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Artifcial intelligence (AI) has received much attention in the domain of railway trafc planning and management (TPM) from
academia and industries. While many promising applications have been reported, there remains a lack of detailed review of the
many AI models/algorithms and their uses and adaptations in rail TPM. To fll this gap, this systematic literature review conducts,
reports, and synthesizes the state-of-the-art of AI applied in railway TPM from four perspectives, i.e., the intersection between AI
research felds (e.g., expert systems, data mining, and adversarial search) and rail TPM, the intersection between AI techniques
(e.g., evolutionary computing and machine learning) and rail TPM, the intersection between AI applications (e.g., operations
research, scheduling, and planning) and rail TPM, and the intersection between AI related disciplines (e.g., big data analytics and
digital twins) and rail TPM. Te study evaluates 95 research papers published during 1970–2022. Accordingly, a comprehensive
synthesis of each intersection between AI and rail TPM is presented, and the practical roadmap for application of AI in rail TPM is
proposed. Furthermore, the study identifes the research gaps and areas that need more investigation. Te contribution helps
researchers and practitioners to get a better understanding of the status quo of research stream, research development trends, and
challenges for further related study.

1. Introduction

Artifcial intelligence (AI) is becoming the most central
player in Industrial 4.0, and the railway industry is included
[1]. It is recognized that the potential of AI in the railway
sector should never be underestimated [2]. Tough AI is still
largely at its infancy stage in the railway sector currently, AI
is assumed to become a common tool used throughout the
rail industry in the near future [3, 4]. As one of the main
pillars of Industry 4.0, AI is the type of exponential tech-
nologies [5], which help to sharply increase productivity and
efciency. So far, current researches about AI applied in
railway contributed most to the feld of railway maintenance
and inspection, safety and security, and automation with AI
technique, e.g., image processing, natural language

processing, computer vision, decision tree, machine learn-
ing, and deep learning [6].

Varying in their “intelligent” trait, artifcial intelligence
(AI) does not refer to a single concept or technology. Te set
of the mainstream AI domains can be divided into four main
categories [2], i.e., AI research felds (including expert
systems, data mining, pattern recognition, and adversarial
search), AI techniques (including machine learning, evo-
lutionary computing, and logic programming), AI appli-
cations (including operations research, scheduling and
planning, computer vision, image processing, natural lan-
guage processing, speech recognition, autonomous systems,
and robotics), and AI related disciplines (such as big data
analytics, digital twins, and augmented reality). According to
the deliverable reports [3], machine learning techniques are
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the most exploited in the railway sector due to their ver-
satility and potential to analyze diferent kinds of data.

Based on RAILS [4], trafc planning and management is
the core feld of railway subdomains, surrounded by
maintenance and inspection, autonomous driving and
control, revenue management, transport policy, safety and
security, and passenger mobility. Rail trafc planning and
management (TPM) covers all the activities that deal with
efective and efcient capacity management, train time-
tabling, scheduling of trains and crews, optimal use of rolling
stock and energy, resource allocation and management,
control of railway operations (energy-efcient driving, au-
tonomous driving and control, and train trajectory), trafc
state prediction, estimation of trafc demand and capacity,
analysis of passenger and freight railway transport, routing,
shunting, disruption management, trafc rescheduling
(retiming, reordering, and rerouting), and equipment lay-
out, so as to increase the competitiveness and efciency of
passengers and freight transport from strategic to tactic
perspective [7].

For AI applied on the railway domains, during the years
between 2010 and 2020, only secondary to subdomain of
maintenance and inspection (57%) and followed by sub-
domain of safety and security (8%), the number of articles in
railway subdomain of trafc planning and management
occupied 25% of the total 141 papers obtained [7], which
indicated that this subdomain has attracted many studies
over the years. However, in most literatures about AI applied
on railway systems, the felds of trafc planning and man-
agement have been only reviewed as a subdomain [6, 7]. Te
number of datasets divided by railway application showed
that trafc planning and management is one of the most
prevalent railway domains in AI-oriented studies [1].
However, only a few of the exclusive literature reviews about
AI applied on rail TPM have been discovered, from the AI
aspect of data mining [8], evolutionary computing [9],
operations research, and scheduling and planning [10–14].
Also, the focused area in railway subdomain of TPM in-
cluded rescheduling, delay management (delay analysis/
prediction), timetabling, railway capacity, confict pre-
diction, train trajectory, train routing, railway disruptions,
train shunting, and stop planning. Among the detailed
segmentation of the rail trafc planning and management
that the existing literatures have explored, the train time-
tabling and rescheduling are the kinds of complex combi-
natory NP-hard problem, while delay analysis and
prediction are the kinds of data-driven problem, all of which
demonstrated the sound matching between AI techniques
and rail subdomains. Tis review surveys the research
carried out within the area of railway trafc planning and
management crossing over AI. Even though this is a rather
well-known problem domain, the number of reviews han-
dling with this topic is limited. Our literature review would
be conducted with a more comprehensive perspective in
more details. In particular, we are focusing on all the
connections between the subdomain of rail TPM and the
concerned AI categories. Te classical algorithms for railway
scheduling and planning cover exact approaches (integer
programming, linear or nonlinear programming, mixed

integer linear programming, etc.), ad hoc heuristics, simu-
lation models, expert systems, constraint propagation, and
alternative graphs [15], most of which are only suitable for
the not very large-scale problem instances.

Te main objectives and contributions of this review
paper are as follows:

(1) Synthesis of the literature on AI applied in rail trafc
planning and management (TPM). To our knowl-
edge, this the frst exclusive review paper about AI
applied in rail trafc planning and management
(TPM).

(2) Conducting the paper distribution analysis and ac-
ademic research analysis and matching between AI
subdomains and rail TPM applications.

(3) Mapping of artifcial intelligence on rail trafc
planning and management (TPM), including survey
of the intersection between AI research felds and rail
TPM, survey of the intersection between AI tech-
niques and rail TPM, survey of the intersection
between AI applications and rail TPM, and survey of
the intersection between AI-related disciplines and
rail TPM. Also, a synthesis was conducted for each
subsurvey, which deepens the crossover between AI
and rail TPM.

