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We employ the theory of rarefed gas dynamics and optimal control to investigate the kinetic model of decision-making. Te
novelty of this paper is that we develop a kinetic model that takes into account both the infuence of agents’ competence and
managers’ control on decision-making. After each interaction, in addition to the changes in decision directly caused by
communication with other agents, the agents’ competence evolves and indirectly infuences the degree of decision adjustment
through the compromise function. By adding a control term to the model, the behavior of the managers who require the group to
establish consensus is also described, and the concrete expression of the control term that minimizes the cost function is obtained
by model predictive control. Te Boltzmann equation is constructed to characterize the evolution of the density distribution of
agents, and the main properties are discussed. Te corresponding Fokker–Planck equation is derived by utilizing the asymptotic
technique. Lastly, the direct simulation of the Monte Carlo method is used to simulate the evolution of decisions. Te results
indicate that the agents’ competence and managers’ control facilitate the consistency of collective decisions.

1. Introduction

Kinetic theory was initially proposed by Maxwell [1] and
Boltzmann [2] to describe the evolution of rarefed gas in the
19th century. Te Boltzmann equation is the fundamental
equation of the kinetic theory of gas molecules and plays
a crucial role in studying rarefed gas dynamics. In recent
years, Boltzmann’s analysis has been applied to study so-
cioeconomic phenomena by modeling interacting multi-
agent systems. Te economists [3–7] seek the statistical
mechanics of the kinetic models to investigate the formation
of heavy tails in the distribution of wealth as predicted by
Pareto. Te research studies [8–12] apply the kinetic theory
to investigate the mechanism of price formation, in which

the agent’s behavior and preferences are characterized by
utility function. Xing et al. [13] develop a bargaining game-
based feedback mechanism for dynamic social network
group decision-making in which the trust relationship is
proposed to refect the interaction behaviors and generate
advice to promote consensus. Ji et al. [14] investigate the
overlapping community-driven feedback mechanism to
support consensus in social network group decision-making.

As individuals living in a complex and ever-changing
modern society, they are often required to communicate
with others in various ways and to make decisions based on
their knowledge and experience, which decide their com-
petence. Likewise, group managers attempt to guide agents
to reach a consensus on a certain event by using rewards or
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punishments. For instance, since the breakout of the
COVID-19 epidemic, the government, as the manager of the
country, has attempted to unite the population to reach
a consensus about how to combat the epidemic. In this
study, we utilize the kinetic model to investigate how agents’
competence and managers’ control infuence the evolution
of collective decision-making.

First, because competence is a crucial aspect of decision-
making, we employ the theory of rarefed gas dynamics to
create a kinetic model of decision-making based on
competence.

Kruger and Dunning [15] demonstrate that people with
low competence also have low metacognitive abilities, as
shown by the fact that they cannot present high levels of
performance or correctly perceive their low competence.
Low competence people develop an unwarranted sense of
overconfdence regarding their competence. In [16–19], they
fnd that incompetent individuals are resistant to reaching
a compromise and that competent individuals are more
tolerant of it. In the decision model, competence determines
the level of compromise, hence impacting the adjustment of
decisions.

In recent years, many researchers apply the theory of
rarefed gas dynamics to the study of decision-making,
which provides the theoretical basis for our paper. Toscani
[20] uses the theory of rarefed gas dynamics to develop
a kinetic model of decision, in which agents adjust their
decisions after binary interactions. Te adjustment level is
determined by compromise parameters. Toscani [20] pro-
poses a kinetic model of decision as

x
◇

� x + cG(|x|) x∗ − x( 􏼁 + κ1L(x),

x
◇
∗ � x∗ + cG x∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 x − x∗( 􏼁 + κ2L x∗( 􏼁,

⎧⎪⎨

⎪⎩
(1)

where the parameters x and x∗ represent the decisions of the
two agents before the binary interaction, the parameters x◇

and x◇∗ represent the decisions of the two agents after the
interaction (x, x∗, x◇, x◇∗ ∈ [−1, 1]), the constant c repre-
sents the compromise coefcient, which belongs to [0, 1], the
compromise function G(·) depends on one’s own decision,
the random variables κ1 and κ2 follow the same uniform
distribution with mean 0 and variance σ2, and the function
L(·) indicates the local relevance of the difusion for a given
decision.

Later, model (1) is expanded by considering additional
factors that impact decisions, including conviction, self-
thinking, leadership, external interference, and more com-
plicated interaction networks. Brugna and Toscani [21] show
that the agent’s conviction is crucial to decision-making and
has a resistant impact on compromise. In [22], it is dem-
onstrated that decisions are involved with self-thinking.
Pérez-Llanos et al. [23] discuss the infuence of attractiveness
on decision-making. It shows that the more attractive the
other agent’s decision is, the easier it is to compromise.
Vieira et al. [24] construct a decision model as a function of
the parameters that describe conviction, dissent, and in-
dependence. In [25–27], the researchers investigate the role
of leadership in collective decision-making. Albi et al. [25]

and Düring et al. [26] fnd that while leaders infuence
followers, followers cannot directly infuence leaders.
However, the strategy taken by leaders to alter followers’
decisions is motivated by their intention to force followers
toward a particular decision. Zhao et al. [27] investigate the
infuence of the leaders on followers under limited conf-
dence and examine the impact of the leaders’ quantity and
the external environment on collective decision-making.
Additionally, Pareschi et al. [28] develop a decision model
based on competence to explore the evolutionary mecha-
nism of collective decision-making, which highlights the
efect of interaction on competence and proposes that
mutual learning can enhance competence. Based on [28], we
develop the argument that competence can only be im-
proved by learning when other agents possess competence
that we lack. We build a distinct kinetic model of compe-
tence, which ultimately results in a distinct kinetic model of
decision-making. In order to better understand how com-
petence evolution afects decision-making, the studies in our
paper are based on the following hypotheses.

