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In this paper, a within-host cholera mathematical model has been developed using a system of ordinary diferential equations
incorporating vaccine efcacy. Te formulated model considers cells in an already vaccinated individual with a vaccine whose
efcacy is c. Te solutions of the model have been shown to be both positive and bounded hence well-posed. Te vaccine basic
reproduction number has been carried out using the next generation matrix approach and is given by R0V � (c/(d + μ2)) and
R0V < 1 if c< (d + μ2). Analysis of the model shows that infection free equilibrium(IFE) point is both locally and globally as-
ymptotically stable when R0V < 1 and infection equilibrium(IE) point is locally asymptotically stable when R0V > 1. Furthermore,
analysis of the model shows that R0V < 1 is not sufcient enough to eradicate in-host cholera disease, hence the existence of
backward bifurcation which is an indication as to why cholera disease is persistent. To highlight the relevance of vaccine efcacy,
a numerical simulation of the model with respect to vaccination is carried out and shows that when the vaccine efcacy c is high,
there will be a lower infection rate of cells, hence the need to improve cholera vaccine efcacy.

1. Introduction

Cholera is an acute illness caused by an enterotoxin
elaborated by Vibrio cholerae that when ingested colonises
the small intestine. After 24 hrs to 48 hrs incubation period,
cholera begins with sudden onset of painless water diarrhea
that mainly quickly become voluminous and is often fol-
lowed shortly by vomiting. In severe cases, stool volume
can exceed 250ml/kg in the frst 24 hrs. Fever is usually
absent, and muscle cramps due to electrolyte disturbances
are common. Te stool has a characteristic appearance;
a nonbilious, grey, slightly cloudy fuid with fecks of
mucus, no blood, and somewhat sweet and in-ofensive
odor. It has been called ‘rice-water” stool because of its
resemblance to the water in which rice has been washed.
Clinical symptom parallel volume contraction shows losses
of (3 − 5) percent of normal body weight. If fuids and
electrolytes are not replaced, hypovolemic shock and death
will occur [1].

According to the studies of natural infection, the human
body has T-lymphocytes cell and B-lymphocytes cell which
produce antibodies that attack the pathogen, thereby pro-
viding protection. However, in a situation of excess con-
sumption of bacteria, the body may not defend itself; as
a result, there is a need for vaccination [2].

Te World Health Organization (WHO) recom-
mends the use of oral cholera vaccines, Dukoral and
Shanchol for those at high risk [3]. When these vaccines
are administered, the cholera strain within the vaccine
produces an incomplete, nontoxic version of the toxin;
the body then responds to the safe version of cholera and
creates immunity to the infection through the pro-
duction of antibodies (T-lymphocytes cells and B-lym-
phocytes). Despite the availability and access to cholera
vaccines, there is still a high burden of cholera in en-
demic areas [3].

Wang and Wang [4] developed a within-host dynamics
of cholera with bacterial-viral interaction given as follows:
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dB

dt
� Λ − α

B

K + B
V − σ1B,

dZ

dt
� g(Z) + θ1α

B

K + B
V − σ2Z,

dV

dt
� h(V) + θ2α

B

K + B
V − σ3V,

(1)

where B represents environmental vibrios, Z human vibrios,
V concentration of the virus, Λ is the infux rate of the
ingested environmental vibrios, α is the contact rate between
the environmental vibrios and the virus, and g(Z) and h(V)

intrinsic growth rate of Z and V, respectively. Teir main
focus is the interaction of environmental vibrios, human
vibrios, the virus, and the vibrios within the human host
since such interaction is critical in shaping the evolution of
the pathogen within the human body and directly con-
tributes to the epidemiology of cholera at the population
level since the human vibrios shed out of the human body
will remain highly infectious for a certain period of time and
can be transmitted among human hosts.Tey established the
basic reproduction number as a sharp threshold for disease
dynamics such that when R0 < 1, the highly infectious vibrios
will not grow within the human host, and the environmental
vibrios ingested into the human body will not cause cholera
infection and when R0 > 1, the human vibrios will grow and
persist, leading to human cholera.

Ratchford andWang [5] developed a cholera within-host
model for an average infected individual given as follows:

dZ

dt
� C1BV − d1MZ − ϵZ,

dV

dt
� C2BV − d2MV − τV,

dM

dt
� e1MZ + e2MV − pM,

(2)

which is the fast scale system where Z, V, and M represent
the concentrations of human vibrios, pathogen, and host
immune cells, respectively. Te dynamics of the environ-
mental evolution of the vibrios is governed by the equation
given as follows:

dB

dt
� ϵ(Z)I − δB, (3)

which is the low scale system, where ϵZ is the host shedding
rate that depends on the human vibrios. In their analysis, the
within-host dynamical system proposed is expanded to
include the infuence of human virus and immune cell in-
teraction with the infectious vibrios, and the fndings show
that the slow-scale and intermediate scale systems act pre-
dictably and the dynamics of two smaller combined systems
depends mostly on R0. However, the study recommends that
a complete stability analysis of the equilibrium of the full
system is of particular interest and it suggests that numerical
simulation using real world data should be carried out to

shed more light onto the likelihood of various assumptions.
In this paper, the focus is to develop a within-host cholera
model with vaccination investigating the impact of vacci-
nation on the dynamics of in-host infection of cholera
disease.