(4) After reviewing the literature, the output of the re-
view is a guideline to support the future AI appli-
cation to smart rail TPM, which support rail industry
stakeholders to promptly determine promising and
useful AI solutions to solve certain problems of
rail TPM.

(5) Determining a taxonomy of AI to enable its appli-
cation in rail TPM, and the state-of-the-art of AI
techniques in rail subdomain of trafc planning and
management.

(6) Tis paper not only identifes application areas of AI
in rail trafc planning and management but also
matches railway TPM problems and applicable AI
techniques and contributes to select AI models and
algorithms to deal with specifc railway TPM prob-
lems. More importantly, this work could bridge the
gap between AI application and intelligent decision-
making of rail trafc planning and management.

Te rest of the paper is organized as follows. Section 2
demonstrates the search strategy and overview on papers.
Section 3 reports the mapping of artifcial intelligence (AI)
on rail trafc planning and management (TPM), including
intersection between AI research felds and rail TPM, in-
tersection between AI techniques and rail TPM, intersection
between AI applications and rail TPM, and intersection
between AI-related disciplines and rail TPM, respectively.
Section 4 conducts the summary and discussions about the
review. Finally, Section 5 concludes the paper.

2. Search Strategy and Overview on Papers

Te methodology of our review is based on [16]. For the
systematic literature review, a wide variety of papers on the
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subject of artifcial intelligence (AI) applied to rail trafc
planning and management (TPM) were consulted. Te well-
known scientifc search engines used for the search include
Elsevier Scopus, Web of Science, IEEE Xplore Digital Li-
brary, ResearchGate, ScienceDirect, and SpringerLink and
consequently screened their references. Te search terms
used to fnd the publications are a combination of the
following key words in the titles, keywords, and abstracts of
railway-related publications: “artifcial intelligence,” “AI,”
“railway,” “metro,” “urban rail transit,” “train,” “planning
and management,” “delay,” “timetabling,” “scheduling,”
“rescheduling,” “machine learning,” “reinforcement learn-
ing,” “evolutionary computing,” “expert systems,” “data
mining,” “adversarial search,” “operations research and
scheduling,” etc. Some of the keyword pairs used in initial
searching is showed in Table 1. For search items, we build
more queries combining keywords related to AI research
felds/techniques/applications and railway subdomain of
TPM. Some of the reviewed publications were also man-
ually selected from the reference lists of [6, 7], most of
which are highly correlated to this review topic. We limit
the inclusion of contributions to journal publications and
conference proceedings written in the English language
and delete the duplicate publications. Finally, a fnal re-
fnement was made based on full texts and sorting of all
papers based on full texts. After all steps, we reviewed 95
papers. Among the reviewed publications, almost 76.6% are
journal publications. Te number of yearly contributions
has increased steadily in the recent few years, as shown in
Figure 1. For the sake of visualization, the label “before
2015” collects 27 publications from the years 1970, 1998,
2000, 2001, 2003, 2005, 2007, 2008, 2009, 2011, 2014, and
2015. Table 2 reports the scientifc journals in which most
contributions have appeared, also divided in publication
periods.

3. Mapping of Artificial Intelligence on Rail
Traffic Planning and Management (TPM)

3.1. Intersection Analysis between AI Research Fields and Rail
TPM

3.1.1. Paper Reviews by Expert Systems. Expert systems can
be seen as the combination of knowledge base and in-
ference engine from a more structured point of view.
While the knowledge base contains the coded domain-
specifc knowledge of a problem, the inference engine
consists of one or more algorithms to process it [17]. As
dispatching links the long-term or midterm planning with
real-time train operation, expert systems allow fexible
design and application of expert knowledge by in-
troducing computer-aided dispatching systems to handle
train operation plan and disrupted situations [18]. For the
limitations of the current research in automatic train
operation, i.e., reducing the passenger comfort and
impairing the train operation intelligence, Yin et al. [19]
proposed an intelligent train operation algorithm ITOe
for expert system consisting of expert rules and heuristic
inference method.

3.1.2. Paper Reviews by DataMining. From the view point of
knowledge discovery from data process, data mining rep-
resents an essential procedure where intelligent methods are
applied to extract information (patterns/models) from data
[20], by which the model-free method can work for the rail
trafc planning and management, e.g., delay management.
Te authors in [7] summarized the various historical data
sources for rail trafc planning and management, e.g., re-
alized trafc movements, infrastructure occupation data,
topology of railway network, and existing train scheduled
timetables.

Considering the multiattribute data of dynamic systems,
i.e., static, time-series, and spatiotemporal format [21],
developed a deep learning approach that combines 3-
dimensional convolutional neural networks, long-short--
term memory recurrent neural network, and fully-
connected neural network (FCNN) architectures to ad-
dress the train delay prediction for four railway lines with
diferent operational features, from the perspectives of
temporal data mining and spatiotemporal data mining. Te
results showed that the proposed combinatory methods
outperformed conventional machine learning models.

Te typical data mining methods for big data include
neural networks [22], Bayesian networks [23], and sup-
porting vector regression methods [24]. Te authors in [25]
employed a big data mining technique, i.e., K-means clus-
tering, to identify recurrent delay patterns on a high trafc

Table 1: Some keyword pairs used in initial searching.

Subdomains
of rail TPM General AI felds

Delay prediction Expert systems
Delay management Data mining
Timetabling Adversarial search
Scheduling Genetic algorithm
Rescheduling Swarm intelligence
Capacity management Machine learning
Line planning Operations research and scheduling
Demand analysis Big data analytics
Confict prediction Evolutionary computing
Routing Digital twins
Shunting Pattern recognition
Disruption management Logic programming
Equipment layout
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Figure 1: Number of publications in scope of this review per year.
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railway line in north of Copenhagen. By showing the cases
where recurrent delay patterns take place, the K-means
clustering results can discover the conditions where regu-
lations are necessary, and they can provide managerial in-
sights to improve timetables and processes for train
operational analysis.

