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This paper introduces the stability problems of Cohen-Grossberg type BAM neural network (BAMCGNN) with piecewise
constant argument (PCA). By employing the homeomorphism theory, sufficient conditions for the existence and uniqueness of
the equilibrium point are obtained; using inequality technique and Lyapunov method, sufficient stability criteria for BAMCGNN
with PCA are presented. Finally, a numerical case shows the significance of the results of this paper.

1. Introduction

Neural networks (NNs) are complex network systems which
are formed by a vast number of simple neurons widely
connected to each other. NNs are typical nonlinear dynamic
systems, and research studies on NNs first began in the
1940s; McCulloch and Pitts proposed the McCulloch-Pitts
model in 1943, which led to the growth of NN research. With
the development and improvement of NNs, the results on
NNs have been widely presented [1-6] and have a wide range
of applications in many fields, such as sensing information
processing, automatic control, information analysis, aero-
space, and military fields [7-9]. So far, numerous researches
have proposed different NN models, such as Hopfield
network network (HNN), cellular neural network (CNN),
and Cohen—-Grossberg neural network (CGNN). CGNN was
proposed by Cohen and Grossberg in 1983 [10]. CGNN is
a very broad model that includes multiple ecosystems and
NN, such as the Volterra-Lotka system, the Gilpin-Ayala
competitive ecosystem, the Eigen-Schusterxit system, and
HNN [10-12]. CGNN has its own unique advantages; it is
not only closely connected with the biological network but
can also solve the nonlinear and uncertain problems in
practical applications. At present, CGNN models have been
widely used in parallel processing, associative memory,

optimization calculation, etc. [10, 13, 14], and the research
studies of CGNN have aroused widespread interest. Many
scholars have conducted in-depth research studies on the
stability of CGNN and have achieved some excellent results
[15-23]. For instance, in [16], Arik and Orman studied
global asymptotic stability (GAS) and global exponential
stability (GES) of the equilibrium point for CGNNs with
time delays. Based on the LMI optimization approach and
Halanay inequality technique, Cao and Li gave the global
stability criteria for delayed CGNNs in [19]. In [20], Zhu and
Cao investigated the robust exponential stability problem for
a class of Markovian jump stochastic CGNNs with mixed
time delays and unknown parameters.

The previously proposed systems are all single-layer
associative memory neural networks; Kosko established
a neural network with bidirectional associative memory in
1987, known as BAM neural network (BAMNN) [24-26].
The BAMNN is different from the previously proposed
systems in that the BAMNN model popularizes the common
single-layer associative memory neural network to realize
the mutual transmission of information between two-layer
neurons [27]. Over the years, research studies on the
BAMNN have yielded many results. Such as, the authors of
[28] studied GES of delayed BAMNNSs. The authors dealt
with the uniform stability in mean square of stochastic
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fractional-order memristor fuzzy BAMNNs with delay and
leakage terms in [29]. The authors of [30] investigated the
stability problem of impulsive stochastic BAMNNs with
both Markovian jump parameters and mixed time delays.
For more results, see [28-37].

In [38], a new kind of BAM model with Cohen-
Grossberg dynamics was proposed; the author studied the
Cohen-Grossberg BAM model with time delays, sufficient
conditions for the existence and uniqueness of the equi-
librium point are obtained, and GAS of the model is proved.
In recent years, since applications of NNs depend heavily on
the dynamic behaviors, researchers have paid increasing
attention to the stability of Cohen-Grossberg type BAM
neural network (BAMCGNN), and many findings have been
reported in [39-43]. Many factors can affect the stability of
BAMCGNN, such as time delays [39-41] and impulses
[42,43]. As we all know, the stability of the system is not only
related to the delayed state but also to the advanced state.
Many physical models involve piecewise constant argument
(PCA), for example, Geneva wheel, Froude pendulum,
workpiece-cutter system, amped loading system, undamped
systems, and vibration systems. Systems with PCA include
advanced systems and delayed systems and have the char-
acteristics of differential systems and difference systems,
which can alternately change the types of advance and retard
with the evolution of process; this system have important
applications in cybernetics and biomedical problems
[44-46]. The theory of differential equations for piecewise
constant argument (EQPCA) was proposed by Cooke and
Wiener in [47]; EQPCA is a hybrid system of continuous
and discrete dynamical systems and can be applied to
mathematics, engineering, biology, and other fields. PCA has
a profound impact on NNs; many scholars have analyzed the
impacts of PCA on the system [45, 48-58]. For example,
Akhmet studied and improved the theory of EQPCA and
obtained many useful results [48-53]. In [51-53], Akhmet
et al. explored the stability of CNN, RNN, and HNN with
PCA, respectively. From previous results, it can be seen that
the authors of [55] studied the GES of CGNN with PCA and
impulses; the authors of [56] investigated the global robust
exponential stability of interval fuzzy CGNN with PCA. The
authors of [39, 41, 42] considered a class of BAMCGNN with
time delays, and few articles have examined the stability of
BAMCGNN with PCA. To fill this gap, we will consider
stability problem of BAMCGNN with PCA. First, by using
the homeomorphic mapping theorem, we obtain sufficient
conditions for the existence and uniqueness of the equi-
librium point, and then we derive the desired stability cri-
teria by constructing a Lyapunov function. Briefly, the
following is a list of our works and contributions:

(1) This paper gives sufficient conditions to ensure the
existence and uniqueness of the equilibrium point
and proves the solution is unique.

(2) In this paper, the homeomorphic mapping theorem
is applied to the BAMCGNN model to obtain suf-
ficient conditions to guarantee the uniqueness of the
equilibrium point. Compared with contraction
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mapping principle and Brouwer fixed points theo-
rem, it is practical and convenient to apply the
homomorphic mapping theorem in BAMCGNN.

