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Te Gaussian mixture model (GMM) is an unsupervised clustering machine learning algorithm. Tis procedure involves the
combination of multiple probability distributions to describe diferent sample spaces. Principally, the probability density function
(PDF) plays a paramount role by being transformed into local linear regression to learn from unknown f failure samples, revealing
the inherent properties and regularity of the data, and enhancing the subsequent identifcation of the operating status of the
machine. Te wavelet transform is a multiresolution transformation that can observe the signal gradually from coarse to fne,
highlighting the localization analysis of nonstationary signals. Orthogonal wavelet transform selects the appropriate orthogonal
wavelet function to transform so that the local characteristics of the signal in the time domain and frequency domain can be
specifcally described and the feature information of the original data can be mastered more efectively. In this study, a diagnostic
method based on the Gaussian mixture model (OWTGMM) of orthogonal wavelet transform is proposed, in which orthogonal
wavelet transform (OWT) is used to extract each detailed fault signal, the signal peak-to-peak value eigenvector is used as the
construction model, and the GMM is used for fault classifcation. Based on the classifcation result from the rolling bearings’ test
data, the use of detail signals extracted through OWT as the training data of the Gaussian mixture model promotes fast
classifcation of bearing faults. Compared with the GMM without the extraction of the characteristic values, this method can
reliably distinguish the categories of bearing faults about 100% of the time, which is consistent with the service life test chart.
Furthermore, the unknown fault data is subject to classifcation with the orthogonal wavelet Gaussian model, and the bearing fault
data is well distinguished, with an overall recognition rate of over 95%.

1. Introduction

In recent years, the rapid development of machine learning
algorithms has been widely used in the feld of intelligent
manufacturing, which also promotes the development of
fault diagnosis and identifcation technology for rotating
mechanical bearings, provides a scientifc basis for pro-
duction practice and management of rotating mechanical
equipment, and promotes the core health management
(PHM) system with prediction technology as its core. In
“unsupervised learning” [1], the label information of
training samples is unknown. Te goal is to reveal the in-
herent nature and relationships in the data set through the
learning of the unlabeled training sample which provides a

reliable framework for further data analysis. In this category
of learning, “clustering” is the most studied and extensively
used [2]. GMM is one of the most successful clustering
methods for modeling and can be used in both fault diag-
nosis and classifcation. In GMM, K (basically 3 to 5)
Gaussian models are used to characterize the characteristics
of fault data. After obtaining the characteristics, GMM is
updated, and the currently extracted data characteristics are
matched with GMM. Two parameters, the variance and the
mean of the data in the whole Gaussian model play a decisive
role. It is crucial to improve the learning ability of the mean
and variance, and the choice of learning mechanism directly
afects the stability, accuracy, and convergence of the model.
To enhance the learning ability of the model, diferent
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learning rates are adopted for the mean and variance in the
improved method to improve the data classifcation and
prediction efect in busy scenarios [3, 4]. Terefore, not only
does the adoption of appropriate signal extraction methods
accurately capture the characteristic information contained
in the signals but it also reduces the data dimension sig-
nifcantly, thereby enabling GMM to quickly and accurately
produce the diagnosis result.

A new tool wear state monitoring method, an entropy-
based bearing defect spareness detection method, a sparse
map of the sensitive flter band of an axial piston pump, and
an entropy-based bearing detection method are studied
[5, 6]. Numerical simulation and personalized diagnosis
methods are used for detecting gear faults and the one-
dimensional convolutional neural network, and the rolling-
bearing fault diagnosis algorithm of INPSO-SVM have all
been used in the rotating mechanical fault diagnosis
neighborhood [7, 8]. Numerical simulation and fnite ele-
ment simulation is used to detect several fault diagnosis
methods of bearings [9, 10]. Due to the presence of noise-
free weak fault signals, the accuracy, efectiveness, and ab-
normal values are directly afected or caused by the fault
diagnosis of rotating mechanical vibration. In predicting the
service life of crucial bearing components [11], the extracted
characteristics should refect the operating status of the
system, with the maintenance of high sensitivity to abnormal
signals [12]. Te feature extraction of noise-free weak fault
signals is a big infuencing factor in fault diagnosis. Te
wavelet transform is a signal processing method, which uses
the extraction of each resolution. It is a branch of applied
mathematics that began to rise in the late 1980s that achieves
coarse-to-fne observation and demonstrates outstanding
performance in the localized analysis of nonstationary sig-
nals [13, 14]. Te orthogonal wavelet transform involves
choosing an orthogonal wavelet function to transform,
which can fully refect the local characteristics of the time
domain and frequency domain, thus enabling the efective
and reliable comprehension of the characteristic informa-
tion contained in the original data. Terefore, OWT [15, 16]
and GMM [17, 18] are combined herein to form
OWTGMM, and the construction method is given [19, 20].
In the application of OWTGMM in fault diagnosis, the
orthogonal wavelet transform is used to extract the hier-
archical features of the vibration signal and then extract the
peak-to-peak feature signal as the training samples of the
GMM to train the GMM classifer.Te classifcation result of
rolling bearings’ test data shows that OWTGMM can enable
fast classifcation of bearing faults. Compared with GMM
without extracting characteristic values, the efectiveness of
OWTGMM is proven, which is consistent with the service
life test chart of the bearing. Furthermore, a satisfactory
efect is achieved in the classifcation of the unknown fault
data [21].