According to the data collection conditions, the train
operational data can be classifed as those collected under
recurrent conditions relating to minor disturbance events
and those collected under nonrecurrent conditions relating
to major events. Using automatic train supervision data, Liu
et al. [26] presented a data analytics approach for train
timetable performance evaluation, consisting of data pro-
cessing and cleaning, waiting time assessment method
(headway irregularity), process time estimation method
(running and dwell time variability), and arrival punctuality
examination method (arrival time reliability). Te case study
of Shanghai Metro demonstrated that the proposed data
analytics framework and fndings had operational and
planning implications with regard to evaluating timetable
parameters and improving the passenger satisfaction.

3.1.3. Paper Reviews by Adversarial Search. Adversarial
search comprises algorithms, techniques, and ideas from
both game theory and agent-based modelling. For more and
more complex transport behaviors and phenomena that
cannot be analyzed successfully and explained using ana-
lytical models, agent-based modelling and simulation is
a good choice. Also, some principles of natural swarm in-
telligence in the development of artifcial systems can be
used to solve the complex multiagent system in trans-
portation planning and management [27], including but not
limited to the railway industry. In the background of
competitive railway market in 1990s, the authors in [28]
proposed a game theoretical model for a coalition formation
problem. Also, the agents (i.e., transport operators) in the
model could exchange information on their needs and be
rewarded by a possible increasing of their utility. By using
game theory simulation, the authors in [29] explored the
theoretical framework and a set of experimental studies
towards railway capacity allocation for freight paths in

Britain. By merging two streams of research for railway
trafc rescheduling, i.e., train scheduling and routing (op-
erations-centric railway trafc models), and passenger
routing and route choice (passenger-centric railway trafc
models), the authors in [30] investigated microscopic rail-
way trafc optimization models and algorithms with a game
theoretical approach, tackling the microscopic delay man-
agement problem [31], and focusing on seeking Nash
equilibria among multiple stakeholders, e.g., passengers,
infrastructure managers, and railway operators. In order to
address the tradeof between the interest of railway operator
and the service quality of passenger needs by an optimal
departure frequency, the authors in [32] developed
a Stackelberg game model on the train operation scheduling,
modelling the railway operator as the game leader and the
passengers as the game follower.

Te authors in [33] proposed a multiagent based railway
timetable scheduling algorithm, handling the in-between
time delay of the newly introduced train. So far, diferent
multiagent transport simulation toolkits for trafc pre-
diction have been developed, e.g., MATSim [34], DynaMIT
[34], TranSim [35], and AIMSUN [36]. Most of the agent-
based demand models employing activity-based approach
used data from national census. Alternatively, the authors in
[37] created agent-based microsimulation model using
public transport organization’s passenger survey datasets. In
summary, agent technique can be used as the distribution
artifcial intelligence for the self-organizing system, in-
cluding the railway transportation system, e.g., trafc
planning and scheduling, delay management, and
rescheduling optimization. Te application of agent theory
and multiagent system as a solution to railway trans-
portation has been observed in a number of studies [33–39].
Multiagent technique provides the promising and feasible
solutions for decentralized railway TPM in a distributed
manner, especially when the centralized options are far
more complex for too many combinatory possibilities, e.g.,
spatial and temporal allocation of the tracks, and solving
conficts of simultaneous resource requests. Te current
standard reactive practice in trafc management consists of
timetabling and scheduling/rescheduling. Timetabling is
a process of of-line development work, and scheduling/

Table 2: Distribution of papers per classical journals.

Journal titles
Number of journal publications

Until 2015 2016–2022 All
Transportation Research Part B: Methodological 0 3 3
Transportation Research Part C: Emerging Technologies 1 4 5
IEEE Transactions on Intelligent Transportation Systems 4 5 9
Journal of rail Transport Planning and Management 1 1 2
European Journal of Operational Research 1 2 3
Transportation Research Procedia 0 3 3
Transportation Science 0 1 1
Journal of Advanced Transportation 0 1 1
Expert Systems with Applications 1 2 3
IET Intelligent Transport Systems 0 2 2
Other publications 19 44 63
Total 27 68 95
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rescheduling is the real-time adjustment of the developed
timetable in case of disturbance. For the desired proactive
operational trafc management systems [40], the key
participants, i.e., train drivers, dispatchers, and network
controllers can be taken as self-organized autonomous
agents interacting in a common environment within cer-
tain control structures, e.g., multilayered hierarchical or
nonhierarchical structures.

3.1.4. Synthesis of Intersection between AI Research Fields and
Rail TPM. Referring with the AI taxonomy to the rail sector
[2, 6], AI research felds range from expert systems to
adversarial research, including expert systems, data
mining, pattern recognition, and adversarial research. As
few publications about the method of pattern recognition
applied in the subfeld of rail trafc planning and man-
agement can be found, this review has to omit the details
about pattern recognition. Typically, both data mining
and adversarial research are more popular in the area of
rail TPM in recent years, comparing with expert systems
and pattern recognition. Diferent data mining methods,
e.g., K-means clustering, neural networks, Bayesian net-
works, supporting vector regression, and deep learning,
have been investigated in train delays, while adversarial
search mainly focused on timetabling, capacity
allocation, trafc scheduling, delay management, trafc
prediction, trafc simulation and optimization, and trafc
control. Table 3 summarises the specifc methods of AI
research felds applied in the rail trafc planning and
management.

3.2. IntersectionAnalysisbetweenAITechniquesandRailTPM

3.2.1. Paper Reviews by Genetic Algorithm (GA). Genetic
algorithm (GA) is a typical evolutionary algorithm. One of
the popular application areas of GA is to solve the train
timetabling problem. For obtaining the timetable for the new
trains on a railway line that is occupied (or not) by other
trains with fxed timetables, the authors in [41] proposed
a GA with a guided process to build the initial population.
For minimizing the travel time of each train and maximizing
capacity of the network, the authors in [42] presented an
optimization-based train scheduling approach, i.e., fxed
path + genetic algorithm. Also, the GA was used for selecting
the assumed fxed path for each train. For dealing with the
time-consuming problem of the exact approaches on real-
size instances of optimal train timetabling problem, the
authors in [43] proposed an alternative mathematical model
and GA implementing method to solve the near-optimal
train timetables. For optimizing three indicators of the
mixed-speed train trafc structure for a cyclic timetable,
i.e., heterogeneity, cycle time, and bufer time, the authors
in [44] proposed the random-key genetic algorithm
(RKGA) to solve the mixed-speed train trafc planning
(MSTTP) model. It has been found that GA could produce
the same or very similar results as nonlinear programming
models for timetabling, with performing much better
computationally [45].