(3) The GES criteria of BAMCGNN with PCA are de-
veloped by using inequality method and construct-
ing an appropriate Lyapunov functional. Lyapunov
theorem is a classical method to solve the stability
problems of system, and by using the inequality
method, it will be more convenient to get the desired
results.

Here, the structure of the article is as follows. In Section
2, we demonstrate the existence and uniqueness of the
equilibrium point; we ensure that the solution of the system
is exist and unique, and then, we establish the criteria for
ensuring the GES of BAMCGNN with PCA. In Section 3, the
article’s findings are supported by a numerical case.

Notations: let N ={1,2,...} and R" = [0, +00), denote
R" be the n-dimensional Euclidean space. The Euclidean
norm of a vector { € R" is defined by [|{]| = Y\, |{;]. Fix two
real-valued sequences {6}, {{;} and k€ N, such that
0, <0ps1> 0, <& <0, for all ke N, and 6, — oo as
k — co. Denote A= (a;j),., is a real matrix. If
A>0(A<0), it implies that A is symmetric and positive
(negative) definite. The AT represents the transpose of
a matrix A and A~! means the inverse of a matrix A. The
Euclidean vector norm of A is expressed as ||A|,, and
lAll, = (A (AT A))"2, where A(A) means the maximum ei-
genvalue of matrix A.

2. Main Results
Consider the following BAMCGNN with PCA:

dg; m
Céit) =aq; (Ci (t)) {_bi (C,' (t)) + Z kijfj(‘gj (q(t))) + Ii:|>
i1

do. (1) n
o =a(%0) [‘dj(sj (6) + X wiig; (6 (n(e) + ]j]-
i=1
(1)
for t>0, i=1,...,m,j=1,...,m, where #5(t)=¢§, if

t € [0, 0] <() = (6 (1), ,6, (), 9(B) = (9, (1), ...,
9 )7, ¢;(t) and Sj (t) are the states of the i th neuron from
the neuron field F_ and the j th neuron from the neuron field
Fy at time t; the functions g; (-) and ¢ i (+) mean amplification
functions; denote f () g:0) be the activation functions of
the j th neuron from Fy and the i th neuron from F; b; (-),
and d; (-) are appropriately behaved functions such that the
solutions of BAMCGNN (1) remain bounded; k;; and wj;
represent the connection strengths; I; and J; are constants
representing the external inputs.

The model (1) is a hybrid system. Fix k € N, and on the
interval [0y, 0,,1], 1 (t) = &. If 0, <t <&, holds for the ar-
gument £, that is, t <#(t), then system (1) is a network with
advanced argument. Similarly, if &, <t < 0,,,, then t > 5 (),
system (1) is a network with delayed argument.
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Rewrite system (1) in the following form:

c() = (c(D)[-B (1) + ZT D (n (1)) + .71,

9(t) = B9 [~ (9(1) + 7O (¢(n (1) + 71, @
where
o (¢(1) = diag(a; (¢, (1)), - - > a, (6, (1)),
B (1) = (by (6,(D): - > b, (6, (1)),
€ (9(1)) = diag(c, (9, (), . .,¢,, (9, (D)),
DO®W) =dy (9O, rdy (9, ),
TEO®) = £ (9 EN) s firu (9 (n(EN)T,
O (1)) = g1 (61 ((EN),- .. g (5, (1)), ®
T = (ki)
T =(W)i) e
J=1,...,1,),
I=Up- > T)"

After that, we provide some mathematical explanations
and assumptions:

Assumption 1. a;(-), c;(-) are continuously bounded, and
then there are positive constants g, ¢, a, ¢, such that

a<a;(g)<a,c<c;(V<5 (4)

besides, the functions g;(-), c;(9) satisfy the Lipschitz
condition:

¢;(9)=c;(9%)

<L|9-9"

|a; () — a; (¢")| <eifc— <) ,

(5)

for Vg,¢* € R", 9,9" € R", where ¢; and [; are known
constants.

Assumption 2. b;(-) and d; (-) are monotonically increasing
functions, that is, there are the following four positive
matrices:

B = diag(b,,...,b,), B = diag(b,. .., b,), ©
o _ _ 6
9 =diag(d,,...,d,,),D = diag(dl, . ,dm),
such that
bi SMSEP
G —Gi
(7)

di(9;) ~d,(9) -
4y e, =%

for ¢} #¢;, 9;7 #9,;.

Assumption 3. For activation functions f; and g;, let =
diag(F,,...,F,) and & = diag(G,,...,G,,) be two positive
matrices, then the following formulae hold:

0 1) S0) _p o ai()=as) o

e, o

for all ¢, ¢; € R, ¢/ #¢;; 9;7, Sj € R™, and 9}‘ ;ESJ.

Assumption 4. There is a positive number 6 such that
O —0,<0, ke N.

Assumption 5. R<1, R = max{0(g, + 1,),0(¢, + 11)}.
Assumption 6. (ee (e84 10e0)0 < 1,
Assumption 7. 10+ (1 + 70)m, 0e™ < 1.

Here are the notations we adopt:

& = max{eiP + EBi},

1<isn
g = max {le+Edj},
1<j<m
m
T =maxﬁZ|k~.|F»
1 1<i<n Pt yrer
i

n
7, = max EZ'w~|G~
2 agjem SITUEP

¢ = max(g;, &),

7 = max(7,,T,), (9)

Definition 8. The equilibrium point x* of (1) is globally
exponentially stable and x* = (¢*,9%), if for any intial value
sp € R* and y, € R™"™, there are constants v>0 and x>0
such that

() = x| <o — 1"l <), (10)

for s>s,, where y(s) is the solution of the model (1).

