2.MathematicalModel. Based on the mathematical model
constructed by Luo et al. [38] and combined with the specifc
characteristics of MDVRPSPDNF, the following model is
obtained:

min C
t

􏽘
k∈K

􏽘
i∈V

􏽘
j∈V

d
t
ijx

k
ij + C

u
􏽘
k∈K

􏽘
p∈P

􏽘
i∈V

􏽘
j∈V

d
u
ijy

kp
ij . (1)
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3.2.1. Route Constraints. Route constraints are given as
follows:

􏽘
k∈K

Z
k
i + 􏽘

p∈P
Z

kp

i
⎛⎝ ⎞⎠ � 1∀i ∈ C

U
, (2)

􏽘
k∈K

Z
k
i � 1∀i ∈ C

T
, (3)

(-5,+5)

(-20,+13)

(-2,+4)

(-6,+16)

(-27,+5)

(-3,+0)

(-2,+2)

(-24,+12)

(-17,+4)

(-7,+5)

(-23,+0)
(-3,+1)

(-10,+25)

(-0,+5)

(-3,+7)
(-2,+3)

(-30,+35)

(-8,+6)

A collection of customers that can
be served by trucks and drones

Depot

Customer nodes served by truck

No-fly zone Truck

Drone

Route of truck

Route of drone

Figure 1: Example of the joint “truck-drone” distribution.

Table 1: Summary of related studies.

Reference T D SV/MV SPD NF Objective Method
Murray and Chu [6] 1 1 SV No No Min time MILP, heuristic
Ha et al. [7] 1 1 SV No No Min cost MILP, GRASP
Agatz et al. [8] 1 1 SV No No Min time MILP, approximation algorithm
Yurek and Ozmutlu [22] 1 1 SV No No Min time MILP, heuristic
Kitjacharoenchai et al. [9] m m SV No No Min time MIP, heuristic
Raj and Murray [31] 1 m SV No No Min time MILP, heuristic
Gonzalez et al. [10] 1 1 MV No No Min time MIP, heuristic
Luo et al. [38] 1 m MV No No Min time MILP, heuristic
Wang et al. [11] m m SV No No Min time Worst-case analysis
Masmoudi et al. [12] m 1 MV No No Min cost MILP, ALNS
Wikarek et al. [5] m m MV No No Min distance MILP, iterative algorithm
Ham [4] m m MV No No Min time Constraint programming approach
Lu et al. [50] m m MV No No Multiobjective MILP, heuristic
Jeong et al. [51] 1 1 SV No Yes Min time MIP, heuristic
Zhang and Li [14] 1 m MV Yes No Min distance MIP, heuristic
Meng et al. [15] m m MV Yes No Min cost MILP, two-stage heuristic algorithm
Tis paper m m MV Yes Yes Min cost MILP, two-stage heuristic algorithm
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􏽘
j∈V

x
k
ij � Z

k
i ∀i ∈ C, k ∈ K, i≠ j, (4)

􏽘
j∈V

y
kp
ij ≥Z

kp
i ∀i ∈ C, k ∈ K, p ∈ P, i≠ j, (5)

h
E
ikp + 􏽘

j∈V
y

kp

ij � h
S
ikp + 􏽘

j∈V
y

kp

ji ∀i ∈ C, k ∈ K, p ∈ P, i≠ j, (6)

􏽘
j∈V

y
kp

ij ≤ 1∀i ∈ V, k ∈ K, p ∈ P, i≠ j, (7)

􏽘
j∈V

y
kp

ji ≤ 1∀i ∈ V, k ∈ K, p ∈ P, i≠ j, (8)

􏽘
j∈V

x
k
ij � 􏽘

j∈V
x

k
ji ≤ 1∀i ∈ V, k ∈ K, i≠ j, (9)

􏽘
k∈K

􏽘
p∈P

y
kp
ij + 􏽘

k∈K
􏽘
p∈P

y
kp
ji ≤ 1∀(i, j) ∈ A, (10)

􏽘
i∈C

x
k
0i � 􏽘

i∈C
x

k
i,n+1 ≤ 1∀k ∈ K, (11)

Z
kp
i + Z

kp
j ≥ 1 − M 1 − y

kp
ij􏼐 􏼑∀i ∈ C, j ∈ C, i≠ j, k ∈ K, p ∈ P, (12)

h
S
ikp ≥ 1 − M 2 − y

kp

ij − Z
kp

j + Z
kp

i􏼐 􏼑∀i ∈ C, j ∈ C, i≠ j, k ∈ K, p ∈ P, (13)

h
E
jkp ≥ 1 − M 2 − y

kp
ij − Z

kp
i + Z

kp
j􏼐 􏼑∀i ∈ C, j ∈ C, i≠ j, k ∈ K, p ∈ P, (14)

􏽘
p∈P

h
S
ikp ≤M 􏽘

j∈V
x

k
ji∀i ∈ V, k ∈ K, i≠ j, (15)

Table 2: Model symbols and explanations.

Notation Description
Parameters
Dmax Farthest fying distance of a drone
M A large positive integer
Wu Self-weight of drones
qi Demand of customer i ∈ C

ri Recycling volume of customer i ∈ C

Qt/Qu Maximum loading capacity of trucks/drones
Ct/Cu Unit transportation cost of trucks/drones
dt

ij/d
u
ij

Distance between truck/drone from node i ∈ V to node j ∈ V

Variables
xk

ij(� 1) Truck k ∈ K passes through arc (i, j) ∈ A

y
kp
ij (� 1) Drone trip p ∈ P carried on truck k ∈ K passing through arc (i, j) ∈ A

Zk
i (� 1) Customer i ∈ C is served by truck k ∈ K

Z
kp
i (� 1) Customer i ∈ C is served by drone trip p ∈ P carried on truck k ∈ K

hS
ikp(� 1) Customer i ∈ V is the launch node of drone trip p ∈ P carried on truck k ∈ K

hE
ikp(� 1) Customer i ∈ V is the retrieved node of drone trip p ∈ P carried on truck k ∈ K

gi(� 1) Customer i ∈ C is in the no-fy zones
L0k Load of truck k ∈ K when it leaves the depot
LT

i /L
U
i

Loading capacity of truck/drone after service to customer i ∈ C

ui/di Truck/drone access sequence for node i ∈ V
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􏽘
p∈P

h
E
ikp ≤M 􏽘

j∈V
x

k
ij∀i ∈ V, k ∈ K, i≠ j, (16)

h
S
ikp + h

E
ikp ≤ 1∀i ∈ V, k ∈ K, p ∈ P, (17)