2. Model Formulation and Analysis

Cholera infection involves the interaction between the vibrio
V and the target cells B. Te target cells B are recruited at
a constant rate Λ and they die naturally at a rate μ1. Mul-
tiplication of the vibrio when infected cells are shed out is
given by βVV within the human small intestine, where hV is
the rate of recruitment of the vibrio.Te interaction of vibrio
within the small intestine with the target cells B leads to the
infection of target cells at the rate αBV, where α is the contact
rate between the target cells and the vibrios in the small
intestine that leads to the production of infected cells Z. Te
infected cells die naturally at a rate μ2, and they are shed out
at a rate d due to the action of the vaccine.Tis shedding rate
increases with an increase in vaccine efcacy. Te saturation
incidence rate is given by (αBV)/(1 + δV) such that δ is the
measure of saturation level of the vibrio. Te natural
clearance rate of the vibrio and shedding rate is given by σ
and s, respectively. Te vaccine whose efcacy is c with the
proportion of nonefectiveness of the vaccine given by 1 − c

exposes an individual to a dose of live cholera bacteria,
which causes the body to produce antibodies against the
disease.Te system of ordinary diferential equation gov-
erning the description previously is as follows:

dB

dt
� Λ − (1 − c)

αBV
1 + δV

− μ1B + cZ,

dZ

dt
� − cZ +(1 − c)

αBV
1 + δV

− d + μ2( 􏼁Z,

dV

dt
� hV + βVV − (σ + s)V.

(4)

2.1. Assumptions of the Model

(i) Tere is the recovery of cells due to immunity gained
as a result of vaccination

(ii) Target cells are recruited at a constant rate

3. Positivity and Boundedness of the Model

Since model [4] describes human cells, it should be well-
posed. Tus, in this section, positivity and boundedness
solutions are discussed. Te positivity of solutions of the
model [4] is determined using the following initial condi-
tions [5]:

B(0) � B0 ≥ 0,

Z(0) � Z0 ≥ 0,

V(0) � V0 ≥ 0.

(5)
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3.1. Positivity of the Model

Proposition 1. Solutions of model (4) with the initial con-
ditions (5) are positive in the region defned as
R+ � (B, Z, V)|B≥ 0, Z≥ 0, V≥ 0{ }.

Proof. Let N � sup t> 0|B≥ 0, Z> 0, V> 0{ }. Te frst
equation of model (4) is given as follows:

dB

dt
� Λ − (1 − c)

αBV
1 + δV

− μ1B + cZ

� Λ + cZ − (1 − c)
αV

1 + δV
+ μ1􏼓B.

(6)

From this, the integrating factor is

e
􏽒

t

0
(1− c)(αV(τ)/1+δV(τ))dτ+μ1(t)

Multiplying (6) by the integrating factor yields

dB(t)e
(􏽒

t

0
(1− c)(αV(τ)/1+δV(τ)dτ+μ1(t))/dt) ≥ (Λ +

cZ)e
􏽒

t

0
(1− c)(αV(τ)/1+δV(τ))dτ+μ1(t)

Solving the inequality yields

B(t)e
􏽒

t

0
(1− c)((αV(τ))/1+δV(τ))dτ+μ1(t)

− B(0)≥ 􏽒
t

0(Λ +

cZ)e
􏽒

k

0
(1− c)(αV(τ)/1+δV(τ))dτ+μ1(k)dk

Terefore, B(t) becomes

B(t)≥B(0)e
− 􏽒

t

0
(1− c)(αV(τ)/1+δV(τ))dτ+μ1(t)

+

e
− 􏽒

t

0
(1− c)αV(τ)/1+δV(τ)dτ+μ1(t)

× 􏽒
t

0(Λ +

cZ)e
􏽒

k

0
(1− c)(αV(τ)/1+δV(τ))dτ+μ1(k)dk > 0

Tus, B(t)> 0.
Te second equation of the model (4) is given as follows:

dZ

dt
� − cZ + (1 − c)

αBV
1 + δV

− d + μ2( 􏼁Z

� (1 − c)
αBV
1 + δV

− c + d + μ2( 􏼁Z.

(7)

Te integrating factor is e
􏽒

t

0
(cZ(τ)dτ)+(d+μ2)t

Multiplying (7) by the integrating factor yields

dZ(t)e
􏽒

t

0
(cZ(τ)dτ)+(d+μ2)t/dt≥ (1 − c)(αBV/1 + δV)

e
􏽒

t

0
(cZ(τ)dτ)+(d+μ2)t

Solving the inequality yields Z(t)e
􏽒

t

0
(cZ(τ)dτ)+(d+μ2)t

− Z(0)≥ 􏽒
t

0(1 − c)(αBV/1 + δV)e
􏽒

k

0
(cZ(τ)dτ+(d+μ2)t)dk

Terefore, Z(t) becomes Z(t)≥Z(0)e
− 􏽒

t

0
(cZ(τ)dτ)