Before discussing, we first introduce the following
lemmas:



Lemma 9 (see [59]). Let ¢(t), z;; R—> [0,00], i =1,2 be
continuous functions and o be a nonnegative real constant.
Suppose that for all t > t,, the inequality

¢(t)<a+ L [21 ()5 (s) + 2, (s)s (1 (s))]ds, (11)
holds. Assume

¢(t)<aexp {Jt z, (s)ds +1%v Jt

to to

c(n(t) <

1
1-v

(&)<

Lemma 10 (see [60]). For every real matrices A,B,P of
appropriate dimensions and a positive scalar €,, where P > 0.
Then, the inequality holds:

1,
A"B+B'A<¢yA"PA+—B'P'B. (14)
&

Especially, if A and B are vectors, the above formula can
be converted into:

ATBe (A"A+B'B) | (15)
2

After that, we obtain sufficient criteria for the equilib-
rium point to be exist and unique.

Theorem 11. Let assumptions (A1)-(A3) hold, if there have
positive  matrices S = diag(s”, s, ... sy, 1=1,2,
Q, >0,Q, >0, and factorizations of = K\K,, W = W, W,
such that
Q, = 28,8%" - $,K,Q;'K'S, -W!IQ,W, >0, (6
Q, =282% ' -S,W,Q;'W's, -KIQ,K, >0,

where Q,,Q,,K,,K,,W,W, are constant matrices with
appropriate dimensions, then the equilibrium point
X = (¢*, 97 of (1) is unique.

Proof. Let x* be an equilibrium point of (1) and
x* = (¢*,9%)". Then, y* satisfies the following equation:

{d(c*)[—%(c*)+%F(9*)+J] =0, (17)
EO)N-20)+70(")+.7] =0,
then we have
{—93(@")+%1"(9*)+J=0, (18)
DO+ 7O()+F=0.

&
¢(t;) exp {J z; (s)ds}.
Lic)
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& &
v; = Jt‘ [zz (s) exp {L z (k)dk}]dsSV: (12)

i

= sup;enV; < L.

Then for t > t,

1(s)
[zz (s) x exp H Z, (k)dk} ]ds},
ti(s)

o n(t) 1 tic) 1(s)
exp J 2, (s)ds + —— J 2,(s) X exp J 2, (k! [dst, (13)
1-v t 1-v ty tis)

Let

D (p) = (@, (p), ©, (p)"
= (~B(p) + KT (p) + I, -D (p) + WO (p) + )"

=0,
(19)
where

L(P) = (190 Fon ()

O(p) = (91 (1)>-- > ()"
p=(9), (20)
6= (61 6) s
9=(9,....9,)".

This can be seen from formula (20) that the solution of
equation (19) is the equilibrium point of BAMCGNN (1).
Thus, if ®(p) is homeomorphism of R™", then (1) has
a unique solution. From the reference [61], we can gain the
following conclusion: if ®(p)# d(J), Vp+4, p,d € R*™,
and [|® (p)| — oo as [lpll — o0, then ®(p) is homeo-
morphism of R*™.

Assume P (p) = (T'(p),® (p))T, and p, § be two different
vectors, i.e., p # §. Based on the assumptions of the activation
functions, p # & represents the following two cases:

(1) p#6, P(p)#P(9)
(2) p#0, P(p) = P(9)
Then, we have
D, (p) - @, (8) = -B(s,) + B(c5) + F (L' (p) ~T(9)),
D,(p) — D, (8) = -D(9,) + D () + W (© (p) - O (9)),
(21)

where
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(4l 1 1 T First, we consider the case (i): p # § and P (p) # P (6), that
D1E) (1 (P12 ()0 P)) 5 () ~T(0) £0, 0(p) - O () #0.
D (% (p), &2 (p), ..., 2 T’ For S, =diag(s;’,s; ..., s{V) and Q,, multiplying
2 (P) ((/)1 (p)-¢2.(p) P (P))T both sides of the first equation in (21) by 2(© (p) — © (6))TSI,
D, (8) =(¢1(8), 4, (), ..., 4,(8) ", we have
®,(8) =(¢2(0), 62(0),....4%,(9))
P :(CP’SP)’ (22)
&= (65 9s)
6o =(Gp15 G2+ > Spn)
6o = (Gs1 o2 - - > Can) € R,
9, =(9,1, 9,0 - > )
93 = (951, 982 ..... 98",’) € Rm.

2(0(p) - O B)'S, (@, (p) - B, (9) = ~2(O (p) - O ()S,(B(5,) — B(55)) +2(O(p) — O (B)TS, H (T (p) ~ T (8)).

From assumption (A3), we have then

G (9i(s,) - g (g(;,-))2 < (6 = 51 )(9i(01) = 9 (61))>
(24)

(©(p) -0 (8)S,(B(c,) - B(5)) 2 (@(p) - ©(8)'S; BL ' (O (p) - ©(9)).

By using the Cholesky factorization, Q, can be written as
Q, = U,UT, and rewriting % = (K,U7") (U,K,), we obtain

2(0(p) -0 (8)'S, (P, (p) - @, (9)) < —2(O(p) - ©(8))'S, BEL (O (p) - ©())
+2[(®(p) - ©(8)"$,K,U; ' | [U, K, (T (p) ~T())].

By Lemma 10, we get

2(0(p) — O (8)'S, (P, (p) - @, () < —2(O(p) - O())'S, BL ' (O(p) - O())
+(0(p) - @ (8)8,K,UT (UT) KTST (@(p) - ©(8)
+(T(p) - T(8) K U U, K, (T (p) - T (4))
=-2(0(p)-0(3)'S, BL ' (O(p) - O(3))
+(©(p) - ©(8)'$,K,Q; 'K} S, (O (p) - ©(0))
+(T(p) = T(8) K3 QiK, (T (p) = T (9)).