2. Gaussian Mixture Model

GMM uses the Gaussian probability density function
(normal distribution curve) for accurate quantifcation and
decomposes the dataset into several models based on the

Gaussian probability density function (normal distribution
curve). Te mixture model does not require information on
the subdistribution of observed data for the estimation of its
probability in the overall distribution.

2.1. Single GMM. When the sample random variable X is
univariate, the probability density function of the Gaussian
distribution is expressed as follows:

P(x | θ) �
1

����
2πσ2

 exp −
(x − μ)

2

2σ2
 , (1)

where μ is the mean of the data (expected), and the σ denotes
the standard deviation.

When sample X is multidimensional data (multivariate),
the Gaussian distribution follows the following formula:

P(x | θ) �
1

(2π)
D/2

|  |1/2
exp −

(x − μ)
T


− 1
(x − μ)

2
 , (2)

where μ is the mean of the data (expected);  is the co-
variance; and D signifes the dimension of the data.

2.2. GMM. Te GMM can be considered to be a model
comprising K single Gaussian models. Te GMM is adopted
in this study due to its satisfactory mathematical properties
and computational performance.

First, the following is defned:

xj is the observation sample, j� 1, 2, . . ., N.
k is the number of central Asian Gaussian models
representing the mixed model, k� 1, 2, . . ., K.
αk belongs to the kth submodel

αk ≥ 0, 
K

k�1
αk � 1. (3)

ϕ(x | θk) is the kth submodel for the Gaussian prob-
ability density function, θk � (μk, σ2k).Its expansion is
the same as the single Gaussian model introduced
above.
cjk belongs to the kth submode for the probability that
the jth observation data.

Te probability distribution of GMM is as follows:

P(x | θ) � 
K

k�1
αkϕ x θk

 . (4)

For this model, θ � ( μk, σk, αk).
In modeling, some parameters such as variance, mean,

and weights in the GMM should be initialized. With these
parameters, the requisite data such as martensitic distance
for modeling can be solved. During initialization, the var-
iance is set as large as possible, while the weight is as small as
possible (such as 0.001). Tis is because the initialized
Gaussian model is an inaccurate possible model whose range
should be constantly narrowed to update the parameters. By
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setting a larger variance, we can include as many pixels as
possible in a model to obtain the most likely model.

3. Orthogonal Wavelet Transformations

3.1.Te Basic Concept of theWavelet Transform. A wavelet is
a family of functions produced by a satisfed function
φ(t)dt � 0 through translation and scaling.

φa,b(t) � |a|
1/2φ

t − b

a
 , a, b ∈ R, a≠ 0. (5)

f(t) ∈ L2(R) for any function f(t) is satisfed if
f(t) ∈ L2(R). Te continuous wavelet transform of the
function f(t) (continuous wavelet transform, CWT) is
defned as follows:

 f(t)φ∗a,b(t)dt � 0, a≠ 0, (6)

where ∗represents the conjugation.
Te function φ(t) meets the following conditions

[22, 23]:

Cφ � 
+∞

−∞

|φ
∧
(ω)|

|ω|
dω< +∞, (7)

when the function f(t) ideally recovers

f(t) �
1

Cφ
 

W

R

f
(a,b)φ∗a,b(t)

a
2 da db. (8)

Equation (8) is called the inverse transformation of the
continuous wavelet transform.