(i) Tere are a number of N agents in the group, which
are identifed by two variables (competence and
decision), respectively.

(ii) At each time, the agents engage in a random binary
interaction, and after each interaction, the agent’s
competence and decision evolve according to the
respective kinetic models.

(iii) Te compromise function in the decision-making
model depends on the agents’ competence.

Second, our work explores the impact of managers’
control on the evolution of decisions and develops a kinetic
model of decision-making that takes into account the
evolution of competence and managers’ control. Ideally, the
changes in decisions are only derived from the binary in-
teraction. In reality, however, agents are also infuenced by
various interfering factors, such as being persuaded to vote
for a particular candidate in an election or being guided to
purchase specifc goods or assets through a large number of
advertisements. To make the model more convincing, op-
timal control theory was incorporated into the decision-
making model. Bauso et al. [29] utilize mean-feld theory to
examine the dynamics of decision-making when there are
a large number of agents in the group. To investigate the
management of emergent behavior in a multiagent system,
Caponigro et al. [30] propose the concept of sparse opti-
mization (the sparse control refers to the fact that the
policymaker exerts control over a minimal number of agents
for a minimal number of times). Tosin and Zanella [31]
design feedback control strategies at the level of vehicle-to-
vehicle interactions. Preziosi et al. [32] introduce a kinetic
model for the study of tumor growth and design feedback
control therapies to infuence natural tumor growth. In
addition, the literature [7, 25, 33, 34] employs the model
predictive control (MPC) technique to investigate the
decision-making model. Model predictive control is also
known as receding horizon strategy or instantaneous con-
trol, which is based on the prediction of the model, not
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limited to the form of the model. Te basic idea of MPC is to
fnd the optimal solution on the shorter time interval by
decomposing the optimal control problem on the time in-
terval [0, T] into the shorter time optimal control problem
[35]. Te MPC approach reduces the computational dif-
culty of the optimal control issue to some amount, even
though this optimal solution is not necessarily the global
optimum. We use a control term to describe managers’
control and subsequently apply the MPC method to es-
tablish the concrete formulation of the control term. A
kinetic model of decision-making that incorporates the
evolution of competence and the managers’ control is
constructed.

Tird, because the Boltzmann equation is the funda-
mental equation of rarefed gas dynamics, it is typically
employed to explain the density distribution of agents. Te
stationary solution can be obtained for the simple Boltz-
mann equation [9, 21, 23]. However, when the form is
complex, the Boltzmann equation is typically transformed
into the Fokker–Planck equation by using the asymptotic
method [25–27, 36, 37]. Since the kinetic model built in our
paper incorporates the infuence of competence and man-
agers, it makes solving the Boltzmann equation very chal-
lenging. Tus, the main properties are discussed, and
simulation experiments are conducted by using the direct
simulation of the Monte Carlo (DSMC) method, which is
proposed by Bird [38], to simulate the evolution of decision
and describe the density distribution of agents.

Te paper is structured as follows: In Section 2, the
evolution of competence is modeled by using the theory of
rarefed gas dynamics to study the impact of interactions on
competence. A Boltzmann equation is constructed to de-
scribe the density distribution of competence. Te solution
of the Boltzmann equation shows that the average compe-
tence converges exponentially to a stable value. In Section 3,
the situation in which managers’ control motivates agents to
reach a consensus is investigated. First, we incorporate the
kinetic model of competence into the kinetic model of
decision-making, where competence infuences decision
through the compromise function. Ten, the manager’s
behavior is characterized by a control term, and the MPC
method is used to derive the concrete expressions for the
control term. A kinetic model of decision-making based on
agents’ competence and managers’ control is established. In
Section 4, the Boltzmann equation is created to explain the
evolution of the density distribution of agents and the main
properties are studied. In Section 5, the asymptotic approach
is applied to obtain the Fokker–Planck equation corre-
sponding to the Boltzmann equation. In Section 6, the
DSMC method is utilized to simulate the evolution of de-
cisions. It shows the solutions of the kinetic decision model
at diferent time steps.

2. Modeling Competence

Before constructing the kinetic model of decision-making
based on competence, we develop a kinetic model to ex-
amine the evolution of competence in this section.

In the study of competence evolution, Teevan and
Birney [39] argue that despite the fact that competence
can be acquired genetically and is strongly infuenced by
parents, it is evident that the primary factor infuencing
competence is the agent’s living background. Bruga and
Toscani [21] believe that competence is gained or lost due
to two sources: the natural forgetfulness of competence
and the improvement derived through learning from the
background. Pareschi et al. [28] assert that competence
can be gained by learning from others, and the quantity of
competence acquired through learning relies on the
agent’s learning ability. In reality, we fnd that agents can
only acquire competence from others when they possess
competence that they lack. When binary interaction oc-
curs, the lower competence agent can improve by learning
from the higher one, but the agent with higher compe-
tence cannot improve by learning from the lower one.
Considering this fact, a diferent competence dynamic
model is developed.