􏽘
i∈V

h
S
ikp � 􏽘

i∈V
h

E
ikp ≤ 1∀k ∈ K, p ∈ P, (18)

􏽘

l∈V
l≠ 0

x
k
0l ≥ x

k
ij∀(i, j) ∈ A, k ∈ K,

(19)

􏽘
i∈C

y
kp

0i + 􏽘
i∈C

y
kp

i,n+1 ≤ 1∀k ∈ K, p ∈ P, (20)

ui − uj + 1≤ (n + 2) × 1 − x
k
ij􏼐 􏼑∀k ∈ K, i ∈ V, j ∈ V, i≠ j, (21)

di − dj + 1≤ (n + 2) × 1 − y
kp
ij􏼐 􏼑∀k ∈ K, p ∈ P, i ∈ V, j ∈ V, i≠ j. (22)

Te objective function (1) endeavors to minimize the
cost of the route, which is the summation of the truck and
drone route costs. Constraint (2) afrms that each customer
can only receive a single service. Constraint (3) assures that
customers served by trucks are exclusively served by them
due to load capacity restrictions. Constraint (4) ensures that
customers serviced by trucks are directly served by them.
Constraint (5) ensures that customers requiring drone
services are only reachable through drone trips. Every drone
trip comprises an open route with a launch and retrieve
node, indicating the commencement and conclusion of the
trip, respectively. Te launch node of a drone has solely an
outdegree, and the retrieve node has solely an indegree.
Constraint (6) ensures that all nodes visited by the drone trip
p have a fow balance. Constraints (7) and (8) limit the total
outdegree and indegree of each node. Constraint (9)
maintains the fow balance of the truck and ensures that the
truck can service each customer at most once. Constraint
(10) necessitates that each edge is traveled at most once
during a drone trip. Constraint (11) indicates that each truck

can be used at most once, starting and ending from the
depot. Constraint (12) mandates that for each edge visited by
the drone, at least one customer must be serviced on p to
prevent the drone from fying unnecessarily. Constraints
(13) and (14) designate the launch and retrieve nodes for the
drone’s trip p. Constraints (15)–(16) require that the launch
and retrieval nodes be visited by trucks. Constraint (17)
guarantees that the launch and retrieve nodes of a drone trip
p difer. Constraint (18) ensures that an equal number of
launch and retrieve nodes are present per drone trip and that
there is at most one launch node per trip. Constraint (19)
indicates that each truck can only be used after leaving the
depot. Constraint (20) indicates that drones are not allowed
to independently complete tasks. Constraints (21) and (22)
represent the subtour elimination of trucks and drones,
respectively.

3.2.2. Capacity Constraints. Capacity constraints are given
as follows:

L0k � 􏽘
i∈V

qi 􏽘
j∈V

x
k
ij + W

u
+ 􏽘

i∈V
qi 􏽘

p∈P
􏽘
j∈V

y
kp
ij ∀k ∈ K, i≠ j, (23)

L0k ≤Qt∀k ∈ K, (24)

􏽘
i∈C

qiZ
kp
i ≤Qu∀k ∈ K, p ∈ P, (25)

L
T
j ≥ L0k − qj + rj − M 1 − x

k
0j􏼐 􏼑∀j ∈ C, k ∈ K, (26)

L
T
j ≥ L

T
i − qj + rj − M 1 − 􏽘

k∈K
x

k
ij

⎛⎝ ⎞⎠∀i ∈ C, j ∈ C, i≠ j, (27)
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L
U
j ≥ 􏽘

l∈C
qlZ

kp

l
⎛⎝ ⎞⎠ − qj + rj − M 3 − y

kp
ij − Z

kp
j − h

S
ikp􏼐 􏼑∀i ∈ C, j ∈ C, i≠ j, k ∈ K, p ∈ P, (28)

L
U
j ≥L

U
i − qj + rj − M 3 − 􏽘

p∈P
y

kp
ij − 􏽘

p∈P
Z

kp
i − 􏽘

p∈P
Z

kp
j

⎛⎝ ⎞⎠∀i ∈ C, j ∈ C, i≠ j, k ∈ K, (29)

L
T
j ≤Qt + M 1 − 􏽘

i∈V/ 0{ }

x
k
ij

⎛⎝ ⎞⎠∀j ∈ C, k ∈ K, i≠ j, (30)

L
U
j ≤Qu + M 1 − 􏽘

i∈V/ 0{ }

y
kp
ij

⎛⎝ ⎞⎠∀j ∈ C, k ∈ K, p ∈ P, i≠ j. (31)

Constraint (23) is utilized to compute the primary load
of the designated truck k situated at the depot. Constraint
(24) represents the maximum loading limit that the truck is
capable of withstanding, while constraint (25) represents the
maximum loading limit of the drone. Constraint (26)
manifests as the formula for calculating the loading capacity
of truck k after the initial customer has been serviced along
the route. In the same vein, constraint (27) corresponds to
the formula for determining the loading capacity of truck k

after any other customer (excluding the frst) has been
serviced along the way. Similarly, constraints (28) and (29)
are used to calculate the loading capacity of the drone during
the trip. Constraints (30) and (31) indicate that the loading
capacity of the truck and the drone after serving any cus-
tomer on the route must be equal to or greater than its
maximum loading capacity.

3.2.3. No-Fly Zones and Farthest Flying Distance Constraints.
In the domain of logistics distribution, the incorporation of
a drone can enhance distribution efectiveness and con-
currently reduce costs. To ensure the safety of drone fights,
a crucial approach entails the prudent delineation of obstacle
avoidance routes and fight routes during the fight control
of drones. Hence, it is of utmost importance to devise

a rationalized fight plan and route planning while also
considering the no-fy zones and the transportation re-
quirements of drones.

Te current set of no-fy zones for drones includes
certain designated areas, such as airports, military bases,
prisons, schools, and government properties, that perma-
nently prohibit any sort of fying activity, alongside tem-
porary no-fy zones that are caused by unforeseen
emergencies such as forest fres. In light of this, these no-fy
zones must be considered when designing the fight route,
and the drone must not enter these zones.

Tis study delineates the no-fy zones as an area where
drones are strictly prohibited from fying. Within this do-
main, drones are neither permitted to launch nor allowed to
enter from other areas. Figure 2 highlights three distinct
prohibited routes for drones traversing no-fy zones: (a)
customers in no-fy zones cannot be used as the launch node
of the drone; (b) customers within no-fy zones cannot be
served by drones; and (c) customers in no-fy zones cannot
be used as the retrieval node of the drone.