Continuous wet transformation needs to be discretized
in practical applications, especially in computers. Te dis-
cretization here is for the continuous scaling parameters a

and the continuous translation parameters b, not for time t.

3.2. Orthogonal Wavelet Overview. Te orthogonal wavelet
transform aims to select the most appropriate orthogonal
wavelet function for the transform, to specifcally describe
the local characteristics of the signal in the time domain and
frequency domain, and to grasp the characteristic infor-
mation of the original data more efectively.

3.2.1. Te Haar wavelet. Given the defnition of serv the
Haar wavelet, the scale function ϕ(t) of the Haar wavelet,
i.e.,

ψ(t) �

1, 0≤ t< 1/2,

−1, 1/2≤ t< 1,

0, other,

⎧⎪⎪⎨

⎪⎪⎩

φ(t) �
1, 0≤ t< 1,

0, other.


(9)

Te integer displacements of ψ(t) do not overlap with
each other and 〈ψ(t − k),ψ(t − k′)〉 � δ(k − k′) are ortho-
gonal.in like manner, 〈ψj,k(t),ψj,k′(t)〉 � δ(k − k′).

Haar wavelet is limited and supported in the time do-
main and has an excellent positioning function. However,
because the discontinuity of the time domain causes an
infnite expansion of the frequency domain, its positioning
function in the frequency domain is extremely poor, or its
resolution is extremely poor.

3.2.2. Shannon wavelet. A surname

φ(t) �
sin πt

πt
, (10)

Φ(ω) �
1, |ω|≤ π,

0, other,
 (11)

owing to

〈ϕ(t − k), ϕ t − k
′

 〉 �
1
2π

Φ0,k(ω)Φ∗0,k, (ω)dω �
1
2π


π

−π
e

−j k−k′( )ωdω � δ k − k
′

 . (12)

So the orthogonal φ(t − k), k ∈ Z  in the composition
V0 is one base. ϕ(t) is called the Shannon wavelet.

Since, ϕ0,k(t) ∈ V0 and V0⊕W0 � V−1 are of the two-
scale nature and ϕ(2t − k) ∈ V1, thus

Φ−1,k(ω) �
1, |ω|≤ 2π,

0, other.
 (13)

Yes ψ(t) ∈W0, if there is

Ψ(ω) �
1, π <|ω|≤ 2π,

0, other.
 (14)

which can be found by

ψ(t) �
sin πt/2
πt/2

  cos (3πt/2), (15)

and can be easily to verifed by

〈ψ(t − k),ψ t − k
′

 〉 � δ k − k
′

 . (16)

Tat is ψ(t − k), k ∈ Z  the orthogonality in the com-
position W0 of the same base. As depicted in the frequency
domain, between Ψj,k(ω) and Φj,k(ω) there is no overlap
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with the respective and mutual integer shifts, so they are
orthogonal.

Te orthogonal wavelet shall be between Haar wavelet
and Shannon wavelet, and the basic requirement of function
ψ(t) shall be bandpass; for ψ(t)dt � 0, it should be

oscillatory;Ψ(Ω) shall meet the tolerance conditions and the
stability condition; moreover, Ψ(Ω) and Ψ(Ω) should
preferably be tightly supported.

By the two-scale diference equation, Φ(ω), Ψ(ω),
H0(ω), and H1(ω) have an intrinsic connection.

Φ(ω) � 
∞
j�1

H0 ω/2j
 

�
2

√ � 
∞
j�1H0′ 2

−jω ,

Ψ(ω) �
H1(ω/2)

�
2

√ 

∞

j�2

H0 ω/2j
 

�
2

√ � H1
′ ω

2
  

∞

j�2
H0
′ 2−jω .

(17)

Tese two equations explicitly state that the orthogonal
wavelets and their scale function can generate [24, 25] by the
infnite recurrence of the orthogonal flter set, as shown in
Figure 1.

4. Intelligent Diagnosis and Evaluation
Method of Bearing Fault

Te orthogonal wavelet transformation mentioned above is
adopted in the decomposition of the vibration signal, and the
feature extraction is performed for corresponding local
signals on each scale f(t). Te extracted peak-to-peak value
of the local signals serves as the feature vector for the
training of the OWTGMM.Ten, the trained OWTGMM is
used for intelligent classifcation and evaluation of bearing
faults to achieve intelligent fault diagnosis [26]. OWTGMM
specifc algorithm program is as shown in Figure 2:

Step 1. Te raw bearing signal is extracted, the features are
extracted using the orthogonal wavelet method, the corre-
sponding local detail signal is transformed, and the corre-
sponding local detail of the f(t) is analyzed at all scales from
V0 to Vm−1.Te analysis results are shown in Figure 3.
Where, V0 is the original signal.