3.2.2. Paper Reviews by Swarm Intelligence (SI). Swarm
intelligence-based approaches are the type of important bio-
inspired computations which focus on the collective be-
havior of decentralized, self-organized systems [46]. From
the perspective of the nature of the analyzed systems, swarm
intelligence (SI) can be classifed as natural SI (focusing on
biological systems) and artifcial SI (focusing on human
artifacts) [47]. While from the perspective of goals pursued,
SI can be categorized into scientifc SI (focusing on the
understanding of natural swarm systems) and engineering SI
(focusing on the design and implementation of artifcial
swarm systems). Also, SI can be divided according to ma-
turity of theory, the authors in [48] presented the existing
swarm intelligence-based algorithms with their main ap-
plications, e.g., ant colony optimization (ACO), artifcial bee
colony (ABC), and particle swarm optimization (PSO).
Tese SI algorithms are common in the features as they are
inspired from animals, iterative and population-based. Te
diference of them lies in the exploration and exploitation of
work place. Te authors in [49] proposed a particle swarm
optimization-based method for railway trafc to reduce the
waiting time of trains and established a simulation envi-
ronment. Considering the requirements of all stakeholders
simultaneously, the authors in [50] employed a particle
swarm optimisation (PSO) approach for timetabling in an
open market to address the combinatorial timetable gen-
eration problem and tested the suitability and performance
of PSO on a multiagent-based railway negotiation (i.e.,
between infrastructure provider and train service provider)
simulation platform.

3.2.3. Paper Reviews by Machine Learning (ML)

(1) ML for Delay Management. Te delay management
problem involves the delay pattern recognition (methods
include probability density, phase-type distribution, asso-
ciation analysis, clustering model [25], delay prediction
(methods include regression, statistics, Bayesian network,
Markov chain, Graph model, Petri Net, neural network,
support vector machine, decision tree, deep learning, and
Kalman flter), and the decisions about which transfer
connections should be kept or canceled when running delays
occur (mainly use mathematical optimization method).

Delay pattern recognition, e.g., identifcation of behav-
ioral patterns in large datasets (big data), showing the re-
current delay pattern cases and revealing the conditions
where operational adjustments are necessary, can provide
the chances to discover the factors afecting reliability,
modify the timetable, and improve train operation pro-
cesses. Te authors in [25] employed K-means clustering to
identify recurrent delay patterns on a high trafc railway line
of Copenhagen.

Based on the properties of the train, the attributes of the
network, and the properties of potentially conficting train
trafc on the freight rail network, the authors in [51] pro-
posed a data-driven approach to predict estimated times of
arrival of individual freight trains with support vector re-
gression, i.e., regression via support vector machines.
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Te authors in [52] proposed a real-time Bayesian
networks model to predict the primary delay, the number of
afected trains, and the total delay trains, resulting from the
spatial and temporal propagation of disruptions and dis-
turbances during train operations. For train delay propa-
gation pattern discovery, the authors in [53] designed a deep
learning network model FCF-Net, consisting of fully-
connected neural networks (FCNNs) and convolutional
neural networks (CNNs).

(2) Reinforcement Learning (RL) and Deep Reinforcement
Learning (DRL) for Rail TPM. As far as the learning para-
digms of machine learning are concerned, reinforcement
learning (RL) is a type of unsupervised machine learning.
Deep learning (DL) has the power in tackling large and
complicated problems, while reinforcement learning (RL)
can provide a generic and fexible framework for sequential
decision-making, especially suitable for autonomous
decision-making and operation control. Deep reinforcement
learning (DRL), i.e., an integration of DL (e.g., convolutional
neural network and recurrent neural network) and RL, is an
emerging and promising methodology for tackling many
complicated transportation real-time decision-making
problems. Te authors in [54] conducted a comprehen-
sive and synthesized review of DRL applications in trans-
portation (e.g., train timetable rescheduling, automatic train
operations, and train shunting operations) by investigating
about 150 DRL studies that have appeared in the trans-
portation literature, in terms of DRL’s fundamentals, ap-
plications, strengths, and weaknesses. One thing has to be
pointed out is that existing DRL transportation research is
mainly performed in tailored, simplifed, and simulated
environments (such as Flatland [55] with synthetic data,
rather than in large-scale real-world applications.

Te authors in [56] proposed a reinforcement learning
method for train scheduling (either from scratch or from
a given operating state). Te state space is a vector including
the integer priority value and the local resource status, while
the action space consisted of two binary elements, with 1
representing a decision to dwell in the current resource for
a predefned time period, and 0 representing a decision to
move the current train to the next resource on its journey.
Also, the table-based Q-learning algorithm adopted
a slightly modifed version of the Ɛ-greedy policy for action
selection. Finally, they summarized four advantages about
using reinforcement learning rather than heuristics.

Reinforcement learning is a sequential decision process,
and the mathematical foundation of RL is Markov decision
process (MDP). Timetabling, scheduling, and rescheduling
can be classifed into the tactical or operational level of
railway planning. In nature, timetabling is a type of
scheduling from scratch. To facilitate the reinforcement
learning process by Sarsa on-policy methods, the train
timetabling can be modelled as a discrete-time Markov
decision process [57]. For the nonperiodic macroscopic train
timetabling problem of diferent railway systems (i.e., both
a single-track railway system and a double-track system), the
authors in [58] proposed a multiagent deep reinforcement
learning approach, constructed a general train timetabling

learning environment by modelling the problem as a Mar-
kov decision process, and built a multiagent actor-critic
algorithm framework to decompose the large-scale combi-
natorial decision space into multiple independent ones with
parameterized deep neural networks.