+(d +

μ2)t + e
− 􏽒

t

0
(cZ(τ)dτ)+(d+μ2)t

× 􏽒
t

0(1 − c)(αBV/1 + δV)

e
􏽒

k

0
(cZ(τ)dτ+(d+μ2)t)dk> 0

Tus, Z(t)> 0.
In a similar manner to the third equation of the model

(4) as follows:

dV

dt
� hV + βVV − (σ + s)V. (8)

From this, the integrating factor is e
􏽒

t

0
(σ+s)dt

Multiplying (8) by the integrating factor yields

(dV(t)e
􏽒

t

0
(σ+s)dt/dt)≥ (hV + βVV)e

􏽒
t

0
(σ+s)dt

Solving the inequality yields as follows:

V(t)e
􏽒

t

0
(σ+s)dt

− V(0)≥ 􏽚
t

0
hV + βVV( 􏼁e

􏽒
k

0
(σ+s)dk

. (9)

Terefore, V(t) becomes
V(t)≥V(0)e

− 􏽒
t

0
(σ+s)dt

× 􏽒
t

0(hV + βVV)e
􏽒

k

0
(σ+s)dk > 0.

Tus, V(t)> 0.
Hence, all the solution of model (4) given conditions (5)

at any time t are positive. Terefore, the population of target
cells and infected cells in the human will continue to grow
positively. □

3.2. Boundedness of the Model. Since the model formulated
describes cells in a human being, the population of the target
cells and the infected cells will always remain bounded.

Proposition 2. Solutions of model (4) with the initial initial
condtions (5) are bounded for t≥ 0 in the region Φ given by
B(t)t + nZq(t)}􏼈 ∈ R3

+: N≤ (Λ/μ).

Proof. Let N(t): � B(t) + Z(t), where N is the total
number of cells, and let μ � μ1 � μ2. From the system of
equation (4), we have

N
′
(t)≤Λ − μ2Z( 􏼁≤Λ − μN(t),

N
′
(t)≤Λ − μN(t),

􏽚 N
′
(t)dt≤ 􏽚(Λ − μN(t))dt,

N(t)e
μt ≤ 􏽚
Λ
μ

e
μt

dt,

N(t)e
μt ≤
Λ
μ

e
μt

+ C,

N(t)≤
Λ
μ

+ Ce
− μt

,

lim
t⟶∞

N(t)≤
Λ
μ

.

(10)

Hence, N(t) is bounded, since solutions of model (4) are
positive and bounded for t≥ 0; therefore, model (4) is
mathematically and epidemiologically meaningful and is
sufcient to consider its solution in Φ. □

4. Basic Reproduction Number, R0

Te intervention strategy in this study is the vaccine efcacy;
hence, the associated reproduction number is called vaccine
reproduction number denoted as R0V; it is the threshold
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quantity that predicts the spread of cholera disease in a given
population of the target cells in the presence of vaccination.
Terefore, the vaccine reproduction number R0V � ρ(FK− 1)

is the spectral radius of the matrix FK− 1,
where

F �

c −
(1 − c)αBV

(1 + δV)
2

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

K �

d + μ2 0

0 β − (σ + s)

⎛⎝ ⎞⎠,

(11)

Terefore,

R0V � FK− 1

�
c

d + μ2( 􏼁
.

(12)

Te calculatedR0V depends on vaccine efcacy and when
(d + μ2) is high due to the action of vaccine then R0V < 1
which shows the elimination of infected cells due to the
action of vaccine.Te basic reproduction number, R0V being
the measure of severity of an epidemic, determines whether
or not cholera disease will invade the target cell population.

Epidemiologically, this implies that if R0V < 1, cholera
infection will die out in the cells and if R0V > 1, cholera
disease will persist in a cell population.

5. Stability Analysis

Te stability at the IFE determines the short-term epidemics
of the infection of cells, while its dynamics over a longer
period of time is characterized by the global stability at the
IFE. In this section, the analysis of local and global stability
of IFE and local stability of IE is carried out.

5.1. Existence of Infection-Free Equilibrium (IFE) Points.
Tese are steady state solutions in absence of cholera disease
in the body; therefore, target cells are not infected. Stability
analysis is carried out to predict the long-term behaviour of
the solutions of the model (4).

Proposition 3. For model (4), the IFE point is given by IFE �

(B0, Z0, V0) � ((Λ/μ1), 0, 0).

Proof. At IFE, Z � 0, V � 0. Terefore, considering the frst
equation in the system (4) and replacing Z � 0, V � 0 and
equating its right hand side to 0 yields

Λ − μ1B � 0,

Λ � μ1B.
(13)

Making B the subject yields

B �
Λ
μ1

. (14)

Terefore, the infection-free equilibrium point of the
system (4) is ((Λ/μ1), 0, 0). Tis shows that the infected class
is zero since there are no pathogens and the entire pop-
ulation of cells consists of target cells only and their growth is
bounded by (Λ/μ1). □

5.2. Local Asymptotic Stability of the Infection-Free Equilib-
rium (IFE)

Theorem 1. For any time t≥ 0, the infection-free equilibrium
IFE � ((Λ/μ1), 0, 0) of model (4) is locally asymptotically
stable when R0V < 1 and unstable when R0V > 1.