Step 2. For the feature extraction of normal signals in Step 1,
the peak-to-peak feature vectors of the frst fve layers are
used. Set the corresponding peak-to-peak value of Wi(i �

1, 2, ..., m − 1) as
Xpp(i) � max(Wi) − min(Wi), (i � 1, 2, 3..., m − 1), and
the T-structure of the feature vector is as follows:

T � [Xpp(1), Xpp(2), Xpp(3), Xpp(m − 1)]. (18)

Step 3. Te feature matrix T constructed in Step 2 was used
as the model input sample for the GMM and the GMM
classifcation model is constructed.

Step 4. Concerning the test samples, the OWTcharacteristic
is used to decompose the signal, refne the useful infor-
mation, and refect the signal characteristics. Furthermore,
the peak-to-peak value of each layer is extracted as a set of

test samples and classifed using the OWTGMMmodel, thus
distinguishing the status.

Step 5. Te more concentrated the Gaussian line of the
GMM within the contour line, the more accurate the
classifcation and the better the classifcation efect.

5. Experimental Analysis

5.1. Experiment Conditions. We used the experimental data
from the rolling bearing test stand to verify the reliability
of the model and to further verify the efectiveness of
OWTGMM as a model for bearing performance evalua-
tion. Te data is from XJTU-ST-bearing data [27].
According to the relevant description in the study of
applications in bearing degradation [28, 29], the vibration
signal of the bearing in the horizontal direction provides
more valuable information than the vibration signal in the
vertical direction, which can refect the state of the bearing
equipment. Terefore, the horizontal vibration signals are
used for this experiment. Figure 3 depicts the experimental
platform. Te accelerated degradation test performed on
the rolling bearings starts at a fxed speed. In the test
experiment, when the amplitude of the horizontal or
vertical vibration signal of the bearing exceeds A10 and
reaches the maximum value, it is determined that the
bearing has failed and the new bearing needs to be replaced
in time, and then the test bearing life test is over. Te tested
bearing may have any type of failure during the entire test
process such as an outer ring fracture, an outer ring fault,
an inner ring fault, and a rolling part fault. Te LDK
UER204 rolling bearings were the models tested in this
experiment. Te signal of the acceleration sensor is con-
tinuously collected, set the sampling frequency of
25.6 kHz, a sampling time of 1.28 s, 32,768 sampling data
points), and a sampling period of 1min, and data of 3
diferent working conditions of bearing are recorded (see
Table 1). Te feature extraction of the data under three
diferent working conditions collected in the rolling
bearing life test is performed. Te method is orthogonal
wavelet; db 10 is selected by wavelet function; 5 layers are
decomposed; the signals of layers 5 and 4 are extracted; and
the peak value vector is used as the input vector of the
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orthogonal wavelet Te Gaussian mixture model
(OWTGMM). Te OWTGMM is trained with a set of
constructed feature vectors.

Te full-life data of bearing 1_5 under working condition
1 was used as the training modeling signal data. Experi-
mental data of rolling bearing 1_5, signal acquisition

V2

V1

V0

W2

W1

Vm–1 Wm–1

Figure 1: Te orthogonal wavelet and their scale functions.

Rotating machinery

Collect vibration
data to be mesured

Collect vibration
data to be mesured

Use OWT method
transform on the
vibration signal

Use OWT method
transform on the
vibration signal

the peak-to-peak values
Xpp=max (Wi)-min (Wi)

the peak-to-peak values
Xpp=max (Wi)-min (Wi)

Te new feature vector:
[Xpp (1), Xpp (2), Xpp (3)...X

pp (m-1)]

Te new feature vector:
[Xpp (1), Xpp (2), Xpp (3)...X

pp (m-1)]

Use the trained OWTGMM
evalue the bearing

performance

Performance
evaluation results

Figure 2: Flows of performance degradation evaluation.
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frequency of 25.6 kHz, acquisition time interval of 1min,
acquisition time length of 1.28 s, 52 groups of data samples,
actual life of 52minutes. Te 5 sets of signal data are
extracted for useful data, the data vector is used as the input
vector of OWTGMM, and the OWTGMM model is
established as the intelligent diagnosis of bearing fault di-
agnosis classifer. Figure 4 shows the time domain pattern of
the full-life vibration data tested by the bearing 1_5 ex-
perimental bench. At the 35th time, the vibration amplitude
of the rolling bearing increased signifcantly, which seriously
deviated from the normal amplitude position. Tis is the
beginning of the bearing degradation, and the RULE of the
bearing is predicted.