By integrating deep learning, reinforcement learning can
be enhanced to deep reinforcement learning, so as to mit-
igate “the curse of dimensionality.” It was reported that over
150 papers have appeared in the literature about deep re-
inforcement learning (DRL) in transportation research from
2016 to July 7, 2020 [59], because of the capability of DRL to
solve large, complex transportation problems, e.g., time-
tabling, and rescheduling (retiming, rerouting, reordering,
or canceling in case of uncertain disturbances). For deep
reinforcement learning, the authors in [59] summarized that
the main approaches for railway transportation problems
were DQN (deep Q-network) and DDPG (actor-critic-based
deep deterministic policy gradient) algorithms, with a fully
observable environment. Te considered state set involves
actual arrival and departure times, delay condition, train
speed and position, number of the departing train and its last
dwelling time, relative position from the front train, etc. Te
action space contains accelerate or decelerate and their
magnitude, reordering of the departure sequences,
rescheduling timetable, speed and dwelling time of the
departing train, halting and departure decisions, etc. Te
concerned rewards include delay, frequency of train, driving
time, stoppage, negative average of total delay, speed de-
viation from the target speed, energy consumption, recovery
energy, and the negative of traction energy.

For handling the size of the problem of real-time railway
trafc management arising from traditional methods (e.g.,
alternative graph model and mixed integer linear pro-
gramming model.), the authors in [60] proposed a re-
inforcement learning-based rescheduling method, i.e., Q-
learning, which learns how to reschedule a timetable ofine
and then can be used online for immediate optimal dis-
patching decision. Te online application of the method in
the second stage is completed by sensing the current state of
the railway environment according to the reinforcement
learning mechanism (i.e., map states of an environment to
actions and maximize the cumulative rewards of these ac-
tions). Prior to this paper [60], some of the existing liter-
atures about reinforcement learning-based train timetable
rescheduling consider the trafc controller as the agent
(actor) who take actions, and the actions include deciding
the departure sequence of trains from stations [61], deciding
the sequence of trains passing through a junction [62] or
multiple junctions [63], retiming and reordering trains for
single-track railway line [64], and controlling the train
movements in single-track or double-track railway
lines [56].

Regarding the train delay as input to the neural network,
the authors in [65] simulated train dispatching using graph
theory approach (i.e., the train schedule was expressed in
a program evaluation and review technique graph) and
proposed a deep Q-network (DQN)) for train rescheduling,
which presented positive results for over 50% of test cases for
small-scale train delays, and the obtained train rescheduling
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could decrease passengers’ dissatisfaction to a certain extent.
For the capacity management in the railway sector, AI is
supposed to be able to act as a game changer [4]. For in-
telligent train manipulation and prediction, the authors in
[66] proposed a step-by-step long-short-term memory
(LSTM), dealing with the issues of falling into local optimum
when optimizing the structure, weight, and threshold by the
gradient descent approach.

To overcome the possible poor performance due to
changeable environments and unrealistic assumptions of
parametric based models for train dynamic model FCF-Net,
the authors in [67] developed data-driven long-short term
memory network based algorithm in a nonparametric way.
In addition, the proposed method was extended to predict
train velocity for multiple steps ahead. By formulating the
train unit shunting problem (TUSP) as a Markov decision
process, the authors in [68] developed an image-like state
space representation which can be approached by a deep
reinforcement learning solution, i.e., the deep Q-network.
Te results indicate that the deep Q-network can develop an
online consistent strategy and solution for TUSP capable of
handling uncertainty. For the frst time, the authors in [69]
solved the periodic timetable optimization problem with
a novel approach based on reinforcement learning, multi-
agents, and Boolean satisfability problem (SAT) for public
transportation scheduling with respect to the travel time.
Te authors in [70] investigated the machine learning
method, i.e., two diferent deep Q-learning methods, for
solving the real-time online single-track train scheduling
problem, and they presented both centralized architectures
and decentralized architectures. In the centralized approach,
the line coordinator is taken as the agent (actor), and the
entire line is taken as the environment. While in the
decentralized approach, the train is considered as the agent,
i.e., the train itself is capable of decision-making, and the
observable line is considered as environment. Te main
diference between them lies in the topology of the state.

3.2.4. Synthesis of Intersection between AI Techniques and
Rail TPM. Referring with the AI taxonomy to the rail sector
[2, 6], AI techniques cover evolutionary computing (evo-
lutionary algorithm and swarm intelligence), machine
learning, and logic programming. Based on the distributions
of the publications in the feld of rail TPM, we mainly focus
on evolutionary algorithm, swarm intelligence, and machine
learning (RL, DRL, etc.). Te use and adaptation of ML for
rail trafc planning and management have been multifold,
spanning many types of problems from train delay man-
agement to NP-hard train scheduling, rescheduling prob-
lem, and capacity management. Te conventional methods
for train timetabling problem can be categorized into two
main categories, i.e., mathematical programming, e.g., in-
teger programming (solved with Lagrangian relaxation al-
gorithm) and mixed-integer programming model (solved
with branch-and-bound algorithm), and system simulation
modelling the train timetabling problem (TTP) as a Markov
decision process (MDP). For railway trafc scheduling and
rescheduling problems, certain exact mathematical

programming methods are available, e.g., branch and bound
algorithm for mixed integer linear programming but usually
are not practical for the realistic larger scale problem. Be-
sides, heuristics are alternatives to exact approaches, but they
need difcult balances among development efort, compu-
tational performance, and solution quality. Beyond these,
reinforcement learning of artifcial intelligence can be
regarded as a third approach which can tackle the limitations
of the two aforementioned methods [56]. Te intersections
between RL and rail TPM are the most prosperous section.
Article [64] appears to be the frst to use reinforcement
learning for train rescheduling by leveraging Q-learning
approach. Table 4 summarises the specifc methods of AI
techniques applied in the rail trafc planning and
management.