Proof. Te jacobian matrix of (4) is given as follows:

J �

− (1 − c)αV

1 + δV
− μ1 c

− (1 − c)αΛ
μ1(1 + δV)

2

(1 − c)αV

1 + δV
− c − d + μ2( 􏼁

(1 − c)αΛ
μ1(1 + δV)

2

0 0 βV − (σ + s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)

Te matrix (15) in terms of R0V yields

JIFE �

− μ1 d + μ2( 􏼁R0V

− (1 − c)αΛ
μ1

0 − d + μ2( 􏼁 R0V − 1( 􏼁
(1 − c)αΛ

μ1

0 0 βV − (σ + s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

To fnd the eigenvalues, we consider the characteristic
equation |JIFE − λI| � 0. For asymptotic stability, all the
eigenvalues should be strictly negative. It can be seen clearly
that λ1 � − μ1 is one of the eigenvalues of (16).

Using Routh − Hurwitz Criterion for stability as used in
[6] to determine the trace and determinant, let

− d + μ2( 􏼁 R0V − 1( 􏼁
(1 − c)αΛ

μ1

0 βV − (σ + s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0. (17)

Equation (17) has

trace(17) � − d + μ2( 􏼁 R0V − 1( 􏼁 + βV − (σ + s)< 0, (18)

and a determinantdet(17) � − (d + μ2)(R0V− 1)[βV − (σ +

s)]> 0 if βV < (σ + s). Tis implies that IFE is locally as-
ymptotically stable when R0 < 1 and unstable if R0V > 1.

In Teorem 1, when cholera vaccine is administered,
it implies that with a small perturbation of IFE, the
solution of model (4) will eventually converge to IFE
whenever R0V < 1.
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Epidemiologically, it implies that if a few infectious
cholera pathogens are introduced into a population of
target cells, the disease would die out when R0V < 1;
otherwise, the disease would spread into the population
of target cells. □

5.3. Global Stability of the Infection-Free Equilibrium (IFE).
Te global stability of the IFE of model (4) is explored
using Castilo–Chavez et al. [7]. Model (4) is rewritten in
the form as follows:

dH

dt
� L(X, Z),

dZ

dt
� G(X, Z),

G(X, 0) � 0,

(19)

where X ∈ R2 denotes the uninfected compartments. At IFE,

IFE � X
∗
, Z
∗

( 􏼁,

X
∗

�
Λ
μ1

, 0􏼠 􏼡.

(20)

Te conditions

dX

dt
� H(X, 0), X

∗
,

G(X, Z) � MZ − 􏽢G(X, Z), 􏽢G(X, Z)≥ 0.

(21)

X∗ is globally asymptotically stable,$6#where
M � DZG(X∗, 0) is a M-matrix (the of diagonal elements of
(M) and are non-negative). If model (4) satisfes the con-
ditions previously (21), then Teorem 2 holds.

Theorem 2. Te fxed point IFE � (X∗, 0) is globally as-
ymptotically a stable equilibrium point of model (4) whenever
the R0V < 1 whenever the conditions (21) are satisfed, oth-
erwise unstable.

Proof. From model (4), we obtain

H(X, 0) �

Λ − μ1B

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

G(X, Z) � MZ − 􏽢G(X, Z),

(22)

where

M �

− d + μ2( 􏼁 R0V − 1( 􏼁
(1 − c)αΛ

μ1

0 βV − (σ + s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

􏽢G(X, 0) �

􏽢G1(X, Z)

􏽢G2(X, Z)

⎛⎜⎝ ⎞⎟⎠

�
0

0
⎛⎝ ⎞⎠.

(23)

Since 􏽢G(X, Z)> 0 and the conditions (21) are satisfed;
therefore, IFE is globally asymptotically stable whenever
R0V < 1, otherwise unstable.

Tis implies that given a large perturbation of the IFE,
the solutions of the model (4) will eventually converge to IFE
whenever R0V < 1. Epidemiologically, this means that if
a large number of vibrios are introduced to a population of
target cells, the disease would die of, hence the elimination
of infection in cells since there are no secondary infection
produced whenever R0V < 1, otherwise the disease would
persist. □

5.4. Local Stability of the Infection Equilibrium (IE) Points.
Infection Equilibrium (IE) point is the state at which the
disease persists in the cells. We investigate the local stability
of infection equilibrium points at E∗(B∗, Z∗, V∗).

Theorem 3. Te infection equilibrium point E∗(B∗, Z∗, V∗)

of system (4) is locally asymptotically stable whenever R0V > 1,
otherwise unstable.

Proof. Te infection equilibria E∗(B∗, Z∗, V∗) of model (4)
is obtained by equating model equations in (4) to zero then
solving

Λ − (1 − c)
αBV
1 + δV

− μ1B + cZ � 0,

− cZ + (1 − c)
αBV
1 + δV

− d + μ2( 􏼁Z � 0,

hV + βVV − (σ + s)V � 0.

(24)

Te following equilibrium points are obtained by solving
the previous equation simultaneously:

Discrete Dynamics in Nature and Society 5



B
∗

�
d + μ2( 􏼁 + c􏼂 􏼃 1 + δV

∗
( 􏼁􏼂 􏼃Z

∗

(1 − c)αV
∗ ,

V
∗

�
hV

(δ + s) − βV

.