5.2. Steps of Experiment

5.2.1. First, No Feature Extraction with OWT. No feature
extraction is performed for every 100 sets of originally collected
horizontal signal data at 6min and 35min, respectively. Te
200 datasets are used as the input vector of the GMM classifer
to test the classifcation of the fault signals. Te test results are
shown in Figure 5. Te red dots represent the horizontal vi-
bration fault data at 6min, and the blue dots represent the s
horizontal vibration fault data at 35min. Te fgure shows that
the ftted model difers considerably from the real data. Since
GMMhas only one center point, the two categories of fault data
cannot be correctly classifed, and the classifcation contours of
the two datasets are not clear.

5.2.2. Second, Peak-to-Peak Feature Extraction of Data with
OWT. Te 200 datasets in Figure 5 are subject to OWTand
decomposed into 5 layers, with db10 selected for this wavelet
function. Te detail signals of 5 and 4 layers were extracted,
and the peak value feature vector was taken as the input data
of the OWTGMM classifer, and the model was established
for the intelligent classifcation of bearing fault data. Te
classifcation results are shown in Figure 6. Te red dots
represent the horizontal vibration fault data of the bearing at
6min, and the blue dots represent the horizontal vibration
fault data of the bearing at 35min. Te fgure shows that the
ftted model is very close to the real data distribution. Te
GMM has two central points, which represent the two
Gaussian components, respectively. Te two categories of
fault data can be classifed correctly, and the contour is clear
and consistent with the two data categories.

5.2.3.Tird, the OWTGMMComparison of the Two Datasets.
Te orthogonal wavelet transformation is performed on the
100 sets of originally collected horizontal signal data at 6min
and the 200 sets of originally collected horizontal signal data
at 35min, respectively. Tey were decomposed into 5 layers,
and db10 was selected for the wavelet function. Te detail
signals of the 5th and 4th layers were extracted, and the peak
value of the feature vector was taken as the input data for the
OWTGMM classifer, and the model was developed for the
intelligent classifcation of the bearing fault data. Te clas-
sifcation results are shown in Figure 7. Te red dots rep-
resent the horizontal vibration fault data at 6min, and the
blue dots represent the horizontal bearing vibration fault
data at 35min. Te fgure shows that the two categories of
fault data can be classifed correctly, and the OWTGMM has
two central points with clear contours. Subsequently, the
same transformation is performed for the 100 sets of
originally collected horizontal signal data at 6min and 200

Digital force display Motor speed controller

Support shaf

Vertical accelerometer Tested bearing

Horizontal accelerometerHydraulic loadingAC motor Support bearings

Figure 3: Accelerated life test-bed for bearing.

Table 1: Bearings operation condition.

Cutting condition Spindle speed (rpm) Radial force (kN)
Condition 1 2100 12
Condition 2 2250 11
Condition 3 2400 10
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sets of originally collected horizontal signal data at 34min,
respectively. As the input data vector for the OWTGMM
bearing fault intelligent classifer, the model is used to test
the fault signal and perform intelligent classifcation. Te
Figure 8 shows that the central point of the OWTGMM is
blurred with clear external contour and two central points
cannot be formed, indicating that the performance of the
bearing experiences considerable degradation after 34min.
Consistency with the time-domain analysis of the full-life
vibration data of the bench bearing in Figure 4 illustrates the
efectiveness of this method.

5.2.4. Fourth, the Membership Degree of the Two Fault
Categories. In Figure 9, the red + represents the horizontal
vibration fault data at 6min, and the blue ○ means the
horizontal vibration fault data at 35min. Te fgure shows
that the two data categories can be completely distinguished

and that the OWTGMM can achieve 100% classifcation
accuracy. Ten, the posterior probability and membership
degrees of each set of fault data are calculated with
OWTGMM, and the result is indicated with a color bar as
shown in Figure 9. Te closer it is to the red segment in the
fgure, the closer it is to the type 1 class. Conversely, the
closer it is to the blue portion, the closer it is to type 2 class.
In the fgure, both the horizontal vibration fault data at
6min, represented by red dots, and the horizontal vibration
fault data at 35min represented by blue dots are clearly
marked. Terefore, the two datasets can be correctly clas-
sifed with a high posterior probability.