Suppose the number of agents is N, the parameter c

denotes the competence of the agent, and c ∈ C ⊂ R+ (R+ is
positive real numbers). Before the binary interaction, the
competence of the two agents is c and c∗, respectively. After
the binary interaction, the competence of the two agents
becomes c◇ and c◇∗ . Let the evolution of competence follow
the rules:

c
◇

� 1 − λ1(c)( 􏼁c + λ2(c) c∗ − c( 􏼁 + λ3(c)z + ηc,

c
◇
∗ � 1 − λ1 c∗( 􏼁( 􏼁c∗ + λ2 c∗( 􏼁 c − c∗( 􏼁 + λ3 c∗( 􏼁z + ηc∗,

⎧⎨

⎩

(2)

in which λ1(·)> 0 indicates the natural forgetfulness of
competence and λ2(·)> 0 donates the improvement of
competence from mutual learning. We assume that
λ2(·) � λ2χ(c∗ ≥ c), where χ(·) is an indicator function.
When other agents have higher competence (c∗ − c≥ 0), it
will have a positive efect which makes one’s competence
ungraded. At the same time, when other agents have lower
competence (c∗ − c< 0), there is no negative efect that
makes one’s own competence lower. It can be seen that the
term λ2(c)(c∗ − c) emphasizes that the degree of compe-
tence improvement depends on the competence gap be-
tween the two agents, which is not investigated in [21]. Te
variable λ3(·)> 0 denotes the tendency to acquire compe-
tence from the background. Te parameter η is a random
variable that indicates the change in competence infuenced
by unpredictable factors, which obeys a uniform distribution
with mean equal to 0 and variance equal to σ2η. Let λ1(·),
λ2(·), and λ3(·) ∈ [λ−, λ+], where 0< λ− < λ+ < 1. We assume
that η≥ − 1 + λ+ and η satisfes a uniform distribution on
[−1 + λ+, 1 − λ+]. In the following equation, A(z) is the
probability distribution of competence in the background
which has a bounded mean, i.e.:

􏽚
R+

A(z)dz � 1, 􏽚
R+

zA(z)dz � mz, (3)

where mz is a constant.
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Let g � g(c, t) be the density distribution of agents with
competence c. Te evolution of g(c, t) with time is expressed
in the weak form of the Boltzmann equation:

d
dt

􏽚
C
ϕ(c)g(c, t)dc � (Q(g, g), ϕ), (4)

in which

(Q(g, g), ϕ) � ω 􏽚
R+

􏽚
C
ϕ c
◇

􏼐 􏼑 − ϕ(c)􏼐 􏼑g(c, t)A(z)dcdz􏼜 􏼝.

(5)

As usual, ·〈 〉 denotes the mathematical expectation on
the random variable η. Te interaction kernel ω> 0 is related
to the frequency of interaction, and the test function ϕ(·)

satisfes the condition of a smooth function (a smooth
function is a function that is continuously derivable to
infnite order in its domain of defnition). Te competence
after an interaction is given by equation (2). At any time
t≥ 0, equation (4) illustrates the evolution of competence
from c to c◇ through interaction with the background and
other agents. Te collision operator (Q(g, g), ϕ) describes
the interaction dynamic of g(c, t).

In order to examine the evolution of average compe-
tence, we assume that

􏽚
C

g(c, t)dc � 1, 􏽚
C

cg(c, t)dc � mc(t), (6)

which is bounded. In (4), we let ϕ(c) � c and obtain

d
dt

􏽚
C

cg(c, t)dc � ω 􏽚
R+

􏽚
C2

c
◇

− c􏼐 􏼑g(c, t)g c∗, t( 􏼁A(z)dcdc∗dz􏼜 􏼝. (7)

According to (6), we obtain
d
dt

mc(t) � ω 􏽚
R+

􏽚
C2

c
◇

− c􏼐 􏼑g(c, t)g c∗, t( 􏼁A(z)dcdc∗dz􏼜 􏼝.

(8)

Plugging (2) into (8), we get

d
dt

mc(t) � ω􏽚
R+

􏽚
C2

− λ1(c) + λ2(c)( 􏼁c + λ2(c)c∗( 􏼁g(c, t)g c∗, t( 􏼁A(z)dcdc∗dz

+ ω􏽚
R+

􏽚
C2
λ3(c)zg(c, t)g c∗, t( 􏼁A(z)dcdc∗dz.

(9)

Because of equations (3) and (6), we have

d
dt

mc(t) � ω􏽚
C2

−λ1(c)c − λ2(c)c + λ2(c)c∗( 􏼁g(c, t)g c∗, t( 􏼁dcdc∗

+ mzω􏽚
C
λ3(c)g(c, t)dc.

(10)

When λ1(·) � λ1, λ2(·) � λ2, and λ3(·) � λ3, where λ1, λ2,
and λ3 are all constants on the interval [λ−, λ+], we have

d
dt

mc(t) � ω􏽚
C2

−λ1c − λ2c + λ2c∗( 􏼁g(c, t)g c∗, t( 􏼁dcdc∗

+ mzω􏽚
C
λ3g(c, t)dc.

(11)

Considering equation (3), we obtain

d
dt

mc(t) � −ωλ1mc(t) + ωλ3mz. (12)

Te solution of equation (12) is

mc(t) � mc(0)e
−ωλ1t

+ 1 − e
−ωλ1t

􏼐 􏼑
mzλ3
λ1

, (13)

in which mc(0) denotes the initial value of average com-
petence. As t⟶∞, the average competence mc(t) con-
verges to mzλ3/λ1. It is shown that the average competence is
reduced by increasing the parameter λ1 or decreasing the
parameter λ3.