3.3. Intersection Analysis between AI Applications and Rail
TPM

3.3.1. Paper Reviews by AI Applications. Train timetabling is
a type of ofine (done month in advance) and static railway
trafc planning and management. While on the online
perspective (done during operations) [11], there are three
types of rail trafc management, i.e., online and static trafc
rescheduling (open loop control and optimize only once),
reactive dynamic trafc rescheduling (closed loop control
and optimize solutions when updated information is
available), and proactive dynamic trafc rescheduling
(closed loop control and optimize solutions when updated
information is available). For the latter two dynamic
methods, short computational time of few seconds/minutes,
i.e., efciency, is a prerequisite. Tus, AI applications in this
feld are indispensable. In both practice and theory, train
trafc rescheduling in network is a challenging work. Te
authors in [14] presented a comprehensive survey on this
rescheduling problem by a clear classifcation, including the
frequently used models (e.g., integer programming model,
mixed-integer programming model, constraint pro-
gramming model, and alternative graph model) and their
variables and constraints, as well as the solution approaches
(e.g., heuristics and meta-heuristics). With operations re-
search (OR) methods, the problems can be split into
components and solved with mathematical analysis, e.g.,
linear or nonlinear programming and dynamic pro-
gramming. Operations research involves the scientifc
decision-making by using mathematical models to represent
real issues under specifc conditions, and AI is a powerful
instrument for fnding the best available solutions towards
the complex mathematical optimization models with the
characteristics of NP-hard combinatorial search problems,
e.g., constraint programming, evolutionary algorithms,
swarm intelligence, and reinforcement learning.

Te vehicle rescheduling problem (VRSP) for railway
networks has been a major focus of operations research for
many decades. Traditional approaches, e.g., simulation, to
solve large scale VRSP are usually time consuming and sufer
a huge computational overhead. Te authors in [55] pro-
posed a two-dimensional simplifed grid environment
Flatland, which provided an interface to explore novel
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solutions for VRSP from machine learning, e.g., multiagent
reinforcement learning (MARL) on trains and combinations
of OR and RL, and further to reduce the complexity of the
simulation process and allow for faster experimentations. In
Flatland, the railway network is represented as 2D grid
environments with transition constraints between adjacent
cells according to basic transition maps, and the trains are
described as multiple collaborative agents with various
scheduling objectives to minimize the global travel time or
delay on the network for a long-term reward. Te discrete
action space of Flatland consists of go forward (or turn to
opposite direction and continue forward if the agent is facing
a dead end), left turn, right turn, halt on current cell, and no-
op (let the agent continue what it was doing previously).
Tere are three types of observation space in Flatland en-
vironment, i.e., global observation (the whole scene is ob-
served), local grid observation (a local grid around the agent
is observed), and tree observation (the agent can observe its
navigable path to some predefned depth). Te experimental
results of Flatland demonstrate that RL has the potential to
efciently and efectively solve vehicle rescheduling prob-
lems for railway network.

As train movement planning at a railway station is
complexed, for the frst time, the authors in [71] developed
a reinforcement learning-based approach to learn heuristics
for generating the operational train movement plan at the
station, under diferent interarrival times between trains. In
congested scenario, the heuristics learned by the re-
inforcement learning approach outperformed that de-
veloped using operational heuristics being used in practice.
From the machine learning and operations research com-
munities, the authors in [72] surveyed the recent attempts at
using machine learning to solve combinatorial optimization
problems. Tey advocated for further integrating machine
learning and combinatorial optimization, e.g., the machine
learning model can be used to augment or boost an oper-
ation research algorithm with valuable pieces of in-
formation, machine learning can provide a parametrization
of the combinatorial optimization algorithm. Also, they
detailed the theoretical learning framework and method-
ology to do so.

During the past few years, various approaches on ma-
chine learning-supported metaheuristics have been pro-
posed; the authors in [73] conducted a comprehensive
survey and taxonomy on this research in applying machine
learning (ML) to design well-performed (e.g., efective, ef-
fcient, and robust) metaheuristics, so as to motivate scholars
in operational research optimization to include ideas from
ML into metaheuristics. According to the concerned search
component, there are three hierarchical ways to use ML in
metaheuristics, i.e., problem-level ML-supported meta-
heuristics, low-level ML-supported metaheuristics, and
high-level ML-supported metaheuristics. It has been proven
that incorporating machine learning into metaheuristics is
advantageous in convergence speed, solution quality, and
robustness.

Bilevel optimization has widespread applications in
transportation. Machine learning can be used as an auxiliary
tool assisting an original heuristic solution method. For

tackling the NP-hard bilevel transportation problem ef-
ciently, the authors in [74] developed a hybrid machine-
learning and optimization method, which transformed the
original problem, i.e., the nonlinear discrete bilevel trans-
portation network design problem with equilibrium con-
straints, to an integer linear programing problem using
a supervised learning technique and a tractable nonlinear
problem. Tey employed MATLAB to solve the machine
learning tasks and GAMS (with CPLEX solver) to solve the
optimization problems. Te authors in [75] designed a re-
inforcement learning system for generating marshaling plan
of freight cars in a train, applying Q-learning to minimize
both the total transfer distance and the number of move-
ments of a locomotive for the desired layout of freight cars
for an outbound train. Te state of marshaling yard was
described by the layout and movements of freight cars, while
the state transitions were defned based on Markov decision
process.

3.3.2. Synthesis of Intersection between AI Applications and
Rail TPM. In summary, AI applications in rail TPM mainly
focus on operations research, combinations of OR and RL,
machine learning-supported metaheuristics, MARL, bilevel
optimization, etc. Also, reinforcement learning has dem-
onstrated efectiveness and advantages in many applications
of scheduling and rescheduling problems, e.g., train
scheduling and rescheduling [61]. Referring with the AI
taxonomy to the rail sector [2, 6], AI applications cover
scheduling and planning, operations research, natural lan-
guage processing, speech recognition, image processing,
compute vision, autonomous systems, and robotics. Based
on how critical the role that AI technique plays in the system,
AI applications can be categorized into system level appli-
cations (mainly autonomous system and the whole system is
controlled by AI technique to a large extent), and module/
component level applications (the problems can be solved
with innovative approaches from AI techniques and mod-
ules in many areas) [76]. In nature, the TPM problems
mainly involve scheduling and planning-related decision-
making process, which can be addressed using various AI
applications, e.g., evolutionary algorithms [77] and opera-
tions research. Te typical intersections between AI appli-
cations and rail TPM are summarized in Table 5.