(25)

Substituting B∗ into the second equation of model (4)
and equating to zero, we obtain the following quadratic
equation:

c d + μ2( 􏼁Z
∗2

+ c d + μ2( 􏼁α
hV

βV − (δ + s)
Z
∗

+ d + μ2( 􏼁 � 0.

(26)

Let

a � c d + μ2( 􏼁 � R0 d + μ2( 􏼁
2
,

b � c d + μ2( 􏼁α
hV

βV − (σ + s)

� R0 d + μ2( 􏼁
2α

hV

βV − (σ + s)
,

c � d + μ2( 􏼁 �
c

R0
.

(27)

Te quadratic equation (26) can be written as follows
(28):

aZ∗2 + bZ∗ + c � 0, (28)

such that Z∗ is the positive solution of the equation (28).
From preceding relations, a is always positive.

Since a> 0, then there exist positive solutions of (28).
Ten, aZ∗2 + bZ∗ + c � 0 at Z∗ � 0 � c implying c � 0, then
(28) has a unique endemic equilibrium point. Since c � 0,
a unique solution of (28) is given by Z∗ � (− b/a), b< 0.

Consider the case when R0V < 1 and c> 0. If b≥ 0, and
using Descartes’ rule of signs [8], aZ∗2 + bZ∗ + c has no
positive root.

If b< 0, then (28) is given as follows:

Z
∗

�
b ±

�������
b
2

− 4ac
􏽰

2a
. (29)

Hence, the solutions are positive and distinct if b2 −

4ac> 0, in which case there are two endemic equilibria. Te
solutions of (28) coalesce into two roots when b2 − 4ac � 0 to
form one endemic equilibrium point.

Now, if b � c(d + μ2)α(hV/βV − (σ + s))> 0, b will al-
ways be positive. To prove that infection equilibrium point
E∗ is locally asymptotically stable when R0V > 1, consider the
Jacobian matrix of (4) evaluated at E∗ given as follows:

JE∗ �

− (1 − c)αV
∗

1 + δV
∗ − μ1 c −

(1 − c)αB
∗

1 + δV
∗

( 􏼁
2

⎡⎣ ⎤⎦

(1 − c)αV
∗

1 + δV
∗ − d + μ2( 􏼁 R0V − 1( 􏼁

(1 − c)αB
∗

1 + δV
∗

( 􏼁
2

⎡⎣ ⎤⎦

0 0 βV − (σ + s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(30)

For the linearized system (4), the characteristic poly-
nomial is expressed as follows:

|J − λI| � 0. (31)

When (30) is substituted into (31), it yields

− (1 − c)αV
∗

1 + δV
∗ − μ1 − λ d + μ2( 􏼁R0V −

(1 − c)αB
∗

1 + δV
∗

( 􏼁
2

⎡⎣ ⎤⎦

(1 − c)αV
∗

1 + δV
∗ − d + μ2( 􏼁 R0V − 1( 􏼁 − λ

(1 − c)αB
∗

1 + δV
∗

( 􏼁
2

⎡⎣ ⎤⎦

0 0 βV − (σ + s) − λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0.

(32)

Solving (32) yields

(1 − c)αV
∗

1 + δV
∗ − μ1 − λ􏼢 􏼣 d + μ2( 􏼁 R0V − 1( 􏼁 − λ􏼂 􏼃 βV − (σ + s) − λ􏼂 􏼃 +

(1 − c)αV
∗

1 + δV
∗􏼠􏼢 􏼣 βV − (σ + s) − λ􏼂 􏼃 d + μ2( 􏼁 R0V − 1( 􏼁􏼂 􏼃 � 0. (33)

Since R0 � (c/d + μ2), then

−
(1 − c)

1 + δV
∗ αV
∗

− μ1 − λ􏼢 􏼣 d + μ2( 􏼁 R0V − 1( 􏼁 − λ􏼂 􏼃 βV − (δ + s) − λ􏼂 􏼃

+ d + μ2( 􏼁R0V

(1 − c)

1 + δV
∗ αV
∗

􏼢 􏼣 βV − (δ + s) − λ􏼂 􏼃 � 0.

(34)

Let

m �
(1 − c)

1 + δV
∗ αV
∗

􏼢 􏼣,

n � βV − (σ + s)􏼂 􏼃,

V
∗

�
hV

βV − (δ + s)
.

(35)

Ten,
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m − μ1 − λ􏼂 􏼃 d + μ2( 􏼁 R0V − 1( 􏼁 − λ􏼂 􏼃[n − λ] + m d + μ2( 􏼁R0V[n − λ] � 0. (36)

Expanding equation (36) yields

λ2 + λ􏽨 m − μ1( 􏼁 + d + μ2( 􏼁 R0V − 1( 􏼁􏼂 􏼃 + m − μ1( 􏼁 d + μ2( 􏼁 R0V − 1( 􏼁􏼁􏼂 􏼃[n − λ] � 0, (37)

and gives

n − λ1 � 0,

λ1 � n,

λ1 � βV − (δ + s),

k � m − μ1( 􏼁 + d + μ2( 􏼁 R0V − 1( 􏼁􏼂 􏼃,

λ2,3 �
− k ±

���������������������������

k
2

− 4 m − μ1( 􏼁 d + μ2( 􏼁 R0V − 1( 􏼁

􏽱

2
.