4 Discrete Dynamics in Nature and Society



3. Modeling Decision-Making

In [20, 28, 40, 41], the main factors that infuence decision-
making include the agent’s beliefs, self-thinking, degree of
compromise, and level of competence, but none of them
consider external interference. In reality, the decision-
making environment is signifcantly more complex. In
addition to the agent’s mutual infuence in the group, de-
cisions are infuenced by other interfering factors, such as
the manager’s supervision. Due to the diverse competence
and knowledge of agents, reaching a consensus is a difcult
process. At this time, managers typically utilize coordination
or punishment to urge agents to reach a consensus as soon as
possible. Note that managers only have the function of
managing the group and formulating the orientation of
collective decisions.

In this section, we investigate the evolution of decision-
making based on agents’ competence andmanagers’ control.
When evolution results in the concentration of decisions to
a certain point, it indicates that a consensus is reached. Te
kinetic model of decision-making with a control term is
established to describe the infuence of managers on

decisions. Te control term satisfes a cost function with the
implication that the diference between all agents’ decisions
is minimized. We use the MPC method to solve this optimal
control problem and obtain a concrete expression to derive
a decision model that describes the manager’s control and
investigate how a consensus is reached.

3.1. Model Predictive Control. To investigate the decision
evolution mechanism of N agents, we assume that each
agent’s competence is ci ∈ C ⊂ R+ and agent’s decision is
xi ∈ I � [−1, 1] (−1 and 1 represent two extreme opposite
decisions), where i � 1, 2, . . . , N. For example, 1 represents
investing in a certain stock and −1 represents not investing
in a certain stock at all, and the closer it is to 1, the more
inclined it is to invest in that stock. Te evolution of
competence satisfes

c
◇
i (t) � 1 − λ1 ci( 􏼁( 􏼁ci + λ2 ci( 􏼁 cj − ci􏼐 􏼑 + λ3 ci( 􏼁z + ηci.

(14)

Te evolution of decisions satisfes

x
◇
i (t) � xi(t) +

1
N

􏽘

N

j�1
Gij ci, cj, xi, xj􏼐 􏼑 xj − xi􏼐 􏼑 + u, xi(0) � xi,0 ≥ 0, (15)

in which u denotes the control term and Gij ∈ [0, 1] is the
compromise function which implies that the degree of
compromise is related not only to the decisions of the
interacting agents but also to their competence. Te purpose

of the control term u is to reduce the diference in decisions
between agents. Let the control term satisfy the cost
function:

u � argmin
1
2

􏽚
T

0

1
N

􏽘

N

j�1

1
N

􏽘

N

k�1
xj − xk􏼐 􏼑

2
+ ]u

2⎛⎝ ⎞⎠ds, u(t) ∈ uL, uR􏼂 􏼃. (16)

In (16), T represents the fnal time of interaction and uL

and uR(uR > uL) limit the value of u(t) to ensure that the
decision xi does not exceed the bounded interval [−1, 1]

under the infuence of the control term. Te constant ]> 0
indicates that diferent dissuasion and disciplinary strategies
are applied for diferent agents.

Te extreme value problem (15) and (16) can be regarded
as a Mayer problem [42, 43], which can be solved by pro-
gramming or Pontryagin’s maximum principle, but this
requires solving the optimization problem in the whole time
interval [0, T]. In our paper, when N takes larger values, we
use the MPC method to solve the optimization problem (15)

and (16). Te main advantage of the MPC method is re-
fected in its use of a rolling optimization strategy rather than
global optimization, which can compensate for uncertainties
due to model mismatch and disturbances timely. Te MPC
method has better dynamic performance.

Referring to [33], we proceed with the following steps:

(1) Te time interval [0, T] is divided into a number of
M shorter time intervals with a step length
∆t(∆t> 0), and let tn � n∆t.

(2) It is assumed that the control term u is piecewise
constant on the time interval [tn, tn+1].
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(3) Te expression of the control term un is determined
on the time interval [tn, tn+1] by solving the following
optimization problem:

_xi �
1
N

􏽘

N

j�1
G ci, cj, xi, xj􏼐 􏼑 xj − xi􏼐 􏼑 + u, xi t

n
( 􏼁 � xi,

u � argmin
u∈R

1
2

􏽚
tn+1

tn

1
N

􏽘
j�1

1
N

􏽘

N

k�1
xj − xk􏼐 􏼑

2
+ ]u

2⎛⎝ ⎞⎠ds, u ∈ uL, uR􏼂 􏼃.

(17)

(4) Te control term un obtained on the time interval
[tn, tn+1] satisfes the kinetic equation of decision-
making:

_xi �
1
N

􏽘

N

j�1
G ci, cj, xi, xj􏼐 􏼑 xj − xi􏼐 􏼑 + u

n
, (18)

and the new state xi � xi(tn+1) is obtained.
(5) Te optimization problem (17) is solved again, and

un+1 is computed.
(6) Te above steps are repeated until n∆t � T.