(23)

(25)

(26)

(27)



6 Discrete Dynamics in Nature and Society

Similarly,

2(T(p) =T (8)7S, (D, (p) — @, (8) < —2(T(p) ~T(8)'S, 2 F ' (T'(p) -T(3))
+(T(p) -~ T () S,W,Q;'WT'S, (T (p) - T () (28)
+(0(p) - ©(8) W;Q,W, (8 (p) - ©(3)),

which implies that

2(P(p) - P(8)"diag(S,,$,) (@ (p) - D () < — (T (p) - T(8) Q, (T (p) —~ T (&)
~(®(p) -0 (8))'Q, (O (p) - O () (29)
<0.

Since diag(S,, S;) is a positive diagonal matrix, it implies Now, we consider case (ii): p#6, P(p) = P(6). In this
D (p) # O (). Hence, when p# 6§ and P(p) # P(J), we have case, we have
D(p) - D(5)+0.

<@0(8) 30
_(OQZ)p’ (30)

B(55) = B (c5) 0 >

0 2(9,) - 2 (9)

@(p)—®<6)=—<

it means that @ (p) — ®(6) #0 for any p+4. Next, we shall prove that |® (p)]| — oo as [p| — oo.
Let § = 0, from (29), we have

2(P(p) - P(0))" diag($,,5,) (@ (p) - @ (0))
< - (T(p)—T(0)"Q, (T (p) —T(0)) - (®(p) - ©(0))' Q, (O (p) — ©(0))
< = A [ (T(p) =T (0))" (T (p) =T (0)) + (©(p) - ©(0)" (O (p) - ©(0))]
= ~Amin (P(p) = P(0))" (P (p) — P(0)),

(31)

where A, is the minimum eigenvalue of Q; and Q,, and
Q,>0,Q,>0.
From (31), yields
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n

AminllP (p) = P(0)|||§ <

i=1

+

i=1

<2s i|f,.(9pi) ~ £:0)|[8; (9,1) - ¢ (0)]

52077 (5,) £, 0)61(5) -9 0)

Y 25(gi(p) - 9:0)) (97 (5) — 8 (0))|

(32)

+2s ilgi(%i) — 9 (O)‘|¢?(Cpi) -¢? (0)|
i1

<251 (p) = P(0)ll, <ZI¢>}(9¢) -6 O + Y |¢7(s) - ¢ <o>;>
i=1 i=1

= 2s[® (p) = D (O, 1P (p) = P(O)lloo>

where s = max(s{", ..., sV, s\, ..., s?).

From [P (p) = P(0)ll, <P (p) = P(0)l,, there have

Since [P (p) = P(0)lloo 2 IP (Pl — IP(O)lo,  and
12 (), + 1D (), 2 [P (p) — @ (0)]];, then

Ao P () = POl <260 (p) @O (33)
AnialP (P)lloo = Armin [P (0)ll oy < 25| @ (p), + 23] (O)]], (34)

that is,
10, 217 Pleo = Anin [P Oy = 25 @ OO, -

hence, we <can draw the following conclusion:
[O(p)| — oo as [|P(p)ll — oo, it is equivalent to
[©(p)l| — oo as [|p|l — oo. Thereby, we have demon-
strated that @ (p) is homeomorphism of R™™, that is,
representing BAMCGNN (1) has a unique equilibrium
point. O O

Next, we prove the existence and uniqueness of the
solution of (1).

Gi (1) = C? + J a; (6 (s)) {_bi (6 (s)) + Z kijfj(Sj (Ek)) + Ii:IdS’
t st

2s

Theorem 12. Suppose assumptions (A1)-(A6) hold. For any
(t-x°) € R* X R™™,  there is a unique solution

x(t) = (), 9 of (1), such that y(t,) = x°.

Proof. Existence.

Fix ke N, generaly, let 0,<& <t,<0,,. For
Vt € [0, 6,,), (¢°,9°) € R™™, we have the following
equivalent integral equations:

(36)

9,(6)= 9+ Jtn ¢(8,(9) [—dj(s)j (9)) + ;wﬁgi (6 (£)) + ]j]ds.
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Define [x(£)lly = maxgg g ,lx (), construct the fol-
lowing sequences {cr ()}, 19" (t)}
(c?,S?) =x(t)=x%i=1,...,nj=1,...,msucht at

AN GET J a; (i (s)) |:_bi (¢ () + Z kijfj(S; (fk)):l +1;ds,
t i

(37)
t n
9;+1 (t) = 9‘; + J cj(S; (s)) |:—dj(9; (s)) + Zwﬁgi (¢ (&) + ]j:|ds,
to i=1
then
[ (1) - L (1) _IJ (¢ (s))[ (6 () + quf](S’ Ek))+I:|ds—J a(¢ (s))[_bi(g,fl (s)) +ikijfj(9;*1 (&) +I,-:|ds
j=1
1 oo e S ]-ac o oo Enme ]
+a,(q” l(s))[ b; (¢ () +§:kljf](9' (&) )+I]—a( I 1(s))[ (G 9) + Zk,]f](é?’ I(Ek))+l”»d (38)
<], @) -ale®)) [ bSO+ Dk (5 >)+If]ds
I O -85 @) S 960 157 @) e
0 j=1
Since inputs I; are bounded, y° € R™™, and the functions ~b; (s} (5)) + Z kijfj(9; (Ek)) +I; <P, (39)
b; (), f;(-) are continuous on closed interval [0y, 6y, ], then =1
there are large enough positive constants P;, such that for all n € N. Denote P = max,_;_,{P,}, we obtain
[} @) =a( @)@ F ke, (8 60) 1)
0 j:
< L e;Pilci (s) = ¢/ (s)],
X , (40)
J ol )] 0 9086 ) Sk x(15160) - (57 @)
t B m
< J ﬁ{bilcf ()= ]+ Y | F5[9 () — 97 (&) [ds,
to j=1
that is
| (1) - ¢} (1)) < j (ePi +ab;)|c; () = ¢ (s)]ds + a8 Y. [k | F[9 (&) - 957 (&) (41)
to i=1

then
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[ -7 = Y™ 0 -G 0 ze, [ 166 - s+l ) -9 @) @)