(38)

Now, the eigenvalue λ1 � [βV − (σ + s)] has negative real
parts, and the second eigenvalue is as follows:

λ2 �
− k −

���������������������������

k
2

− 4 m − μ1( 􏼁 d + μ2( 􏼁 R0V − 1( 􏼁

􏽱

2
, (39)

and the third eigenvalue given is as follows:

λ3 �
− k +

���������������������������

k
2

− 4 m − μ1( 􏼁 d + μ2( 􏼁 R0V − 1( 􏼁

􏽱

2
. (40)

If 4(m − μ1)(d + μ2)(R0V − 1) > [(m − μ1) + (d +μ2)
(R0V − 1)]2, then the square root part of λ2,3 yields an
imaginary root; hence, a possibility of backward bifurcation
[9] which is an indication of the oscillatory behaviour in
cholera outbreaks; also, Teorem 3 implies that a small
perturbation of IE, the solution of model [3], will always
converge to IE whenever R0V > 1. Since λ1 � βV − (δ + s)

and λ2,3 � (− k ±
���������������������������
k2 − 4(m − μ1)(d + μ2)(R0V − 1)

􏽰
/2)

have negative real parts at infection equilibrium point, then
infection equilibrium point is locally asymptotically stable
whenever R0V > 1.

Epidemiologically implying that if vibrios are introduced
in a population of target cells and there are new secondary
infections produced whenever R0V > 1, then cholera disease
would persist in the population of cells. Te study of
backward bifurcation in a disease dynamics can also occur
when the reproduction number is less than unity, R0V < 1;
this is explored in the next section. □

5.5. Existence of Backward Bifurcation. Based on the analysis
in the previous section, there exists a range of values for R0 in
which model (4) have two positive endemic equilibria.

Let the discriminant b2 − 4ac be positive and be given as
follows:

c d + μ2( 􏼁α
hV

βV − (σ + s)
􏼢 􏼣

2

− 4c d + μ2( 􏼁
2 > 0. (41)

To fnd the value where the two endemic equilibria
converge, set b2 − 4ac � 0 and solve for the value of R0V

denoted R∗0 .
Let

b
2

− 4ac � 0. (42)

Ten,

b
2

4ac
� 1,

R
∗
0 � 1 −

b
2

4ac
,

b � (1 − c) d + μ2( 􏼁α
hV

βV − (σ + s)
.

(43)

Let

R
∗
0 � 1 −

b
2

4(1 − c) d + μ2( 􏼁
2

� 1 −
α2h2

V(1 − c)

βV − (σ + s)
􏼢 􏼣.

(44)

If R∗0 <R0V is equal to b2 − 4ac> 0, then backward bi-
furcation will occur for values of R0V such that R∗0 <R0V < 1.
Terefore, we show the existence of backward bifurcation due to
the existence of hyperbolic fxed points as in (39) and (40).
Backward bifurcation in disease transmission models is where
a stable endemic equilibrium coexists with a stable disease-free
equilibrium when the associated reproduction number is less
than unity.

Investigating the nature of bifurcation involving
IFE((Λ/μ1), 0, 0) using Castilo and Song [10], we consider
a general system of ODEs given by (45):

dx

dt
� f(x,ψ); f: R

n
× R

n
, f ∈ C

2
R

n
× R

n
( 􏼁. (45)

Theorem  . Castilo–Chavez and Song [10]. We consider the
following:
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(i) Let I � Dxf(0, 0) be the linearization matrix of
system (48) around the equilibrium point x � 0 with
ψ evaluated at 0. Zero is a simple eigenvalue of the
matrix I and all other eigenvalues of I have negative
real parts.

(ii) Matrix I has a non-negative right eigenvector w and
a left eigenvector v corresponding to the zero
eigenvalue

(iii) Let fk denote the kth component of f and

(a) a1 � 􏽐
n
i,j,k�1vkwiwj(z2fk/zxizxj)(0, 0)

(b) a2 � 􏽐
n
i,k�1vkwi(z2fk/zxizϕ)(0, 0)

Ten, the local dynamic of system (48) around x � 0 is
determined by a1 and a2.

(i) If a1 > 0, a2 > 0, when ψ < 0, with |ψ|≪ 1, then x � 0
is locally asymptotically stable and there exists
a positive unstable equilibrium and when 0<ψ≪ 1,
x � 0 is unstable, and there exists a negative and
locally asymptotically stable equilibrium.

(ii) If a1 < 0, a2 < 0 when ψ < 0, with |ψ|≪ 1, then x � 0
is unstable; when 0<ψ≪ 1, x � 0 is locally as-
ymptotically stable and there exists a positive un-
stable equilibrium.

(iii) If a1 > 0 and a2 < 0 when ψ < 0, with |ψ|≪ 1, then
x � 0 is unstable, and there exists a locally asymp-
totically stable negative equilibrium, when 0<ψ≪ 1,
x � 0 is stable and positive unstable equilibrium
appears.

(iv) When a1 < 0 and a2 > 0, then there exists a forward
bifurcation.

(v) When a1 > 0 and a2 > 0, then the bifurcation at ψ � 0
is backward.