With the above steps, the control term un can be rep-
resented by xi and xi(tn+1), where uL � −∞ and uR � +∞.
Te discretization of equation (15) yields

x
n+1
i � x

n
i +
∆t

N
􏽘

N

j�1
G ci, cj, xi, xj􏼐 􏼑 x

n
j − x

n
i􏼐 􏼑 + ∆tu

n
. (19)

Meanwhile, the discretization of equation (16) takes the
form

J∆t(x, u) �
1
2N

􏽘

N

j�1

∆t

N
􏽘

N

k�1
x

n+1
j − x

n+1
k􏼐 􏼑

2
+ ] u

n
( 􏼁

2⎧⎨

⎩

⎫⎬

⎭.

(20)

In order to minimize the cost function, the necessary
condition is that the frst-order diferentiation of equation
(20) for un is equal to zero; that is to say,

d
du

n

1
2N

􏽘

N

j�1

∆t

N
􏽘

N

k�1
x

n+1
j − x

n+1
k􏼐 􏼑

2
+ ] u

n
( 􏼁

2⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠ � 0.

(21)

After calculation, we get

∆t

N
2 􏽘

N

j�1
􏽘

N

k�1
x

n+1
j − x

n+1
k􏼐 􏼑 δi,j − δi,k􏼐 􏼑 +

]
N

u
n

� 0, (22)

where δi,j denotes the Kronecker delta. When i � j, δij � 1,
and when i≠ j, δij � 0. If j � i � k, we have δi,j − δi,k � 0,
and it indicates that decision makers interact with them-
selves, which is impossible. If j≠ i, k≠ i, we have
δi,j − δi,k � 0, and it indicates that no interaction occurs.
Only when j≠ i, k � i, there is δi,j − δi,k � 1, and it represents
that the binary interaction occurs between diferent decision
makers. By solving the above equation, we get

u
n

� −
2∆t

]N
􏽘

N

j�1
x

n+1
i − x

n+1
j􏼐 􏼑

� −
2∆t

]
x

n+1
i − x

n+1
􏼐 􏼑,

(23)

where xn+1 � 􏽐
N
j�1x

n+1
j /N denotes the average decision of all

agents at t � (n + 1)∆t. Combining equations (19) and (23),
we obtain

u
n

� −
2∆t

]
× x

n
i +
∆t

N
􏽘

N

j�1
G ci, cj, xi, xj􏼐 􏼑 x

n
j − x

n
i􏼐 􏼑 + ∆tu

n
− x

n+1⎛⎝ ⎞⎠ , (24)

and
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u
n

� −
2∆t

] + 2∆t
2 × x

n
i − x

n+1
i +

∆t

N
􏽘

N

j�1
G x

n+1
j − x

n
j􏼐 􏼑⎛⎝ ⎞⎠

� −
2∆t

] + 2∆t
2 × x

n
i − x

n
i +
∆t

N
􏽘

N

j�1
G ci, cj, xi, xj􏼐 􏼑 x

n
j − x

n
i􏼐 􏼑⎛⎝

−
∆t

N
2 􏽘

N

k�1
􏽘

N

j�1
G ck, cj, xk, xj􏼐 􏼑 x

n
j − x

n
k􏼐 􏼑⎞⎠.

(25)

Bringing the expression of the control variable un into
(19), the control equation satisfying the optimality condition
can be obtained. To better investigate the role of the control
term, some basic assumptions are made next. First, it is
assumed that the regularization parameter ] is also scaled
such that ] � 2ι∆t. Tis assumption is based on the idea that
the shorter the time interval, the more powerful control is
needed to achieve the desired state. Second, the control over
the decision must consider the frequency and intensity with
which the interaction occurs, and it can be assumed that the
value of the parameter ι depends on the compromise
function G(ci, cj, xi, xj). We let

C � 􏽘
N

i�1
􏽘

N

j�1
G ci, cj, xi, xj􏼐 􏼑, (26)

where i≠ j and the parameter ι is inversely proportional to
C. Tis assumption ensures that the control term is efective
only when interaction occurs.

Bringing ] � 2ι∆t into equation (25), the concrete ex-
pression for the control term un is

u
n

� −
1

ι + ∆t
× x

n
i − x

n
i +
∆t

N
􏽘

N

j�1
G ci, cj, xi, xj􏼐 􏼑 x

n
j − x

n
i􏼐 􏼑⎛⎝

−
∆t

N
2 􏽘

N

k�1
􏽘

N

j�1
ck, cj, xk, xj􏼐 􏼑 x

n
j − x

n
k􏼐 􏼑⎞⎠.

(27)

3.2. Te Kinetic Model of Decision-Making Based on Com-
petence and Managers’ Control. In Section 3.1, the equation
for the evolution of decision-making in the presence of N

agents under the infuence of managers is set, and the ex-
pression for the control term is derived by the MPCmethod.
Next, the kinetic model of decision-making is developed.

When the interaction occurs between agents i and j, the
binary interaction model of decision-making is set as

x
n+1
i � x

n
i +

1
2
∆tG ci, cj, xi, xj􏼐 􏼑 x

n
j − x

n
i􏼐 􏼑 + ∆tu

n
+ κ1L ci, xi( 􏼁,

x
n+1
j � x

n
j +

1
2
∆tG cj, ci, xj, xi􏼐 􏼑 x

n
i − x

n
j􏼐 􏼑 + ∆tu

n
+ κ2L cj, xj􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28)

where κiL(·, ·)(i � 1, 2) is the difusion term, indicating
unpredictable factors. Te random variables κ1 and κ2 obey
a uniform distribution with mean 0 and variance σ2,
L(·, ·) ∈ [0, 1].