Similarly,

t t
570 -970] || o(819)|-0,559) + $ w6 ) 1 s Jcj<9;“<s>)[—dj(9;‘l<s>> Sl €)1 o

< I (ci(9()) = e, <s>))[—dj(9§<s>) wa; )+, +}ds (43)
+£g@www@w»w@ﬂw%zw@w@»mw%mM¢
Since inputs J; are bounded, x° € R*"™, and the func- —dj(9;(5)) + ijigi (6i (&) +7;<Q; (44)
tions dj (-), g;(-) are continuous on the closed interval i=1
[0y, 011, there also have large enough positive constants Q) for all n € N. Denote Q = max,...,, Q..
such that tejom =i
ANGEEAGIE J (1,Q; +cd;)|9;(s) = 97" (s)]ds + COZ |wilGile (&) - &7 (&, (45)
then
|97 &) - 9 )] = Z 9 (1) - 950 <, j 197 () = 97 (9)]|ds + 7,0]¢” (&) = ¢ (&) (46)
)
From (42) and (46), we have
I @& = @] + 9" @) -9 @)
t
<e Jtn Is" () = ¢ (9] ds + 7,6]9" (&) — 9" (&) (47)
t
te L ”97 (s)-9* (s)“ds + 129||cr (&) -¢" (fk)",
then I @ - @], + |97 &) -9 @),
r+1 r 7+1 7
[ @ =@ + 97 0 -5 0, <R(|¢ &= Gl + [0 -9 G))
<6(e + 72)"Cr ORI (S)“o (48) <. (49)
+0(e, + )9 (5) - 9! )|, SRr("CI ()= (s)lly + "91 (s) = 9 (5)||o)

Let R = max, ;. <jcmif(e; + 72), 0(e, + 7,)}, then SRHI("COHO N “90"0)’
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according to (A5), the sequences {¢! (t)}, {Sr(t)} are con- ¢ #EE9 2P Let yH(1) = (¢(1), 9 (1), 2 (1) = (P (1),
vergent, and their limits satisfy the integrai equation on 9% (1)) be two solutions of (1), and ¢! (t) = ¢t tp,¢Y) = (¢!
[0k O - (B Gh ()62 (1) = (10, 6?) = (T (B (), O
Uniqueness. () = 9(t; 15, 9") = (9L (1), ., 0L, (T, 9 () = (t;tp, ) =
For each t € [0, 0,41, ¢ —(cl,cz,...,c),cZ:(c%,ci, L e T S L I Ve v
-~:C31)T, 91 — (‘91’9§,.. 91 ) 92 (92’93’“.)93’1)7" and (91 (t),,sm(t)) N thenx (t):,bx (t), we haVe

t
G () =¢ +

a;(; () [~bils; () + Y ki f (95 (&) + I |ds:
L =1

to

G =¢+ J a;(6; ()| =bi(] () + D ki f5(95 (&) + 1 |ds,
i =i
(50)

t

9 (t) = j a,(90(9))|-b(9 ) + Y ki fil6 () + 1, fas,
L j=1

to

a;(95())[-bi(% () + Zk,]fl( (&) +1; (ds,

then

li () =6 (O] <]g; — ]| +

ﬁ%#Wﬂﬁﬁwﬁiwmwmﬂqﬂw%ﬁﬁﬁw%i%ﬁ@@DMHM
0 j=1 j=1

=I¢i =<l +

[ { e ats o) St 1] s Sns e
+ a3 ) [bi(c} () + Yk £(9) (5) + 11] a3 ) [b,.(qg () + Yk £(9) (5) + Il]ds}
j=1 =1

=lsi <l +

[ ol 9) a0 (e )+ S (8 60) 1 "

j=1

(¢ 9) (S 0)B( ) + 3 k(16 60) - fj(f’?(fk)))”ds

t _ m
<|d -+ j <efPi|c} ()-GO +abc () - ) +a . [ky|F[9 (&) - 9 (sk>|>
to Jj=1

t _ m
slet =<l + [ [(epvab)le! (- 0lds+a ). [k 7|9 (50 - 8 <fk>l]ds»
0 j=1

similarly,

|9 (1) - 9 (1)] <9} - |+j [(ZQ +2d;)[9} (s) - 9 ()| + zi|wﬁ|c,.|<}(5k)—<f(fk)| ds, (52)
i=1

we obtain
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t
'O - o<l -+ | (@l © -]+ nl 6 -5 @l)s
. (53)
[9" (1) - 9* ()] < |]o" - 9| + Jt (&9 (5) = 9 ()]|ds + 736" (&x) - 6 (&) )ds.

Then,

Is' &) = @) + [|9' (1) - 9* (1)

<|¢' =& + o' - 9| + JZ [e(ll" () = ()] + 9" () = (9)]) + 7(lc" (&) = ¢* (&) + 9" (&) — 9* ()] ]ds.

(54)
Using the Lemma 9, we have
I' @& = @] + 19" @ - F @] < (s = + 9" = e 7, (55)
§ ¥ ek
where L (Tejs “Mds<v<l. In particular,
¢ (&) = & GOl +19" (G = & @l < (Is" = ] +9" - °])e” (56)
By contrary, assume there exists t € [0, 0] such that So

x' () = x* (1), then
I =l [ (sl - O+l (60 -8 s

t
o' - < | (a8 - 2]+l ) - ¢ El)s
(57)
I =9 =2 + [ [0 © =2 + 9@ - Ol + (I (€)@ @] + 19 G - @D]es 9
From (56) and (58), we obtain
[¢" =)+ 9" = < e8(" () = O + 9" (9= & (<)) + e x (" = °] + 9" - &) (59)

that is

ncl _ C2" +”91 _ 92“ < <£e (e+te?/1-v)0 n Te£9>9(||cl _ c2” +"]91 _ 92") (60)
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Hence, we can see that (A6) and inequality (60) are
contradictory. For all t € [0, 0,,,], the uniqueness of the
solution is proved. O

Remark 13. In Theorem 12, we use a global Gronwall-type

Discrete Dynamics in Nature and Society

J'f [z, (s) +2,(s)]ds <1, Lemma 9 in this paper generalizes

the lemmas in [62-65], and the conditions of Theorem 12 are
wider than the conditions in [52, 53].