5.2.5. Fifth, the Classifcation of the New Data with Trained
OWTGMM. Te 75 sets of unknown new bearings fault data
collected at 10min and 38min are clustered with OWTGMM,
and the observed results are shown in Figure 10. Red+means
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Figure 6: OWTGMM of horizontal vibration data of bearing at
6min and 35min.
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the horizontal vibration fault sample at 10min, and blue ○
means the horizontal vibration fault sample at 38min. Te
fgure shows that the data generated is correctly classifed,
with an overall recognition rate of over 95%.

5.2.6. Finally, the Comparison of the OWTGMM Efect on
Diferent Datasets. Te diferent bearing fault data were
analyzed. Experimental data were obtained from the

Electrical Engineering Laboratory of Case Western Reserve
University in the United States [30]. Normal bearing and
inner load 0.007inc, the 2HP fault signal data was clustered
with the OWTGMM generated in Figure 7 and the ob-
served efect is shown in Figure 11. Red + represents the
bearing horizontal vibration fault data, and the blue ○
represents the bearing horizontal vibration fault data. Te
fgure on the left shows that the data generated is ade-
quately classifed with well-concentrated signals. Te fgure
on the right shows that 5 blue faults are beyond the
Gaussian line and 5 are on the Gaussian line, with an
overall recognition rate of over 90%.
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Figure 7: OWTGMM of bearing at 6min (100 sets of data) and 35min (200 sets of data).
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6. Conclusion

Tis paper proposes the combination of OWTand GMM to
form an OWTGMM for the efective and efcient diagnosis
of faulty bearing. In this method, bearing vibration signal
decomposition through OWT, extract detailed useful sig-
nals, and input GMM to train the classifcation model. Ten,
the inherent properties and the laws governing the data are
revealed through the learning of unlabeled training samples,
thus ensuring fast-bearing fault classifcation. Compared
with GMM, which does not use orthogonal wavelet function
decomposition to extract detailed features, this method can
distinguish bearing fault categories and achieve a high

recognition rate, which is consistent with the bearing full-life
amplitude map. Te fndings from this experimental study
suggest the following important conclusions:

(1) Te GMM only has one central point for experi-
mental data without the details extraction using
orthogonal wavelet function decomposition. Hence,
the two fault data cannot be reliably identifed, and
the classifcation boundaries are ambiguous.

(2) Te GMM with feature extraction through orthog-
onal wavelet transformation has two central points
which represent two Gaussian components, re-
spectively. Te two categories of fault data can be
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Figure 10: Classifcation of new fault data with trained OWTGMM.
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classifed correctly with clear contours and consis-
tent efects.

(3) Te comparison of the classifcation efects of the
diferent datasets shows that the bearing perfor-
mance undergoes considerable degradation after
35min. Te rapid performance degradation of the
bearing at 35min indicates that the vibration am-
plitude of the bearing fault increases rapidly, and the
trend is consistent with the 100% change in fault
amplitude of the bearing at 15min in the full-vi-
bration full-life test diagram of bearing 1_5.

(4) Te two data categories have clear category marks
and can be correctly classifed with high posterior
probabilities.

(5) Te unknown fault data is clustered with
OWTGMM. Te bearing fault data is well distin-
guished, with an overall recognition rate of over 95%.

(6) Compared with the data set from the Electrical
Engineering Laboratory of Case Western Reserve
University in the United States, 90% of the classi-
fcation diagnosis efect is achieved.

Te orthogonal wavelet transform Gaussian hybrid
model bearing fault diagnosis method (OWTGMM) is ex-
tensively adopted in the felds of bearing fault remote di-
agnosis, intelligent manufacturing, data cloud processing,
and so on, which improves the bearing fault identifcation
rate and data classifcation and processing efciency. Sub-
sequent studies will focus on the improvement of fault
feature extraction technology and pattern recognition
technology based on an acoustic signal, a thermal signal, and
a deep vibration signal analysis. We will develop improved
intelligent diagnosis methods based on the failure of various
types of bearing equipment based on big data analysis.
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