Since the control term is only related to the agents i and
j, by setting N � 2, the control terms in (27) become

u
n

�
1

ι + ∆t
×
1
2

1 −
∆t

2
G ci, cj, xi, xj􏼐 􏼑 + G cj, ci, xj, xi􏼐 􏼑􏼐 􏼑􏼠 􏼡 x

n
j − x

n
i􏼐 􏼑. (29)

Suppose that before the interaction occurs, the com-
petence of the two agents is denoted by c and c∗ and the
decisions are denoted by x and x∗, respectively. After the
binary interaction, the competence of the two agents are
denoted by c◇ and c◇∗ and the decisions are denoted by x◇

and x◇∗ , respectively. Te variables satisfy
c, c∗, c◇, c◇∗ ∈ C ⊂ R+ and x, x∗, x◇, x◇∗ ∈ I � [−1, 1].

Let ∆t/2 � c in (28), and the binary interaction model of
decision-making becomes

x
◇

� x + cG c, c∗, x, x∗( 􏼁 x∗ − x( 􏼁 + ∆tu + κ1L(c, x),

x
◇
∗ � x∗ + cG c∗, c, x∗, x( 􏼁 x − x∗( 􏼁 + ∆tu + κ2L c∗, x∗( 􏼁,

⎧⎨

⎩ (30)
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where

u �
1

2(ι + ∆t)
1 − cG c∗, c, x∗, x( 􏼁 − cG c, c∗, x, x∗( 􏼁( 􏼁 x∗ − x( 􏼁. (31)

For simplicity, we let

θ �
∆t

2(ι + ∆t)
, θ ∈ [0, 1], (32)

in which θ � 0 means no control or interference and θ � 1
means maximum control or interference is generated.
Bringing equation (32) into equation (31), we obtain

u �
θ
∆t

1 − cG c∗, c, x∗, x( 􏼁 − cG c, c∗, x, x∗( 􏼁( 􏼁 x∗ − x( 􏼁.

(33)

Plugging (33) into (30), we obtain the kinetic model of
decision-making based on agents’ competence and man-
agers’ control in the form:

x
◇

� x + cG c, c∗, x, x∗( 􏼁 + θ 1 − cG c, c∗, x, x∗( 􏼁 − cG c∗, c, x∗, x( 􏼁( 􏼁( 􏼁

× x∗ − x( 􏼁 + κ1L(c, x),

x
◇
∗ � x∗ + cG c∗, c, x∗, x( 􏼁 + θ 1 − cG c∗, c, x∗, x( 􏼁 − cG c, c∗, x, x∗( 􏼁( 􏼁( 􏼁

× x − x∗( 􏼁 + κ2L c∗, x∗( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(34)

Comparing (34) with the decision model in [28], it is
evident that the evolutionary process of the decision is al-
tered and that the formulation is made more complicated
because of the control term. In order to better analyze the

efect of managers’ control on decision-making, the fol-
lowing discussion is presented.

First, we let

cG c, c∗, x, x∗( 􏼁 + θ 1 − cG c, c∗, x, x∗( 􏼁 − cG c∗, c, x∗, x( 􏼁( 􏼁 � 􏽥G c, c∗, x, x∗( 􏼁,

cG c∗, c, x∗, x( 􏼁 + θ 1 − cG c∗, c, x∗, x( 􏼁 − cG c, c∗, x, x∗( 􏼁( 􏼁 � 􏽥G c∗, c, x∗, x( 􏼁.

⎧⎨

⎩ (35)

Te model of decision making infuenced by managers
can be further transformed into

x
◇

� x + 􏽥G c, c∗, x, x∗( 􏼁 x∗ − x( 􏼁 + κ1L x, x∗( 􏼁,

x
◇
∗ � x∗ + 􏽥G c∗, c, x∗, x( 􏼁 x − x∗( 􏼁 + κ2L x∗, x( 􏼁.

⎧⎨

⎩ (36)

Notably, the compromise function satisfes

0≤G c, c∗, x, x∗( 􏼁, G c∗, c, x∗, x( 􏼁≤ 1, (37)

and θ ∈ [0, 1] and c ∈ [0, 1]. From (35), we have

1 − θ≤ 􏽥G c, c∗, x, x∗( 􏼁, 􏽥G c∗, c, x∗, x( 􏼁≤ 1. (38)

Te function 􏽥G(c, c∗, x, x∗),
􏽥G(c∗, c, x∗, x) contains the

variable θ. According to (33), 􏽥G(c, c∗, x, x∗),
􏽥G(c∗, c, x∗, x)

represent not only the meaning of compromise but also the
managers’ control.

Next, without considering the difusion term, we obtain

x
◇
∗ + x
◇

� x∗ + x + c G c, c,∗, x, x∗( 􏼁 − G c∗, c, x∗, x( 􏼁( 􏼁 x∗ − x( 􏼁,

x
◇
∗ − x
◇

� (1 − 2θ) 1 − c G c, c∗, x, x∗( 􏼁 + G c∗, c, x∗, x( 􏼁( 􏼁( 􏼁 x∗ − x( 􏼁.
(39)

In particular, when G(c, c∗, x, x∗) � G(c∗, c, x∗, x), we
have x◇∗ + x◇ � x∗ + x. It implies that the interaction does
not change the average decision; thus, we have xn+1 � x.