To establish the criteria for GES of the equilibrium point,

lemma to obtain a weaker condition to guarantee the ex-
istence and uniqueness of the solution. Since

fi [z, (s) exp “f z, (k)dk}]ds <1 is  weaker  than

we translate the equilibrium point to the origin. Let
() =¢(t)—¢*, 0(t) =9(¢) — 9, (1) can be converted into:

d¢; Z
d_il =a; (6 (1) [_ﬁi (Gi(1) + Z kij‘/’j(@j (77(1?))):|,
=1
J (61)
do. n
% = P‘j(@j (t)) |:_Vj(9j (t)) + ; w;iv; (§; (’Y(t)))]~
where
o; ((1 (t)) (( () + G; )
Bi(¢i () = b; (5 (1) + ) = bi(s7),
9i(0; (1)) = £,(e; (1) +97) - £,(5}),
(62)
ui(e; ) = ¢j(e; () +9),
vi(e; (1) =d;(e; (1) +97) - d,(9}),
¥ (Gn@) = g:(Gn@) +6) = g: (7).
Assumption (A1)-(A3) imply that
a<o;(()<a,
c<u;(o)<g,
|ot; () - & (0)| <&l - ol,
|5 (O = ;@ <11 = el
bz Sﬁz(ci*z _ﬁz(cl)ggi’
Si = Gi (63)
Y (9’7) —v~(9 ) _
d < J ]»< J\"J Sd ,
o 95 =9 !
_‘PJ(SJ) B g"J‘(SJ) <F.
9]- - 9j ]
PLACH R ZICIeS
G —G;
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Obviously, (61) has the same stability for the zero so-
lution as (1)’s equilibrium point. Thereby, we will explore the
stability of the zero solution of (24).

A significant auxiliary content of this article is the
following lemma.

Lemma 14. Assume (A1)-(A7) be satisfied, z (t) be a solution
of (60), z(t) = (((t),g(t))T. Then, for any t € R*, the fol-
lowing inequality

() =C(&) + J; o; (Ci(s))[ B (¢ (s) +Z 1]%(91 (&) ):|
k j=1

IS (NN +lle ( (DI < AT ON +le (DD,

(1+ TO)mleemlo)_l.

holds, where A =

Proof. Fix k € N,

(1-10-

o) =0(&)+ J;( #j(@j (5)) |:_Vj(9j (5)) + ;wﬁ% (¢; (£k)):|ds,

for any ¢t € [0, 0;,,], then

IEOI<¢E +

t

K1+ i J

=19 & i=1 j=1

lo()ll <o (&) +Z
=1

t

S||g(fk)||+ij. |gj(s |ds+§n:ij.;kf

=19 % i=1 j=1

.

thus

J; ; (G; (s) |: Bi(Gi(s)) + ikij(noj(gj (5k)):|d5

J; K QJ(S l: QJ S) Z|w]1'l//1(( fk :|dS

IEOI -+l < [ & +]e
+ab, L I ()lds + )" 6k | lo (&)
k j:l

wil <Gt Glds =€l + 7, [_te(@lds+ Y oe
k j=1

+d Lk lo(s)llds + ; elw;|Gill¢ ()]

ab;|¢; (s)|ds + Z i j alk,| % Fjlo; (&0)]ds < ¢ (&) + @b, J; 12 (s)llds + i 6alk;;|F;llo (&)
k j=1

<[ @& +le )] +m L ()1 +lle (s)l)ds

+0r(c &) +e€l)
= 1+ on(JC )] + o)

+m, L UCO +lo())ds.

From the Gronwall-Bellman Lemma, we obtain

IO+l Ml < (1 + 8™ (€] +e E]).

wi G ¢ (&)

13

(64)

(65)

(66)

(67)
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Similarly,
[E@ e GOl < @I +le
+ab, L I (s)ds + Y. 6k, |F o (&)
k j:]
v, L lo(olids + Y, fefw;|G¢ (&) (69)
K i=1
<NICON +le N +m, L UEI +le(s)ds
+ 9T(||((fk)” +||9(fk)”)’
together (68) and (69), we have where m, = min {Qi,éj},m3 = max {z] GFp Y w 1}
"((gk)u + "Q(fk)uﬁ IO + o)l B is a positive number.
+ QT(”((fk)” + "9(5k)") Proof. Construct the following Lyapunov functional:
+m,0(1 +10)e™ (¢ (&) + e (&)]). 1
o0 V(1) = ;sgn(( (t))J co
Thus, from assumption (A7), for t € [0, 0.1, we obtain m NN (73)
1CED el AU @I +le®I. (71 +;Sgn(9ﬂ”) 8 J o B
where 1 = (1 - 176 - (1 + 70)m, 0™~ 1,
So (64) holds for any t € Rl". O then

Theorem 15. Suppose assumptions (A1)-(A3) hold. Then, ”((t)" Tz ||g(t)|| <V(t)< 1@+ ”Q(t)” (74)

the system (61) is globally exponentially stable, if the following

conditions hold: When t # 0, the derivative of V' (t) satisfies

msA <m,,
(72)
B<min {a(m, - msA), c(m, —msA)},

V(t) =) sgnl;(t) [—ﬁ,- (G@®)+ > kijoi(e; (n(t)))]
i=1 j=1

+ Z Sgne; (1) |:_[4j(9j (t)) + Z w;;; (Ci(y (t))):|
j i=1

BIG (0] + 3. Y kiFjfo; (n(0)]

M=1

'”1 ) 1”"] 1 (75)
2 difo; O]+ Y. ¥ wiG¢ (n(®)]
j=1 j=li=1

< —min {b, d;} (KO + le(®I)

+max<‘2k,, i ijiGi}(II((n(t))II + lle(m ()

j=1

= -my (ICOI + eI +m3 (IS (NI + lle (n ().
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the states changes of ¢, (t)

Q!