3.4. Intersection Analysis between AI Related Disciplines and
Rail TPM

3.4.1. Paper Reviews by Big Data Analytics. Before the
implementation of the AI model, data collection is the core
of the data-driven AI model and need to be handled ac-
cordingly. Most of the publicly available datasets related to
the railway domain of trafc planning and management are
the type of numerical data, followed by the type of label data
[45]. Te authors in [78] provided a comprehensive review
of the recent applications of big data in the context of railway
engineering and transportation, which has covered three
areas of railway transportation, i.e., operations (including
train delay analysis and prediction, passenger route choice,
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passenger demand forecasting, train positioning and confict
detection, and disruption management), maintenance and
safety, including the level of big data analytics (i.e., de-
scriptive, predictive, and prescriptive), types of big data
models and a variety of big data techniques (i.e., association,
clustering, simulation, image processing, process mining,
statistical analysis, semantic analysis, optimization, and
prediction). In order to understand the patterns of train
delays and to predict train delay time, the authors in [79]
analyzed a three-month dataset of weather, train delay, and
train schedule records and developed a machine-learning
model to predict the train delay time at each station.

Focusing on delay distribution, delay propagation, and
timetable rescheduling, the authors in [8] explored the data-
driven methods on the train dispatching problem, which
include statistical methods (SM), graphical models (GM),
and machine learning (ML). Also, they concluded that
machine learning methods are the most promising data-
driven models for innovative train dispatching solutions
with rich data obtained from practical train operations. For
addressing the data-driven train dispatching issues, the
involved data cover train position data, arrival and departure
time, train delay records, train actual timetable, train oc-
cupation data, freight data, train operation data, train
timetable, etc. Using and implementing big data analytics in
railway industry have been one of the key research points
[80, 81]. Te information about every train movement, i.e.,
every train arrival and departure timestamp at “checkpoints
(e.g., a station and a switch)” monitored by signaling sys-
tems, plays a key role in the rail trafc management systems.
In [82], datasets composed by train movement records have
been used as fundamental data sources for addressing the
problem of building a dynamic data-driven train delay
prediction system, by exploiting the state-of-the-art pow-
erful tools and techniques in the area of time varying big data
analysis. Compared with traditional trafc simulation [83],
big data analytics can be taken as a subarea of data mining
[7], which is the process of extracting valuable information
and identifying patterns from large data sets. As massive
amount of data can be generated from sensors and need to be
further processed and analyzed, big data analytics is useful in
the railway system.

3.4.2. Paper Reviews by Digital Twins. Prefguring digital
twins (DT), the authors in [84] presented some of the
various digital modelling activities, including formal
methods, for railway design, development, validation,
qualifcation, and exploitation. Te authors in [83] dis-
criminated the diference and relationship between con-
ventional trafc simulation and digital twin (DT) in terms of

features, functions, input data, modelling, and interaction,
and they proposed three-layer technical architecture for DT
in intelligent transportation, i.e., data access layer (lowest
level), computational simulation layer (middle level), and
application management layer (highest level). Te review in
[85] showed that most of the digital twin-related publica-
tions focused on the railway subdomain maintenance, in-
spection, and resilience, most of which applied machine
learning algorithms and techniques in digital twin to predict
failures, detect faults, make automated decisions, supervise
train movements, provide information on passenger be-
havior onboard trains, and monitor health status of railway
systems.

With regard to the complex nature of Cyber-Physical
Systems (CPS), the authors in [86] adopted an intelligent
agent-based approach to deal with the complexity and the
challenge that are encountered while building a digital twin
for CPS by programming intelligent agents, i.e., agent-based
digital twin. Te authors in [87] developed a mobility digital
twin (MDT) framework for connected vehicles, which is an
artifcial intelligence (AI)-based data-driven cloud-edge-
device framework for mobility services, and consists of three
building blocks in the physical space (i.e., human, vehicle,
and trafc) and their associated digital twins in the digital
space (i.e., human digital twin, vehicle digital twin, and
trafc digital twin).

3.4.3. Synthesis of Intersection between AI-Related Disciplines
and Rail TPM. Referring with the AI taxonomy to the rail
sector [2, 6], AI-related disciplines cover big data analytics,
digital twin, and augmented reality. It is believed that data-
driven decisions are practical, remarkable, and reasonable.
Big data analytics (BDA) has increasingly attracted a strong
attention of researchers, analysts, and practitioners in rail-
way industry. Digital twin is a virtual and data-driven
representation of the characteristics and behaviors of any
real-world object DTs with embedded intelligence, e.g.,
physical asset, process, or system. A cognitive digital twin
enabling technology AI is regarded as the most coupled
technology for smart railways, with the potential of learning
and adapting to variant situations. Te typical intersections
between AI-related disciplines and rail TPM are summa-
rized in Table 6.

4. Summary and Discussions

Most of the existing publications focused on timetabling,
scheduling, rescheduling, delay [88], neglecting capacity
more or less in terms of capacity calculation, capacity
planning, capacity allocation, capacity expansion, capacity

Table 5: Typical intersections between AI applications and rail TPM.

References and authors Specifc methods of
AI applications

Application
in rail TPM

[71] Salsingikar and Rangaraj Reinforcement learning-based approach Train movement planning at a railway station
[74] Bagloee et al. Hybrid machine-learning and optimization method NP-hard bilevel transportation problem
[75] Hirashima Q-learning Train marshaling

Discrete Dynamics in Nature and Society 11



Ta
bl

e
6:

Ty
pi
ca
li
nt
er
se
ct
io
ns

be
tw
ee
n
A
I-
re
la
te
d
di
sc
ip
lin

es
an
d
ra
il
TP

M
.

Re
fe
re
nc
es

an
d
au
th
or
s

A
I-
re
la
te
d
di
sc
ip
lin

es
Sp
ec
if
c
m
et
ho

ds
A
pp

lic
at
io
n

in
ra
il
TP

M
[7
9]

W
an
g
an
d
Zh

an
g

Bi
g
da
ta

an
al
yt
ic
s

Bi
g
da
ta

fu
sio

n
Pr
ed
ic
t
tr
ai
n
de
la
y

[8
2]

O
ne
to

et
al
.