Since the compromise function G(·, ·, ·, ·) ∈ [0, 1] and
0≤G(c, c∗, x, x∗) + G(c∗, c, x∗, x)≤ 2, we let θ ∈ [0, 1/2] and
c ∈ [0, 1/2] to obtain
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x
◇
∗ − x
◇

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � (1 − 2θ) 1 − c G c, c∗, x, x∗( 􏼁 + G c∗, c, x∗, x( 􏼁( 􏼁( 􏼁 x∗ − x( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ x∗ − x
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,
(40)

which shows that the diference in decisions between the two
agents does not increase after interaction.

Some constraints need to be set to ensure that the de-
cision x◇ after each interaction will not exceed the fnite
interval [−1, 1]. Teorem 1 gives a sufcient condition for
this problem.

Theorem 1. It is assumed that 0<G(c, c∗, x, x∗)≤ 1 and

θ≥
(1 − cp)

(1 − 2cp)
, κi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Λ 1 − cG c, c∗, x, x∗( 􏼁 − θΓ( 􏼁, i � 1, 2,

(41)

in which p � minx,x∗∈I G(c, c∗, x, x∗)􏼈 􏼉> 0, Λ � minx,x∗∈I
(1 − x)/L(c, x), L(c, x)≠ 0{ }> 0. Ten, according to the rules
of the decision model (34), the postinteraction decision x◇ is
contained in the limited interval [−1, 1].

Proof. Te proof process is divided into two steps. In the
frst step, the difusion term is not considered. We let

Γ � 1 − cG c, c∗, x, x∗( 􏼁 − cG c∗, c, x∗, x( 􏼁. (42)

According to the rules identifed in (34), the post-
interaction decision is

x
◇

� 1 − cG c, c∗, x, x∗( 􏼁 − θΓ( 􏼁x + cG c, c∗, x, x∗( 􏼁 + θΓ( 􏼁x∗, (43)

in which

0≤ cG c, c∗, x, x∗( 􏼁 + θΓ ≤ 1. (44)

By calculation, we get

−cG c, c∗, x, x∗( 􏼁

θ
≤Γ ≤

1 − cG c, c∗, x, x∗( 􏼁

θ
. (45)

By defnition, the compromise function
0<G(·, ·, ·, ·) � p≤ 1. Because θ≥ (1 − cp)/(1 − 2cp), we
have

1 − 2c≤ Γ≤ 1 − 2cp. (46)

In the second step, the difusion term is considered.
According to the model (34), we obtain

x
◇

� 1 − cG c, c∗, x, x∗( 􏼁 − θΓ( 􏼁x + cG c, c∗, x, x∗( 􏼁 + θΓ( 􏼁x∗ + κ1L(c, x). (47)

Since

κ1 ≤Λ 1 − cG c, c∗, x, x∗( 􏼁 − θΓ( 􏼁, (48)

we have

x
◇ ≤ 1 − cG c, c∗, x, x∗( 􏼁 − θΓ( 􏼁x + cG c, c∗, x, x∗( 􏼁 + θΓ + κ1L(c, x)

≤ 1.
(49)

Similarly, we can obtain −1≤x◇. Te same results are
readily obtained for the post-interaction decision
x◇∗ ∈ [−1, 1]. □

4. Main Properties of the Boltzmann
Description for Decision

4.1.TeBoltzmann Equation. Let the function f � f(c, x, t)

represent the density distribution of agents with competence
c and decision x at time t≥ 0. If decisions are defned in the
subinterval I1 ⊂ I, then the integral,

􏽚
C×I1

f(c, x, t)dcdx, (50)

denotes the distribution of agents whose decisions belong to
the subinterval I1 at time t≥ 0. Also, we have

􏽚
C×I

f(c, x, t)dcdx � 1. (51)

Te evolution of the density function f(c, x, t) over time
depends on the interactions that occur. In this process, there
is not only a change in the competence c but also an ad-
justment of the decision x. Te level of decision adjustment
is determined by the degree of compromise.
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Te function ϕ(c, x) is a smooth function, which is a test
function in the Boltzmann equation.Te symbol ·〈 〉 denotes
the mathematical expectation on the random variable κ1 or

κ2. Ten, the variation of the density distribution is de-
scribed by the weak form of the Boltzmann equation:

d
dt

􏽚
I×C

ϕ(c, x)f(c, x, t)dcdx �
ω
2

􏽚
R+

􏽚
C2×I2

ϕ c
◇

, x
◇

􏼐 􏼑 + ϕ c
◇
∗ , x
◇
∗􏼐 􏼑 − ϕ(c, x)􏼐 􏼝

−ϕ c∗, x∗( 􏼁􏼁f(c, x, t)f c∗, x∗, t( 􏼁A(z)dcdc∗dx dx∗dz􏼊 ,

(52)

where the parameter ω is a scaling constant that depends on
the frequency of interactions. Te relevant properties of the
decision under the infuence of the manager are discussed by
assuming ϕ(c, x) � ϕ(x) � 1, x, x2, respectively.