1 1.5 2
time (t)

FiGure 1: The states of ¢, (f) of BAMCGNN with PCA.

From Lemma 14, we obtain

V(D) < =my (1@ +le @) +mA (IO + lle (B
= —(my =maA) (IC O + le (B

(76)

Denote o for convenience as following:
0 =m, —msA>0. (77)
Then, for t#6, and exist a positive number

B <min{a(m, - myA), c(m, — myA)}, we obtain

%@%ﬂ@:ﬁﬁvm+ﬁﬁu)

pr( L 1 (78)
< fe (2 IC@I+ c ||9(f)||>

= (IC@) + le®l) <0.

Since the continuity of the solution ({(¢), o ()" and the
function V, we have

PV () <V (), (79)

then

S Il 2100) se‘“"(éﬂf ()] ++ ||e(to)l|),
(50)

let m, = min {1/a, 1/c}, ms = max {1/a, 1/c}, so

1CoN + ||e(r)||sZ—ie'<’3<f‘f°”(||<:(to)ll + o)) (81)

15
the states changes of g, (t)
o 0.5 1 15 2
time (t)
F1GURE 2: The states of ¢, (f) of BAMCGNN with PCA.
the states changes of ), (t)
=
1 1.5 2

time (t)

F1GURE 3: The states of 9, (f) of BAMCGNN with PCA.

Hence, the GES of the system (61) is proved, it implies
that BAMCGNN (1) is globally exponentially stable. [

Remark 16. The main tools for studying the stability of the
system generally include Lyapunov’s first method and
Lyapunov’s second method. With the introduction of dy-
namic system research and the birth of modern control
theory by state-space analysis method, Lyapunov’s second
method has attracted the attention of people in the field of
control and has gradually become the most important
method for studying stability. In Theorem 15, we apply
Lyapunov’s second method to establish stability criteria. By
constructing a suitable Lyapunov function with symbolic
function and using inequality techniques, sufficient condi-
tions for the GES of BAMCGNN are derived.
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the states changes of 4, (t)

9,

o 0.5 1 15 2
time (t)

FIGURE 4: The states of 9, (t) of BAMCGNN with PCA.

3. Conclusion

This paper introduces a class of BAMCGNN with PCA.
Firstly, by using the homeomorphic mapping theorem, we
obtain sufficient conditions for the existence and uniqueness
of the solution. Then, by constructing a Lyapunov function,
stability criteria for GES of BAMCGNN with PCA are de-
rived. In this process, we estimate the norm of the piecewise
constant state and reveal the relationship between the
piecewise constant state and the current state and then
discuss the stability of BAMCGNN with PCA. In the future,
we can consider the robustness of the GES of BAMCGNN
with PCA or the robustness of the GES of CGNN disturbed
by various factors and further investigate the dynamic be-
haviors of CGNN.

dC] (t) _
i (2 +0.5c0s(2¢, (1)) _
dg, (1) _ —
= (2 + 0.6 cos (45, (1)) _
49, (1) _ (2 +0.4sin(59, (1))
dt L
dsczlt(t) = (2 +0.8sin(39, (1))

where &, =2k +1/18 when t € [0,,0,,,], and 6, = k/9,
k eN.
By calculations, we obtain

2
=59, (t) + Z wjitanh (; (&) + 1

2
-29, (1) + Z wj;tanh (g; (§)) + 1
i1
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4. Numerical Examples

Example 17. Consider a two dimensional BAMCGNN (1),
the associated parameters of BAMCGNN are follows:

0.01 0.02
K= ,
0.02 0.06
(82)
0.01 0.03
W= .
0.01 0.05

Take the values:

a (¢; (1)) =2+ 0.5c0s (26, (1)),
a, (6, (£)) =2+ 0.6 cos (4, (1)),
by (6, (1)) = 26, (£), by(s, (1))
=26, (1),
¢ (9; (1)) =2+ 0.4sin (59, (1)),
¢, (9, (1)) =2+ 0.8sin (39, (1)),
d, (9, (1)) = 59, (),
d, (9, (1)) = 29, (¢),
L=];=1,

(83)

i=1,2,j=1,2

The following activation functions are playing in
BAMCGNN:

J (9(#)) = tanh (9(2)),

(84)
g(¢(t)) = tanh (¢ (2)).
That is,
, )
=26, (£) + ) kjtanh(9; (&) + 1|,
j=1 J
, -
26, (1) + Z k,-jtanh(Sj (Ek)) +1],
= ; (85)

i=1 J
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£=3,

7=0.22,
my =2,
m, = 0.5,
msz = 0.3,
my = 0.5,

(86)
ms =1,

R =0.3577<1,
<£e(””w/1_v)9 + 7659)9 =~ 0.5161<1,

70+ (1 + 10)m, 0™’ =~ 0.7033 < 1,
m, = 0.5>m;A = 0.3707.

Obviously, (A5)-(A7) are satisfied, by Theorems 11 and
12, the equilibrium point and the solution of the above
model exist uniquely. According to Theorem 15, it shows
that the BAMCGNN with PCA is global exponentially stable.
Simulation results of the stable state trajectory can be shown
in the following figures.