In summary, this study introduces a series of constraints
to ensure the rationality and accuracy of the path planning
model design and restrict the drone from passing through
no-fy zones.

gi � 1∀i ∈ F, (32)

h
S
ikp � 0∀i ∈ F, k ∈ K, p ∈ P, (33)

h
E
ikp � 0∀i ∈ F, k ∈ K, p ∈ P, (34)

y
kp
ij � 0∀i ∈ F, j ∈ V, i≠ j, k ∈ K, p ∈ P, (35)

y
kp
ij � 0∀j ∈ F, i ∈ V, i≠ j, k ∈ K, p ∈ P, (36)

􏽘
i∈V

􏽘
j∈V

d
u
ijy

kp
ij ≤Dmax∀k ∈ K, p ∈ P, i≠ j, (37)
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x
k
ij, y

kp
ij , Z

k
i , Z

kp
i , h

S
ikp, h

E
ikp, gi ∈ 0, 1{ },∀i, j ∈ V, k ∈ K, p ∈ P, (38)

L0k, L
T
i , L

U
i ≥ 0,∀i ∈ C, k ∈ K, (39)

ui ≥ 0, di ≥ 0 ∀i ∈ V. (40)

Constraint (32) means that when customer i is in a no-fy
zone, its corresponding binary variable must be 1. Con-
straints (33) and (34) indicate that if the drone must retrieve
or launch, the retrieve/launch node must be set at a location
out of the no-fy zone. Constraints (35) and (36) mean that if
the path transfers from node i to node j and either node i or
node j is in the no-fy zone, the decision variable y

kp
ij must be

0. Constraint (37) denotes the farthest fying distance
constraint of the drone. Constraints (38) – (40) represent the
value range of variables.

4. Solution Approach

As a variant of the VRP, the MDVRPSPDNF is likewise
a problem that belongs to the NP-hard class. Te traditional
optimization method is difcult to solve; hence, we choose
the SA algorithm with a simple structure that is capable of
jumping out of the local optimal solution to solve it. Nev-
ertheless, traditional SA algorithms are not capable of op-
timizing the truck and drone routes simultaneously.
Terefore, a two-stage heuristic algorithm, based on the SA
algorithm, is proposed in this study. Te algorithm follows
the “Route First, Cluster Second” concept. First, the problem
is treated as a VRPSPD, and the SA algorithm is employed to
devise the entire route. Ten, customers are categorized
based on their demand and recycling volume. Customers in
set CU are then excluded from the route, and drones are used
to serve them. For every drone service, the minimum cost
route is calculated, which satisfes the maximum loading
capacity and the farthest fying distance constraints of the
drone. Te search process permits the drone to cater to
multiple customers while adhering to the maximum loading
capacity and farthest fying distance constraints. Moreover,

an adjustment mechanism for infeasible solutions is devised
to comply with the no-fy zone constraints. To enhance the
iteration speed of the algorithm, an acceleration technique is
proposed. Tis approach greatly reduces the complexity of
the calculation problem and improves the efciency of the
algorithm search. Te specifc algorithm is elaborated as
follows.

4.1. Te First Stage: Simulated Annealing Algorithm to Solve
the VRPSPD. Te central idea of the SA algorithm is to
obtain the optimal solution by performing several neigh-
borhood operations on the current solution. Compared with
other optimization algorithms, SA allows the acceptance of
a solution that is worse than the current one with a specifc
probability during the search process. Tis attribute enables
the algorithm to avoid being trapped in the local optimum.
When employing the SA algorithm to solve the VRPSPD,
three vital stages must be incorporated: coding and objective
function, neighborhood structure, and acceptance criteria
and annealing.

4.1.1. Coding and Objective Function. In this study, the
depot and customers are coded in the solution simulta-
neously, i.e., the depot is inserted into the solution in the
form of a number greater than the number n of customers.
Te length of the solution is n + m − 1, where n is the
number of customers and m is the number of trucks.

Considering the constraints of loading capacity, we
adopt the method of imposing penalties on routes, violating
the constraints to make each segmented route meet the
constraints of loading capacity. Terefore, the objective
function is as follows:

Infeasible route
Customers
No-fly zone 

(a)

Infeasible route
Customers
No-fly zone 

(b)

Infeasible route
Customers
No-fly zone 

(c)

Figure 2: Schematic diagram of the route of drones prohibited from crossing the no-fy zones. (a) Prohibited launch nodes. (b) Prohibit
customers served by drones. (c) Prohibited retrieve nodes.
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f(s) � t(s) + αc(s), (41)

c(s) � 􏽘
k∈K

max Lok − Qt( 􏼁, 0􏼈 􏼉 + 􏽘
k∈K

􏽘
j∈C

max L
T
j − Qt − M 1 − 􏽘

i∈V
x

k
ij

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭, (42)

where s is the delivery plan, f(s) is the value of the objective
function, t(s) is the total distance cost of the vehicle, c(s) is
the sum of the violations of the loading constraints when the
truck leaves each node on each route, and α is the weight of
the violation of the loading constraints.

4.1.2. Neighborhood Structure. Tis study uses a roulette
wheel method to choose three neighborhood operations: the
swap operation, reverse operation, and insertion operation.

Swap operation: As the name implies, this operation swaps
the positions of two customers. For the existing route
Route � [r(1), · · · , r(i), · · · , r(j), · · · , r(n + m − 1)], the ex-
change position is selected as i and j; then, the exchanged
solution is Route � [r(1), · · · , r(j), · · · , r(i), · · · , r

(n + m − 1)].
Reverse operation: A reverse operation means reversing

the ordering of all customers between two locations. For the
existing route Route � [r(1), · · · , r(i), r(i + 1), · · · , r(j − 1),

r(j), · · · , r(n + m − 1)], the reversal position is chosen as i

and j; then, the solution after reversal is Route � [r(1),

· · · , r(j), r(j − 1), · · · , r(i + 1), r(i), · · · , r(n + m − 1)].
Insert operation: Te insert operation inserts the cus-

tomer selected at the frst position after the customer se-
lected at the second position. For the existing route,
Route � [r(1), · · · , r(i), · · · , r(j), · · · , r(n + m −1)], the in-
sertion position is chosen as i and j; then, the solution after
insertion is Route � [r(1), · · · , r(i − 1), r(i + 1), · · · , r(j),

r(i), r(j + 1), · · · , r(n + m − 1)].