Bi
g
da
ta

an
al
yt
ic
s

D
ee
p
an
d
sh
al
lo
w

ex
tr
em

e
le
ar
ni
ng

m
ac
hi
ne
s

Tr
ai
n
de
la
y
pr
ed
ic
tio

n
[8
5]

D
ir
nf
el
d

D
ig
ita

lt
w
in
s

A
pp

lie
d
m
ac
hi
ne

le
ar
ni
ng

al
go
ri
th
m
s
an
d
te
ch
ni
qu

es
Ra

ilw
ay

m
ai
nt
en
an
ce
,i
ns
pe
ct
io
n,

an
d
re
sil
ie
nc
e

[8
7]

W
an
g
et

al
.

D
ig
ita

lt
w
in
s

M
ob

ili
ty

di
gi
ta
lt
w
in

(M
D
T)

Fo
r
co
nn

ec
te
d
ve
hi
cl
es

12 Discrete Dynamics in Nature and Society



utilization, etc. Under the next new generation of signaling
system, e.g., virtual coupling, the capacity research has to
incorporate the blocking time theory with relative braking.
AI is taken as an enabling technology to achieve the smart
railway operation planning and management. In the future,
it is possible to partially shift the dispatching activities to the
customers with AI assistance for smart operation, e.g., de-
cisions about the train connection maintaining [89]. Follow-
up research should focus more on adopting AI in rail TPM
(e.g., capacity assessment [90] in the context of the next
generation of signaling system i.e., virtual coupling). As can
be seen, AI is a set of methodology system, rather than one
unique method. Te application scope of AI in rail TPM
could be in greater width and depth. Particularly, using RL in
rail TPM is a promising direction, as RL is a kind of ap-
proximate dynamic programming and can match closely
with the attributes of most of the rail TPM problems for

intelligent decision-making. On the other hand, as what has
been analyzed in [7], hybrid models, e.g., combining
mathematical-based models with machine learning strate-
gies, and AI-aided optimization approach, should be con-
sidered more and more. With limited data to address the
target task, transfer learning can enable AI in railways [91],
by reusing (fne-tuning/freezing) the knowledge resulting
from a given source task.Te biggest obstacles for AI applied
in railway TPM lie in selecting the most applicable AI
techniques and designing a suitable model to represent the
operational scenarios and the network. Based on the
practical steps for implementing AI models in railway en-
vironments [45], i.e., the four stages for the creation of an
AI-based railway model, the practical roadmap for appli-
cation of AI in rail TPM is proposed as Figure 2.

AI-enabled techniques provide a multidisciplinary re-
search roadmap, which can facilitate to utilize the

Define application scenario Strategic level of rail TPM, e.g., demand analysis,
capacity (infrastructure) management, etc.

Tactical level of rail TPM, e.g., line planning,
timetabling, etc.

Operational level of rail TPM, e.g., real-time
management, scheduling, rescheduling, etc.

Identify rail TPM task/problem

Problem formulation

Define solution mechanism

Centralized mechanism Decentralized mechanism

Scenario-specific AI model/algorithm selecting and creating

Get solutions

Reliable & trustworthy?

Intelligent decision making

Single AI model/algorithm hybrid AI model/algorithm

Scenario analysis

N

Y

Figure 2: Practical roadmap for application of AI in rail TPM.
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multisource data, learn from examples, and improve with
experience. For defnition of application scenarios, much
attention should be paid to tackling the large-scale real-life
problems and the intelligent networking of rail mobility
(e.g., platoon planning of train trafc under virtual coupling)
in TPM. For problem formulation, most of the objectives are
identical with the traditional methods, i.e., to improve the
efciency, efectiveness, capacity, resilience, fexibility, and
other positive performances of the demand-aware railway
system. However, more constraints closer to the railway
operation practice could be taken into account, due to the AI
capability of model optimization, especially the optimization
of larger and more complex combinatorial models, and
algorithm improvement for NP-hard problems. After the
defnition of the solution mechanism, i.e., the centralized
mechanism or the decentralized mechanism, scenario-
specifc AI model/algorithm could be investigated from
the AI methodological/technical system, e.g., the promising
application of multiagent systems and reinforcement
learning. It is necessary to conduct a scenario analysis for the
achieved solution, so as to ensure the reliability and trust-
worthy for intelligent decision-making.

5. Conclusion

Tis survey examined 95 articles to provide a comprehensive
picture on the state-of-the-art of AI applied in railway TPM
from the perspective of AI research felds, AI techniques, AI
applications, and AI-related disciplines. Also, focused area
in railway subdomain of TPM included rescheduling, delay
management (delay analysis/prediction), timetabling, rail-
way capacity, confict prediction, train trajectory, train
routing, railway disruptions, train shunting, and stop
planning. As can be seen, AI has been applied to solve
a series of rail TPM problems, e.g., NP-hard train timetable
scheduling problem. Particularly, we have developed
a practical roadmap for application of AI in rail TPM. For AI
applied in railway transportation planning and manage-
ment, scenario analysis, or a combination of scenario
analysis and sensitivity analysis, rather than mere sensitivity
analysis should be implemented. All these techniques will
pave the way to the development of the new Railway 4.0,
which can help tackle the challenges associated to modern
smart railways. AI is indispensable for the virtualization and
automation of network functions of future smart railways
imbedding intelligence [92]. It is promising to use AI as
alternative algorithms in fnding good (near-optimal) so-
lutions in practical time for rail TPM problems. Rails [93]
have developed the methodological and technological
concepts for stimulating further innovation in railways,
providing new research directions to improve reliability,
maintainability, safety, security, and performance. Before AI
can be fully implemented in practical railway operations, the
concepts of explainable AI (XAI) and reliable, efcient, and
trustworthy AI need to be stressed further. After all, the fnal
key decision-making should be left to humans (human-in-
the-loop and human-on-the-loop) [94]. Also, the feedback
scenario analysis is necessary for validation test of solutions
as illustrated in Figure 2. While many AI applications and

adaptations have been reported as aforementioned, there
does not exist a single and universal rule for AI system
design to handle all railway transportation problems. To
ensure successful AI use, one needs to have an in-depth
understanding of the nature of specifc railway TPM
problem investigated as well as AI per se, e.g., federated
learning paradigm for NP-hard rail TPM problem [95].
Tough AI is still in its infancy level in the railway sector, it is
recognized that AI can play a key role in improving railway
performance, by leveraging the application of AI algorithms,
methods, and techniques.
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