Remark 18. The above-given calculations confirm that the
conditions in the obtained results are valid for this example,
and Figures 1-4 show the stable state trajectories of
BAMCGNN. Since the GES of the model in this paper
cannot be demonstrated by the previous conditions, and if
F.=Fy, we take a;(g(t)= cj(9j =1, b)) =
dj (19]- (1)) = hig;, and fj = g; = tanh, then the BAMCGNN
can be reduced to HNN, that is, CGNN includes HNN and
CNN as its special cases, so the results of this paper are more
general. This shows the advantages of our results.

Appendix

We write the following MATLAB program with reference to
literature [57], which is divided into three.m files, i.e.,
BAMCGNNFUNC.m, BAMCGNNLOOP.m, and
BAMCGNNALL.m, where BAMCGNNLOOP.m invoked
BAMCGNNFUNC.m and looped 30 times, and
BAMCGNNALL.m invoked BAMCGNNLOOP.m. Finally,
we can obtain the simulation result. The details are as
follows:

BAMCGNNFUNC.m

function dxdt = BAMCGNNSs_func (¢, x, p1, p2, p3, p4)
dxdt (1, 1)=(2+cos (2xx(1)))*(—4*x(1) +0.01*tanh
(p1) +0.02+tanh (p2)+1); dxdt (2, 1)=(2+cos
(4%x(2)))*(—2#x(2) + 0.02*xtanh (p1) + 0.06+tanh
(P2)+1); dxdt (3, 1)=(2+sin (5%x(3)))*(-5%x(3)
+0.0l«xtanh (p3)+0.03xtanh (p4) +1); dxdt (4,
1)=(2+sin (3%x(4)))*(-2%x(4) + 0.01xtanh (p3)+
0.05«tanh (p4) +1);

BAMCGNNLOOP.m

function [total ft, total dxdt] = BAMCGNNs_loop
(x01, x02, x03, x04)
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pl=x01;
P2 =x02;
3 =x03;
p4=x04;
for j=1:1:30
for i=1:1:500
[ttl, dxdtl] = ode45(@BAMCGNNSs_func, [0/9, 1/9],
[p1, p2, p3, p4], [1, p1, p2, p3, p4);
end
a=dxdtl (;, 1); pl =a (end);
b=dxdtl (;, 2); p2="b (end);
c=dxdtl (;, 3); p3=c (end);
d=dxdtl (;, 4); p4=d (end);
total_tt = [total_tt; tt1];
total_dxdt = [total_dxdt; dxdtl];
end

BAMCGNNALL.m
x10=[10; 7.5; 5;2.5; 0; —2.5; —5; —7.5; —10];
x20=[10; 7.5; 5;2.5; 0; —2.5; —5; —7.5; —10];
x30=[10; 7.5; 5;2.5; 0; —2.5; —=5; —7.5; —10];
x40 = [10; 7.5; 5;2.5; 0; —2.5; —5; —=7.5; —10];
[tkl, dxdtkl] =BAMCGNNSs_loop(x10(1), x20(1),
x30(1), x40(1));
[tk2, dxdtk2] =BAMCGNNSs_loop(x10(2), x20(2),
x30(2), x40(2));
[tk3, dxdtk3] =BAMCGNNSs_loop(x10(3), x20(3),
x30(3), x40(3));
[tk4, dxdtk4] =BAMCGNNSs_loop(x10(4), x20(4),
x30(4), x40(4));
[tk5, dxdtk5] = BAMCGNNSs_loop(x10(5), x20(5),
x30(5), x40(5));
[tk6, dxdtk6] = BAMCGNNSs_loop(x10(6), x20(6),
x30(6), x40(6));
[tk7, dxdtk7] =BAMCGNNs_loop(x10(7), x20(7),
x30(7), x40(7));
[tk8, dxdtk8] =BAMCGNNSs_loop(x10(8), x20(8),
x30(8), x40(8));
plot (tk1, dxdtkl (:, 1), “r,” tk2, dxdtk2 (:, 1), “b,” tk3,
dxdtk3 (;, 1), “y,” tkd, dxdtk4 (;, 1), “g,” tk5, dxdtks (;,
1), “r—=,” tk6, dxdtké (:, 1), “m,” tk7, dxdtk7 (:, 1), ¢,
tk8, dxdtks (;, 1), “k”);
xlabel (“timet”);
ylabel (“x_17);
figure;
plot (tk1, dxdtk1 (:, 2), “r,” tk2, dxdtk2 (:, 2), “b,” tk3,
dxdtk3 (;, 2), “y,” tkd, dxdtk4 (;, 2), “g,” tk5, dxdtk5 (;,
2), “r—=,” tk6, dxdtké (:, 2), “m,” tk7, dxdtk7 (;, 2), “c,”
tk8, dxdtks (:, 2), “k”);
xlabel (‘timet”);
ylabel (“x_27);
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figure;

plot (tk1, dxdtkl (;, 3), “r,” tk2, dxdtk2 (:, 3), “b,” tk3,
dxdtk3 (;, 3), “y,” tkd, dxdtk4 (;, 3), “g,” tk5, dxdtk5 (;,
3), “r—=,” tk6, dxdtk6 (:, 3), “m,” tk7, dxdtk7 (;, 3), “c,”
tk8, dxdtk8 (:, 3), “k”);

xlabel (“timet”);

ylabel (“y_17);

figure;

plot (tk1, dxdtkl (;, 4), “r,” tk2, dxdtk2 (:, 4), “b,” tk3,
dxdtk3 (;, 4), “y,” tkd, dxdtk4 (;, 4), “g,” tk5, dxdtks (;,
4), “r—=,” tké6, dxdtké6 (:, 4), “m,” tk7, dxdtk7 (:, 4), “c,”
tk8, dxdtk8 (:, 4), “k”);

xlabel (“timet”);
ylabel (“y_27);
figure;
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