4.1.3. Acceptance Criteria and Annealing. Te core concept
of SA is to accept a solution worse than the current solution
with a certain probability. Te formula for the probability of
accepting a new solution is as follows:

P �
1, f Snew( 􏼁<f Scurr( 􏼁,

e
− f Snew( )− f Scurr( )[ ]/T, f Snew( 􏼁≥f Scurr( 􏼁,

⎧⎨

⎩ (43)

where f(Scurr) represents the objective function value of the
current solution and f(Snew) represents the objective
function value of the new solution.

As the number of iterations increases, the probability of
acceptance must also decrease. Tis is because the search time
must be reduced, i.e., the temperature decreases with the in-
crease in the number of iterations, and the formula is as follows:

Tgen+1 � βTgen, (44)

where β is the cooling factor and 0< β< 1.

4.2. Te Second Stage: Routing Algorithms for Truck-Drone.
Te multivisit drone-vehicle routing problem for pickup and
delivery conundrum encompasses three distinct decisions. Te
frst step is to determine which customers are served by trucks
and drones, respectively. Te subsequent decision involves
determining the order in which the truck will visit the cus-
tomers.Te third decision involves designating the sequence in
which each drone will visit the customers as well as deciding
upon launch and retrieve nodes. Tese nodes can either be the
depot or any customer location for the truck service. Imper-
atively, these decisions have a consequential impact on one
another and therefore must be made in tandem. Te ensuing
discourse delves into each of these three decisions.

4.2.1. Truck-Drone Routing Representation. Te combined
route for a truck and drone is depicted in Figure 3(a), along
with its corresponding encoding solution is depicted in
Figure 3(b).Te encode comprises two components: the frst
part, denoted as Part 1, represents the order in which the
customers are visited by the truck. Tis section commences
and concludes with 0, which denotes the depot. Te digits
between two zeros indicate the customer visitation sequence
for the truck service.

Te second part, referred to as Part 2, represents the
sequence of customers visited by the drone.Te frst and last
digits in this section signify the launch and retrieve nodes for
each drone trip, respectively. Te k-th row pertains to the
route taken by the k-th truck, while the p-th trip of the drone
carried by the k-th truck is represented by the drone route.

To facilitate ease of handling, solutions are presented as
multidimensional arrays. Given n customers, k trucks, and k

drones, a single drone may undertake a maximum of p trips,
and the solution is coded in kq dimensions. q � max kp + 1,
where max kp represents the maximum number of trips
among k drones. Tis arrangement allows for the maximum
number of trips made by the truck and drone. Te decoded
route shown in Figure 3(b) comprises the following: the
route taken by the frst truck is (0⟶1⟶3⟶4⟶0),
while the frst trip of the drone carried by the frst truck is
(1⟶2⟶3), and the second trip of the drone carried by the
frst truck is (4⟶5⟶6⟶0); the route taken by the
second truck is (0⟶7⟶8⟶10⟶0), and the frst trip of
the drone carried by the second truck is (8⟶9⟶10).
Evidently, the coding of multidimensional arrays lucidly
demonstrates the collaborative distribution route of multiple
trucks and drones. Tis coding methodology can also be
expanded to other combinatorial optimization problems
featuring branching structures.
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4.2.2. Joint Truck-Drone Routing Planning. We use the
pseudocode shown in Algorithm 1 (Figure 4) to plan the
routing of trucks and drones. First, we classify all customers
according to their demand and recycling volume, where
customer setCT is only served by trucks and customer set CU

is served by both trucks and drones. Ten, the customers in
set CU are removed, served by drones, and added to drone
trip p1. Next, we put the former node of the removed node
into trip p1 as its launch node. Ten, we determine the type
of the subsequent node of the removed node. If it belongs to
set CT, it is used as the retrieval node of drone trip p1; if it
belongs to set CU, it is added to trip p1, and we continue to
judge the next node type of the subsequent node until
customer or depot 0 in set CT is found. Notably, when
constructing a drone path, it must meet the drone capacity
and endurance. If the constraint is not met, the path is
discarded. So far, a complete truck-drone routing solution
has been generated.

4.2.3. Infeasible Solution Adjustment Strategy. Te afore-
mentioned procedures enable retrieval of the routes taken by
both the truck and the drone; however, the no-fy zone
constraint is not considered. Hereafter, a strategy for
adjusting the infeasible solution with regard to the no-fy
zones is presented herein. Te specifc strategy is as follows: if
the customer who uses the drone service is in the no-fy zone,
the customer will be added to the place where the path cost is
the lowest in the carrier truck path of the drone; if the launch/
retrieve node is in the no-fy zones, the customers served by
the drone in the drone trip are added to the truck route or
other drone trips. All cases are compared, and the route with
the lowest route cost increment is chosen. Figures 5(a) and
5(b) illustrate a visual representation of this procedure.

4.2.4. Algorithm Acceleration Strategy. To improve the it-
eration speed of the algorithm, the following acceleration
strategy is proposed to search for the optimal solution.

When searching for drone service customers, it is benefcial
to maximize the efectiveness of drones by considering the
drone loading critical value, driving capacity critical value,
and whether it can continue to serve the following customer
node. In Figure 6, the drone fies from node A to the nearest
customer B when the capacity and range allow it. When
customer B has been served, the capacity and endurance
reach a critical node. How to determine whether to continue
serving customer C becomes a key question. Tis study
proposes conditions for selecting vehicle models, to avoid
the algorithm searching for many nonfeasible solutions.
Table 3 lists the selection criteria. If the conditions are met,
the drone proceeds to serve customer C and then returns to
node D; otherwise, it returns to node D directly.

4.3. Algorithm Flowchart. Combining the above strategies,
the two-stage heuristic algorithm process is shown in
Figure 7.

5. Computational Experiments

In this section, we evaluate the efectiveness of the proposed
two-stage heuristic algorithm and investigate the advantages
of the DVRPSPDNF by conducting various experiments on
numerical examples of diferent problem sizes. We frst
explore the efectiveness of the proposed algorithm without
considering the no-fy zone. Ten, we compare the per-
formance of the proposed algorithm and mathematical
model considering the no-fy zones. Finally, by testing
problem instances of diferent scales, the advantages of the
DVRPSPDNF over the truck-only service and single visit by
drone are analyzed, and a sensitivity analysis is performed on
two key parameters. Te algorithm is implemented via
Matlab 2018b, and all evaluations are conducted on a single
computer with the Windows 10 operating system and an
Intel(R) Core (TM) i5-10200H CPU @ 2.40GHz processor.