Proof. Using Castilo–Chavez and Song [10], let ψ be the
bifurcation parameter such that R0V < 1 such that x0 is an
IFE equilibrium for all values of ψ.

We consider

dx

dt
� f(x,ψ), (46)

where f is a continuous diferentiable function at least twice
in both x and ψ. Te IFE is the line (x0,ψ) and local stability
of the IFE changes at the point (x0,ψ).

Let

B � x1,

Z � x2,

V � x3.

(47)

System (4) becomes

dx1(t)

dt
� Λ − (1 − c)

αx1(t)x3(t)

1 + δx3(t)
− μ1x1(t) + cx2(t)≕f1,

dx2(t)

dt
� − cx2(t) + (1 − c)

αx1(t)x3(t)

1 + δx3(t)
− d + μ2( 􏼁x2(t)≕f2,

dx3(t)

dt
� hV + βVV − (σ + s)x3(t)≕f3.

(48)

ApplyingTeorem 4 to investigate if system (48) exhibits
a backward bifurcation when R0V � 1. Terefore, we frst
linearize the system and then compute its eigenvalues and
eigenvectors corresponding to eigenvalues with negative real
part form a basis for the stable eigenspace.

Linearizing (48) around the IFE yields

− μ1 d + μ2( 􏼁R0V

− (1 − c)αΛ
μ1

0 − d + μ2( 􏼁 R0V − 1( 􏼁
(1 − c)αΛ

μ1

0 0 βV − (σ + s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (49)

Te eigenvalues of (49) are given by λ1 � − μ1, λ2 � − (d +

μ2)(R0V − 1), and λ3 � βV − (σ + s).
Now, let w � (w1, w2, w3)

T be the right eigenvector
associated with zero eigenvalue. Hence,

− μ1 d + μ2( 􏼁R0V

− (1 − c)αΛ
μ1

0 − d + μ2( 􏼁 R0V − 1( 􏼁
(1 − c)αΛ

μ1

0 0 βV − (σ + s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

w1

w2

w3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0.

(50)

which yields

− μ1w1 + d + μ2( 􏼁R0Vw2 −
(1 − c)αΛ

μ1
w3 � 0,

− d + μ2( 􏼁 R0V − 1( 􏼁􏼂 􏼃w2 +
(1 − c)αΛ

μ1
w3 � 0,

βV − (σ + s)􏼂 􏼃w3 � 0.

(51)

Solving for w1, w2, and w3, we obtain w1 � 2(1 − c)αΛ,
w2 � (1 − c)αΛ/μ1(d + μ2)(R0V − 1), and w3 � 1.

Let v � (v1, v2, v3)
T be the left eigenvector associated

with zero eigenvalue such that
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− μ1 0 0

d + μ2( 􏼁R0V − d + μ2( 􏼁 R0V − 1( 􏼁 0

− (1 − c)αΛ
μ1

(1 − c)αΛ
μ1

βV − (σ + s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

v1

v2

v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0,

− μ1v1 � 0,

d + μ2( 􏼁R0V􏼂 􏼃v1 − d + μ2( 􏼁 R0V − 1( 􏼁􏼂 􏼃v2 � 0,

− (1 − c)αΛ
μ1

􏼢 􏼣v1 +
(1 − c)αΛ

μ1
􏼢 􏼣v2 + βV − (σ + s)􏼂 􏼃v3 � 0.

(52)

Solving for v1, v2, and v3, we obtain v1 � 0, v2 � 0, and
v3 � 1.

It is observed that v.w � 1. Now, evaluating the partial
derivatives of system (48) at IFE, we obtain

z
2
f1

zx1zx3
�

z
2
f1

zx3zx1
�

− (1 − c)α
δ

,

z
2
f2

zx1zx3
�

(1 − c)α
δ

.

(53)

Since all the other remaining second order partial de-
rivatives are equal to zero. Tus, computing the coefcients
a1 and a2 is defned in Teorem 4 (iii).

a1 � 􏽘
n

i,j,k�1
vkwiwj

z
2
fk

zxizxj

,

a2 � 􏽘
n

i,k�1
vkwi

z
2
fk

zxizxj

.

(54)

We consider system (48) and considering a1 and a2 only
as the nonzero derivatives for the terms (z2fk/zxizxj) and
(z2fk/zxizxj), it follows that

a1 � 2v3w1w3
z
2
f2

zx1zx3
+ v3w2w1

z
2
f1

zx3zx1
,

a2 � v3w1
z
2
f2

zx1zx3
+ v3w2

z
2
f2

zx1zx3
+ v3w3

z
2
f2

zx1zx3
.

(55)

Substituting vs and ws in (55) yields

a1 � 2
(1 − c)

2α2Λ
δ

,

a2 �
(1 − c)α

δ
1 +

(1 − c)αΛ
μ1 d + μ2( 􏼁 R0V − 1( 􏼁

+ 2(1 − c)αΛ􏼢 􏼣.

(56)

Te signs of coefcients a1 and a2 determine the nature
of bifurcation exhibited by system (4) around the infection-
free equilibrium for R0V � 1.