Because DVRPSPDNF is a new problem, no existing
benchmarks exist. Terefore, we choose the P1 data set
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Figure 3: Representation of the joint truck-drone routing solution. (a) Routing diagram. (b) Coding.
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Figure 4: Truck-drone routing planning pseudocode.
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Figure 5: Schematic diagram of the adjustment strategy for a nonfeasible solution. (a) Situation where a customer served by a drone is in
a no-fy zone. (b) Retrieval node of drone travel in a no-fy zone (the same is true for the launch node).
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Figure 6: Schematic diagram of the tail customer judgment method.
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under the VRPPD problem and the A data set under the
capacitated vehicle routing problem (CVRP), which have the
most similar characteristics to this study, as two types of test
data. Tese data can be found at VRP Web (dorronsoro.es)
online. Considering the actual situation and technical lim-
itations of drones, some data must be adjusted. Tus, we
adjusted the coordinate range of each example to 20 by 20 by
dividing the original coordinates by fve, randomly modifed
86% of customers’ pickup and delivery needs to be within the
range of [0, 2.3], and the remaining 14% of customers were
adjusted in the range of [2.3, 10]. Tis is related to Amazon’s
statement that 86% of its packages do not exceed 2.27 kg. If
the calculated number of customers selected has decimals, it
is rounded down.

In numerical experiments, the numerical part of the
truck- and drone-related parameters refers to published
reports and current practices [54, 55]. Assuming that the
maximum payload of the drone is 3 kg and the maximum
fight distance is 20 km, the cost per km is approximately
$0.078. Assuming that the maximum loading capacity of the
truck is 100 kg, the cost per kilometer is approximately $0.78.
Te parameter settings related to the algorithm are shown in
Table 4.

5.1. Comparison Experiment for Determining the Efectiveness
of the Algorithmwithout considering No-Fly Zones. To assess
the efcacy of the two-stage heuristic algorithm, we initially
evaluated its performance on the P1 dataset without con-
sidering no-fy zones. We then compared the results with
those obtained using the depth-frst search (DFS) [56] and
maximum payload-improved simulated annealing (MP-
ISA) [15] in terms of objective function values. Te sum-
marized fndings can be found in Table 5. Specifcally, the
Obj column represents the total route cost, the Time column
denotes the running time, and the Gap is defned as the gap
between the two-stage heuristic algorithm and DFS, cal-
culated using formula Gap � (ObjTwo−stage
−ObjDFS)/ObjDFS ∗ 100%. Moreover, the Gap0 is defned as
the gap between the two-stage heuristic algorithm and MP-
ISA, computed using formula Gap0 � (ObjTwo−stage
−ObjMP−ISA)/ObjMP−ISA ∗ 100%.

Te experimental fndings demonstrate the superiority
of the two-stage heuristic algorithm over DFS and MP-ISA
in addressing the DVRPSPD problem. Specifcally, while the
DFS algorithm ensures solution quality, its search efciency
becomes limited as the problem scale expands, thereby
hindering the discovery of optimal solutions. In contrast,
both MP-ISA and the two-stage heuristic algorithm possess
global search capabilities, enabling them to acquire

reasonably good solutions within a relatively short time.
However, as the problem size grows, the two-stage heuristic
algorithm surpasses MP-ISA in terms of solution time and
quality. On average, the two-stage heuristic algorithm
achieves approximately a 4% reduction in the objective
function value compared to MP-ISA. Hence, the two-stage
heuristic algorithm has good adaptability and search ability
when solving the vehicle routing problem with drones
considering pickup and delivery, especially for situations
dealing with large-scale problems.

5.2. Comparison Experiment for Determining the Efectiveness
of the Algorithm considering No-Fly Zones. To verify the
efectiveness of the two-stage heuristic algorithm for the no-
fy zone problem, we conducted a performance comparison
experiment with a mathematical model. Considering the
DVRPSPDNF problem as an NP-hard problem, the model
can only solve small-scale problems within a reasonable time
frame. Terefore, we conducted detailed statistical analysis
experiments for cases with sizes of fve customers. In this
example, we regarded all possible node combinations as no-
fy zones, and the proportion of no-fy zones did not exceed
60%. We also conducted comparative experiments in me-
dium and large-scale calculation examples; however, due to
space limitations, we changed the selection method of the
no-fy zone to randomly select several nodes to be placed in
the no-fy zone. In the experiments, we used the Gurobi
solver and the two-stage heuristic algorithm for testing,
where the time limit of the Gurobi solver was set to 2 h. Te
results are summarized in Table 6, where no-fy denotes
customers in no-fy zones. For the solver solution, Table 6
records the upper and lower bounds (Obj_UB, Obj_LB) of
the optimal solution value obtained by Gurobi, as well as its
running time (Time). For the solution of the two-stage
heuristic algorithm, the table records the optimal solution
value (Obj) and computation time (Time) in 20 runs and
defnes the gap between them as
Gap1 � (Objtwo−stage − Objsolver)/Objsolver ∗ 100%.

Te experimental results demonstrate that the two-stage
heuristic algorithm achieves optimality for all the cases
involving fve customers, albeit with longer computation
times when compared to Gurobi. As the number of cus-
tomers increases to 10, Gurobi still manages to obtain op-
timal solutions within the prescribed timeframe; however,
the computational time escalates considerably. While the
two-stage heuristic algorithm boasts relatively shorter
computation times, it does sufer from a loss of computa-
tional accuracy ranging from 6% to 7%. In the cases in-
volving 16–20 customers, both Gurobi and the two-stage

Table 3: Selection criteria.

Analyzing condition Result

􏽐
i∈ b,c{ }

qi − 􏽘
i∈ b,c{ }

ri <Qu

􏽐
i∈ b,c,d{ }

qi − 􏽘
i∈ b,c,d{ }

ri <Qu

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

&& AB + BC + CE<Dmax
AB + BC + CD + DE≤Dmax

􏼨 Accept

Other Reject
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the outer cycle counter OutIter, the inner cycle counter InIter, the
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Generate the initial solution Sinit, make the current solution
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Figure 7: Flowchart of the two-stage heuristic algorithm.
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heuristic algorithm produce approximate solutions. How-
ever, compared with the two-stage heuristic algorithm, the
Gurobi solver obtains a smaller objective function value,
albeit at the cost of increased solving duration. For cases
involving more than 25 customers, Gurobi fails to acquire
either optimal or approximate solutions, whereas the two-
stage heuristic algorithm can promptly provide an ap-
proximate solution. Tis discrepancy arises because even
a slight increment in the instance size can cause Gurobi to
consume more time and memory resources. It can be seen
that the solution of the solver is still unacceptably and
computationally expensive; therefore, it is necessary to
provide efcient heuristics for large problems. Furthermore,
we found that no-fy zones have a certain impact on the total
route cost by setting diferent numbers and locations of no-
fy zones. Because no-fy zones cannot be traversed, if there
are too many no-fy zones or the location layout is un-
reasonable, detours may be required to avoid these areas,
thereby increasing the route cost. Terefore, when opti-
mizing the route scheme in actual delivery, the location and
number of no-fy zones must be considered to reduce the
route cost in a targeted manner.

5.3. Comparative Analysis of Diferent Service Modes. To
thoroughly investigate the advantages of the
MDVRPSPDNF, it is imperative to conduct numerical ex-
periments encompassing diverse service modes. Specifcally,
when solely considering the utilization of trucks to service
customers, the scenario is referred to as the Tmode. On the
contrary, if the trucks operate in conjunction with drones
and a single drone trip caters to only one customer, the
scenario is referred to as the SV mode. Finally, when trucks
and drones operate in collaboration and a single drone trip
visits multiple customers, the scenario is called the
MV mode.

In this section, we use three service modes to solve 10
calculation examples under dataset A and 10 calculation
examples under dataset P1. In each experiment, several
nodes are randomly selected to be placed in the no-fy zone,
and it is assumed that the paths between other nodes do not
pass through this area.Te experimental results are shown in
Table 7. In Table 7,Gap2 represents the gap betweenMV and
T, and the calculation formula is
Gap2 � (ObjMV − ObjT)/ObjT ∗ 100%; Gap3 represents the
gap between SV and T, and the calculation formula is
Gap3 � (ObjSV − ObjT)/ObjT ∗ 100%; Gap4 represents the

gap between MV and SV, and the calculation formula is
Gap4 � (ObjMV − ObjSV)/ObjSV ∗ 100%. To observe the
solution in each mode more clearly, we show the path graph
obtained by the two-stage heuristic algorithm in
Figures 8(a)-8(c), taking the A-n32-k5 as an example.

Upon analysis of the experimental data, results indicate
that in most instances, the MV service mode’s route cost is
approximately 13.27% lower than that of the Tservice mode,
while the SV service mode’s route cost is about 0.52% lower
than that of the T service mode. Tis highlights that in
comparison to the pure truck service model, employing
a joint service of trucks and drones greatly reduces route
costs. Tis critical conclusion must be considered when
evaluating last-mile services with delivery requirements.

Furthermore, the MV service mode’s route cost is about
12.83% lower than that of the SV service mode. Tis can be
attributed to the fact that drones can service more customers
in the MV mode, thereby decreasing the routing costs and
the distance covered by trucks. Tis fnding further cor-
roborates the efcacy of the truck-mounted drone collab-
orative service in curtailing route costs within a brief period
and the drones’ ability to serve multiple customers in
one trip.

Additionally, utilizing a combination of trucks and
drones may not always decrease the delivery distance route.
Tis is due to the infuence of the customer base and depot
location on the outcome. Specifcally, if the depot is situated
near the periphery of the customer region, the transport
distance may not be reduced; however, some degree of the
routing cost can still be saved. Conversely, if the depot is
close to the center of all customers, the transportation
distance and routing cost can be moderately reduced.

In summary, regardless of whether the transport dis-
tance is diminished, adopting a fexible distribution ap-
proach can efectively lower route costs, which is benefcial
for enhancing customer satisfaction and aligning with
current energy-saving and emission-reducing ecological
principles. Simultaneously, this provides a potential solution
for reducing labor costs in the future logistics sector.

5.4. SensitivityAnalysis. To further study the infuence of key
parameters on the experimental results, we conducted
a series of tests on A-n32-k5, A-n34-k5, and A-n36-k5
examples, where we changed the drone’s farthest fying
distance and maximum loading capacity. In these three
calculation examples, 10 levels were set for each parameter,
and a total of 60 scenarios were generated. In comparison,
we only change one parameter in each scenario and record
the test results. First, we set the range of the farthest fight
distance of the drone to start from 10 km, increase it by
10 km each time up until 10 gradients at the end of 100 km,
and obtain the corresponding objective function value. Te
line graph is shown in Figure 9. It is not the case for all
parameters that bigger values are better; for example, when
the maximum loading capacity is large, it may lead to a low
actual load rate. Hence, we set the maximum loading ca-
pacity of the drone to 3 kg (the drone serves one customer at
a time), 12 kg (drones serve multiple customers at a time),

Table 4: Algorithm parameters.

Parameters Value
Penalty factor for violating load constraints 100
Te maximum number of iterations of the outer loop 2000
Te maximum number of iterations of the inner loop 300
Te initial temperature 1000
Cooling factor 0.99
Probability of choosing an exchange operation 0.2
Probability of choosing a reversal operation 0.5
Probability of choosing an insert operation 0.3
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Table 5: Comparison of the solution results without considering no-fy zones.

Instance Customer size
DFS MP-ISA∗ Two-stage heuristic

algorithm Gap (%) Gap0 (%)
Obj ($) Time (s) Obj ($) Time (s) Obj ($) Time (s)

1P1 5 42.8899 0.1167 42.8899 52.7932 42.8899 25.3132 0.00 0.00
2P1 5 57.5957 0.0793 57.5957 49.8417 57.5957 25.2891 0.00 0.00
3P1 5 76.6143 0.0787 76.6143 67.1834 76.6143 25.1527 0.00 0.00
4P1 5 42.6159 0.0766 42.6159 45.9845 42.6159 25.2915 0.00 0.00
5P1 5 33.7257 0.0746 33.7257 53.7421 33.7257 25.2736 0.00 0.00
6P1 10 33.792 42554+ 33.792 91.5788 33.792 27.1359 0.00 0.00
7P1 10 66.7995 45916+ 66.7995 77.2730 66.7995 26.8150 0.00 0.00
8P1 10 65.5545 46132+ 65.5545 89.7093 65.5545 26.4493 0.00 0.00
9P1 10 95.9622 42747+ 95.9622 116.0718 95.9622 26.3039 0.00 0.00
10P1 10 53.0546 45574+ 53.0546 75.3013 53.0546 26.3881 0.00 0.00
11P1 25 — — 92.8342 111.0741 92.8342 27.9300 — 0.00
12P1 25 — — 110.0705 107.5209 108.8239 27.8392 — −1.13
13P1 25 — — 84.0827 147.2939 76.1248 28.2309 — −9.46
14P1 25 — — 99.5778 98.6201 96.4696 28.0950 — −3.12
15P1 25 — — 110.4872 109.3823 114.1058 27.8189 — 3.28
16P1 50 — — 99.4776 391.1732 99.1025 29.3064 — −0.38
17P1 50 — — 127.0030 446.4201 81.4187 29.3719 — −35.89
18P1 50 — — 92.7712 534.9052 92.7712 29.3531 — 0.00
19P1 100 — — 150.5763 873.4260 141.0252 48.7691 — −6.34
20P1 100 — — 185.9799 848.1349 155.4059 31.6178 — −16.44
TeMP-ISA∗ algorithm is written according to the algorithm architecture in the literature [15] and is coded by usingMatlab 2018b. Its objective function is to
calculate the total transportation cost of trucks and drones.