For model (4) to undergo backward bifurcation, then
a1 > 0 and a2 > 0. We consider the parameter values used in
Table 1 to verify the conditions a1 > 0 and a2 > 0 where

a1 � 2
(1 − c)

2α2Λ
δ

,

a2 �
(1 − c)α

δ
1 +

(1 − c)αΛ
μ1 d + μ2( 􏼁 R0V − 1( 􏼁

+ 2(1 − c)αΛ􏼢 􏼣.

(57)

Let α � 0.9, 0< c< 1, δ � 0.05, d � 0.4, and μ1 � μ2 �

0.27 substituting these numerical values in a1 and a2 yields
a1 > 0 � 3.24∗ 103 and a2 > 0 � 2.68304∗ 105. Hence, model
(4) exhibits backward bifurcation. Tis implies that the
epidemiological implication in relation to cholera disease of
backward bifurcation is that R0V < 1 is necessary and not
sufcient for efective control of cholera disease; hence in
a backward bifurcation setting, the cholera disease will in-
vade to a relatively high endemic level in cells. □

6. Numerical Simulation

In this section, we give some numerical simulation to il-
lustrate our theoretical results by numerically solving the
model system (4).Tis is carried out by frst taking the initial
values from the existing literature as shown in Table 1. Using
the parameter values in Table 1 and ftting the model system
(4) in MATLAB software, the ode45 command in MATLAB
is used to solve it and the results in Section 6.2 are obtained.

6.1. Parameter Values. Te parameters values are described
in Table 1.

6.2. Simulation Results. Te graphs and the results obtained
are described as in Figures 1–4.

Figure 1–3 shows a graph of target cells B, infected cells
Z, and the vibrio V against time in hours when c � 0.1, when
c � 0.6 and when c � 0.9, respectively.

In Figure 1, it is observed that if the vaccine efcacy is
low i.e., c � 0.1, there are more cells infected which is an
indication that there are pathogens invading the target cells
in the small intestine as a result decrease in number of target
cells as they become infected due to their interaction with the
pathogen.Tis implies that the lower the vaccine efcacy, the
higher the rate of infection of target cells.

Table 1: Parameter values for the within-host cholera model.

Description Parameters Initial value Source
Recruitment rate of B Λ 1.0∗ 106 cells [11]
Natural death rate of B μ1 0.27 day− 1 [5]
Natural death rate of Z μ2 0.27 day− 1 [5]
Contact rate of B and V α 0.9 [5]
Clearance rate of V σ 0.02 [5]
Vaccine efcacy c 0.66 [3]
Recruitment rate of V hV 0.7 [11]
Shedding rate of V s 0.03 [11]
Multiplication rate of V βV 0.3 [11]
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In Figure 2, the vaccine efcacy is c � 0.6, the number of
cells infected decreases compared to when c � 0.1. Tis
shows that with improved vaccine efcacy, there will be low
infection of cells without which the vibrios will continue to
invade the cells to cause infection and this explains why
cholera disease is persistence.

In Figure 3, the vaccine efcacy is c � 0.9; this leads to
decrease in the number of cells infected which implies that
with vaccine efcacy being high, the chances of cells getting
infected will be low compared to when the vaccine efcacy is
low. It also implies that when the vaccine efcacy is high, it
takes longer time for healthy cells to be infected. Despite this,
vibrios still fnd their way to infect the cells.

Figure 4 shows backward bifurcation diagram for the force
of infection against reproduction number of model (4) using
parameter values α � 0.9, c � 0.66, δ � 0.05, d � 0.4, and μ1 �
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Figure 2: Graph of (B, Z, V) against time when c � 0.6.
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Figure 3: Graph of (B, Z, V) against time when c � 0.9.

Stable IEP

Backward bifurcation range

Unstable IEP

Unstable IFEStable IFE0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

Fo
rc

e o
f I

nf
ec

tio
n

R0V

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.1
R*

0

Figure 4: Bifurcation curve.

B
Z
V

×104

500 1000 1500 2000 2500 3000 3500 40000
Time in mins

0
1
2
3
4
5
6
7
8
9

10

B,
 Z

, V

Figure 1: Graph of (B, Z, V) against time when c � 0.1.
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μ2 � 0.27. Tis shows that backward bifurcation occurs for
values ofR0V such thatR∗0 <R0V < 1, hence reoccurrence of in-
host infection cholera disease when R0V < 1.

7. Conclusion

In this paper, a within-host cholera model with vaccination
is developed and analysed. Te existence and stability of the
steady states of model have been determined and show that it
is locally and globally asymptotically stable when R0V < 1 and
unstable when R0V > 1. Te analysis of the model also shows
that infection equilibrium point is locally asymptotically
stable when R0V > 1; this means that there is persistent in-
fection. Furthermore, analysis shows that when the vaccine
efcacy c is high, there is high clearance rate of Z and V. In
this study, R0V < 1 is not sufcient enough to eradicate in-
host cholera disease; as a result, model (4) undergoes
backward bifurcation indicating coexistence of infection-
free equilibrium point and infection equilibrium point when
R0V < 1 and this explains why cholera disease has remained
persistently endemic. Since in the model analysis, it is ob-
served that when vaccine efcacy is high, the number of cells
getting infected reduces. Te study, therefore, recommends
that vaccines with high efcacy than the currently existing
vaccines should be manufactured.Tis could help reduce the
burden of cholera disease when there is an outbreak.
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