Table 6: Comparison experiment for determining the efectiveness of the algorithm considering no-fy zones.

Instance Customer size No-fy
Solver solution Two-stage heuristic

algorithm Gap1 (%)
Obj_UB ($) Obj_LB ($) Time (s) Obj ($) Time (s)

1P1_1 5 1 25.96 25.96 1 25.96 25.3508 0.00
1P1_2 5 2 20.52 20.52 1 20.52 25.5584 0.00
1P1_3 5 3 21.76 21.76 1 21.76 25.2819 0.00
1P1_4 5 4 14.41 14.41 1 14.41 25.2415 0.00
1P1_5 5 5 14.16 14.16 1 14.16 25.0967 0.00
1P1_6 5 1, 2 27.06 27.06 1 27.06 25.2376 0.00
1P1_7 5 1, 3 31.31 31.31 1 31.31 25.2657 0.00
1P1_8 5 1, 4 26.05 26.05 1 26.05 25.0332 0.00
1P1_9 5 1, 5 25.96 25.96 1 25.96 25.0608 0.00
1P1_10 5 2, 3 25.03 25.03 1 25.03 27.5985 0.00
1P1_11 5 2, 4 20.62 20.62 1 20.62 25.0996 0.00
1P1_12 5 2, 5 20.52 20.52 1 20.52 25.0662 0.00
1P1_13 5 3, 4 22.08 22.08 1 22.08 25.1485 0.00
1P1_14 5 3, 5 21.76 21.76 1 21.76 25.0723 0.00
1P1_15 5 4, 5 20.42 20.42 1 20.42 25.5597 0.00
1P1_16 5 1, 2, 3 31.31 31.31 1 31.31 25.1711 0.00
1P1_17 5 1, 2, 4 27.15 27.15 1 27.15 25.1168 0.00
1P1_18 5 1, 2, 5 27.06 27.06 1 27.06 25.1320 0.00
1P1_19 5 1, 3, 4 31.31 31.31 1 31.31 25.2537 0.00
1P1_20 5 1, 3, 5 31.31 31.31 1 31.31 25.2396 0.00
1P1_21 5 1, 4, 5 27.07 27.07 1 27.07 25.2176 0.00
1P1_22 5 2, 3, 4 25.18 25.18 1 25.18 25.4017 0.00
1P1_23 5 2, 3, 5 25.03 25.03 1 25.03 25.0857 0.00
1P1_24 5 2, 4, 5 25.09 25.09 1 25.09 25.4050 0.00
1P1_25 5 3, 4, 5 24.77 24.77 1 24.77 25.2607 0.00
Avg. 1 25.3182 0
6P1_1 10 2 31.62 31.62 3505 33.80 30.8478 6.89
6P1_2 10 2, 5 31.72 31.72 3811 34.18 33.9215 7.76
6P1_3 10 1 31.98 31.98 3900 33.81 26.0616 5.72
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and 30–100 kg (starting from 30 kg and increasing by 10 kg
each time up until 100 kg, for a total of eight gradients, in
which the drone can provide services for any customer
except for those in the no-fy zones). We obtain the cor-
responding objective function value, which is depicted by
a line graph in Figure 10.

Figure 9 indicates that by holding other factors constant,
raising the farthest fying distance of the drone will decrease
the objective function value to some extent.Tis is due to the

increased number of drone service nodes, which further
reduces the overall route cost. Nevertheless, there is a lower
limit on the route length and cost reduction, which is
infuenced by the restrictions of the drone’s maximum
loading capacity and no-fy zones.

Based on Figure 10, we can draw a conclusion that given
other constant variables, increasing the drone’s load capacity
leads to a reduction in the objective function value to
a certain extent, as the increased capacity allows for more

Table 6: Continued.

Instance Customer size No-fy
Solver solution Two-stage heuristic

algorithm Gap1 (%)
Obj_UB ($) Obj_LB ($) Time (s) Obj ($) Time (s)

6P1_4 10 1, 2, 5 32.09 32.09 3242 34.28 25.9153 6.82
Avg. 3615 29.1866 6.80
11P1_1 16 2, 5 70.23∗ 56.81 7200 79.85 28.7801 13.70
11P1_2 16 1, 2, 5 70.33∗ 59.65 7200 81.15 26.9204 15.38
Avg. 7200 27.8503 14.54
11P1_3 18 2, 5 75.75∗ 37.98 7200 93.21 28.1936 23.05
11P1_4 18 1, 2, 5 77.08∗ 39.08 7200 92.58 27.0675 20.11
Avg. 7200 27.6306 21.58
11P1_5 20 2, 5 77.79∗ 48.12 7200 94.09 28.1038 20.95
11P1_6 20 1, 2, 5 90.81∗ 50.04 7200 93.35 27.9111 2.80
Avg. 7200 28.0075 11.88
11P1_7 25 2, 5, 10 — — — 95.49 28.3291 —
11P1_8 25 1, 5, 10, 15, 20 — — — 95.79 27.5383 —
Avg. 27.9337
16P1_1 50 2, 5, 10 — — — 103.21 29.1527 —
16P1_2 50 1, 5, 10, 15, 20 — — — 103.16 28.8346 —
Avg. 28.9937
20P1_1 100 1, 5, 15 — — — 171.78 31.3569 —
20P1_2 100 1, 5, 15, 25, 35 — — — 172.10 31.2769 —
Avg. 31.3169
∗Te optimal solution cannot be obtained within a time limit of 2 h.

Table 7: Comparison of the route length and cost of diferent service modes.

Instance
T SV MV

Gap2 (%) Gap3 (%) Gap4 (%)
Distance (km) Obj ($) Distance (km) Obj ($) Distance (km) Obj ($)

A-n32-k5 738.1991 575.7953 745.819 571.2777 828.419 564.9381 −1.8856 −0.7846 −1.1097
A-n33-k5 801.5456 625.2055 825.7149 626.4847 793.8946 529.5511 −15.2997 0.2046 −15.4726
A-n33-k6 810.0986 631.8769 815.2357 605.9259 830.2485 534.8869 −15.3495 −4.1070 −11.7240
A-n34-k5 745.5779 581.5508 767.1655 582.5211 783.3361 547.3998 −5.8724 0.1668 −6.0292
A-n36-k5 765.5458 597.1257 806.9042 599.5826 757.727 498.0142 −16.5981 0.4115 −16.9399
A-n37-k5 886.4948 691.466 935.3265 687.0653 871.7529 563.1101 −18.5629 −0.6364 −18.0413
A-n37-k6 903.252 704.5366 985.2481 698.3755 846.4771 529.8001 −24.8016 −0.8745 −24.1382
A-n38-k5 929.7825 725.2303 991.0106 728.839 912.556 575.2713 −20.6774 0.4976 −21.0702
A-n39-k5 1034.5045 806.9135 1117.8947 808.0433 1216.4278 788.8451 −-2.2392 0.1400 −2.3759
A-n39-k6 768.7777 599.6466 796.249 598.4917 776.3955 439.2096 −26.7553 −0.1926 −26.6139
11P1-n25 126.494 98.6653 128.4857 97.9666 151.2918 92.725 −6.0207 −0.7082 −-5.3504
12P1-n25 145.7094 113.6533 161.9125 114.7505 198.9515 109.9613 −3.2485 0.9654 −4.1736
13P1-n25 142.3196 111.0093 144.6392 108.8874 162.599 86.701 −21.8975 −1.9115 −20.3755
14P1-n25 157.2703 122.6708 162.1433 122.0907 182.9461 110.7984 −9.6783 −0.4729 −9.2491
15P1-n25 177.2852 138.2824 179.6048 136.1605 202.3291 126.3671 −8.6166 −1.5345 −7.1925
16P1-n50 156.5053 122.0741 163.0477 122.1651 193.818 101.4892 −16.8626 0.0745 −16.9246
17P1-n50 137.9246 107.5812 137.8106 105.4266 163.1893 82.8185 −23.0177 −2.0028 −21.4444
18P1-n50 147.8966 115.3593 152.1841 115.3782 177.0224 94.7828 −17.8369 0.0164 −17.8503
19P1-n100 243.4945 189.9257 262.7141 190.4973 359.6466 178.1814 −6.1836 0.3010 −6.4651
20P1-n100 240.157 187.3224 241.7924 187.3469 369.4272 179.7767 −4.0282 0.0131 −4.0407
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service nodes and further reduces the total route cost.
However, beyond a certain critical value for the drone ca-
pacity and farthest fying distance, the objective function
value will not be further reduced. Tis is because the

optimization of one parameter is restricted by other pa-
rameters. For example, a maximum loading capacity of
100 kg would enable the drone to serve any customer except
those in no-fy zones. Although this would increase the
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Figure 8: Optimal routing diagram of A-n32-k5 under diferent service modes. (a) Optimal routing in Tmode. (b) Optimal routing in SV
mode. (c) Optimal routing in MV mode.
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Figure 9: Calculation results for various diferent farthest fight distances of drone.
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number of customers served, the drone’s fight capability
and no-fy zones would constrain it. Tus, companies de-
veloping logistics drones must consider the fight distance
and load capacity, rather than solely pursuing unilateral
optimization of either the fight distance or load capacity.

6. Conclusions

Tis study examines an integrated system that combines
trucks and drones for simultaneous pickup and delivery
operations while accounting for no-fy zones.Tis represents
an important expansion of the DVRPSPD as the system
simultaneously considers constraints such as multivisit,
farthest fying distance, maximum loading capacity, no-fy
zones, and truck-drone collaboration. We formulate a MILP
model with the objective of minimizing the total route cost
for both trucks and drones. To address large-scale problems,
we develop a two-stage heuristic algorithm comprising two
main components: a SA algorithm to tackle the VRPSPD
problem and a heuristic approach to handle the DVRPSPD
problem with consideration for no-fy zones. In the latter
part, we introduce a multidimensional array to represent the
collaborative delivery path involving multiple trucks and
drones. Additionally, we propose a scheme for adjusting
infeasible solutions and an algorithm acceleration strategy
for handling no-fy zones. Furthermore, we conduct a series
of computational experiments to validate the efcacy of our
proposed model and algorithm. Based on the experimental
outcomes, as compared to pure truck-based services and the
single-visit service mode, the multivisit service mode ach-
ieves an average route cost reduction of approximately
13.27% and 12.83%, respectively. While higher payload
capacity and increased fight distances confer substantial
cost advantages, it is important for enterprises to not solely
pursue one-sided optimization. Instead, a balanced con-
sideration of fight distance and payload should be employed
to achieve optimal results. In conclusion, this study rec-
ommends that logistics enterprises should not only focus on
cost reduction and efciency enhancement through route
optimization but also consider the feasibility of fexible and
efective distribution vehicles and resource allocation.

To enhance the quality of pickup and delivery services,
future research should investigate the incorporation of
customer service time constraints. Moreover, deploying
multiple drones to provide more efcient service is
a promising avenue for expansion. Finally, it is imperative to
address the MDVRPSPDNF challenges in low-carbon
logistics.
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healthcare services for patients with chronic diseases in rural
areas,” Journal of Intelligent and Robotic Systems, vol. 88, no. 1,
pp. 163–180, 2017.

[4] A. M. Ham, “Integrated scheduling of m-truck, m-drone, and
m-depot constrained by time-window, drop-pickup, and m-
visit using constraint programming,” Transportation Research
Part C: Emerging Technologies, vol. 91, pp. 1–14, 2018.

[5] J. Wikarek, P. Sitek, and L. Zawarczyn, “An integer pro-
gramming model for the capacitated vehicle routing problem
with drones,” in Proceedings of the International Conference
on Computational Collective Intelligence, pp. 511–520, New
York, NY, USA, December 2019.

[6] C. C. Murray and A. G. Chu, “Te fying sidekick traveling
salesman problem: optimization of drone-assisted parcel
delivery,” Transportation Research Part C: Emerging Tech-
nologies, vol. 54, pp. 86–109, 2015.

[7] Q. M. Ha, Y. Deville, Q. D. Pham, andM. H. Hà, “On the min-
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