4.2. Main Properties. In equation (52), suppose
ϕ(c, x) � ϕ(x) � 1, then

z

zt
􏽚

I×C
f(c, x, t)dcdx � 0, (53)

which indicates that the total number of agents is constant.
Te average decision of all agents is expressed as

Y(t) � 􏽚
I×C

xf(c, x)dcdx. (54)

According to the decision model (34) and the Boltzmann
equation (52), when ϕ(c, x) � x, the evolution in the average
decision of all agents over time occurs as

d
dt

􏽚
I×C

xg(c, x, t)dcdx �
ω
2

􏽚
R+

􏽚
I2×C2

x
◇
∗ + x
◇

− x∗ − x􏼐 􏼑􏼝

×f(c, x, t)f c∗, x∗, t( 􏼁A(z)dcdc∗dx dx∗dz􏼊

�
ωc

2
􏽚

I2×C2
G c, c∗, x, x∗( 􏼁 − G c∗, c, x∗, x( 􏼁( 􏼁 x∗ − x( 􏼁

× f(c, x, t)f c∗, x∗, t( 􏼁dcdc∗dx dx∗,

(55)

namely,

d
dt

􏽚
I×C

xg(c, x, t)dcdx � ωc􏽚
I2×C2

G c, c∗, x, x∗( 􏼁 − G c∗, c, x∗, x( 􏼁( 􏼁x∗

× f(c, x, t)f c∗, x∗, t( 􏼁dcdc∗dx dx∗.

(56)

Since 0≤G(·, ·, ·, ·)≤ 1 and ∣ G(c, c∗, x, x∗) − G(c∗,

c, x∗, x) ∣ ≤ 1, we have

−ωcY(t)≤
d

dt
Y(t)≤ωcY(t). (57)

From (57), we get

Y(0)e
−ωct ≤Y(t)≤Y(0)e

ωct
, (58)

where Y(0) is the initial value of the average decision. When
G(c, c∗, x, x∗) � G(c∗, c, x∗, x), it is calculated that

d
dt

Y(t) � 0. (59)

Terefore, when t> 0, the average decision Y(t) � Y(0),
which indicates that managers’ control does not change the
average decision of agents. However, the control infuences
the internal structure of decisions and eliminates the de-
cision gap between agents, which helps reach a consensus.

We let ϕ(c, x) � x2 in (52) to obtain the second-order
moments:

W(t) � 􏽚
I×C

x
2
f(c, x, t)dcdx. (60)

From (34) and (52), the change in second-order mo-
ments with time is
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d
dt

W(t) �
ω
2

􏽚
R+

􏽚
I2×C2

x
◇
∗􏼐 􏼑

2
+ x
◇2

􏼒 􏼓 − x
2
∗ − x

2
􏼒 􏼓

× f(c, x, t)f c∗, x∗, t( 􏼁A(z)dcdc∗dx dx∗dz,

􏼪 􏼫 (61)

where

d
dt

W(t) �
ω
2

􏽚
I2×C2

(cG c, c∗, x, x∗( 􏼁 + θ 1 − cG c, c∗, x, x∗( 􏼁((

− cG c, c∗, x, x∗( 􏼁􏼁􏼁
2

+ cG c∗, c, x∗, x( 􏼁 + θ 1 − cG c, c∗, x, x∗( 􏼁((

− cG c∗, c, x∗, x( 􏼁􏼁􏼁
2
􏼑 x − x∗( 􏼁

2
f(c, x, t)f c∗, x∗, t( 􏼁dcdc∗dx dx∗

− ω􏽚
I2×C2

x cG c, c∗, x, x∗( 􏼁 + θ 1 − cG c, c∗, x, x∗( 􏼁(((

− cG c∗, c, x∗, x( 􏼁􏼁􏼁 − x∗ cG c∗, c, x∗, x( 􏼁 + θ 1 − cG c, c∗, x, x∗( 􏼁((

− cG c∗, c, x∗, x( 􏼁􏼁􏼁􏼁 x − x∗( 􏼁f(c, x, t)f c∗, x∗, t( 􏼁dcdc∗dx dx∗.

(62)

We let G(c, c∗, x, x∗) � G(c∗, c, x∗, x) � p ∈ [0, 1],and
equation (62) is simplifed to

d
dt

W(t) � ω􏽚
I2×C2

(cp + θ(1 − 2cp))(cp + θ(1 − 2cp) − 1) x − x∗( 􏼁
2

× f(c, x, t)f c∗, x∗, t( 􏼁dcdc∗dx dx∗.

(63)

Since the average decision Y(t) � Y(0), it is further
calculated that

d
dt

W(t) � 2ω(cp + θ(1 − 2cp))(cp + θ(1 − 2cp) − 1)W(t)

− 2ω(cp + θ(1 − 2cp))(cp + θ(1 − 2cp) − 1)Y(0)
2
.

(64)

Te solution of equation (64) is

W(t) � W(0) exp 2ω(cp + θ(1 − 2cp))(cp + θ(1 − 2cp) − 1)t􏼈 􏼉

+(1 − exp 2ω(cp + θ(1 − 2cp))(cp + θ(1 − 2cp) − 1)t􏼈 􏼉)Y(0)
2
,

(65)

in which W(0) is the initial value of the second-order
moments. Since ω(cp + θ(1 − 2cp)) > 0 and
cp + θ(1 − 2cp) − 1< 0, we obtain that W(t) converges
exponentially to Y(0)2 when t⟶∞. Tus, the equation,

􏽚
C×I

(x − Y(0))
2
f(c, x, t)dcdx � W(t) − Y(0)

2
, (66)

converges toward 0 in the limit t⟶∞. It is concluded
that, under the same assumption, the steady-state solution of
the decision model is a Dirac δ function centered on Y(0),
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indicating that the managers’ control drives the agents to
achieve decision consensus.

5. Fokker–Planck Description

5.1. Te Quasi-Invariant Decision Limit. We assume that
ϵ> 0 is a scaling parameter, and the individual parameters in
the kinetic model of competence (2) are scaled by taking the
form of

λ1 � ϵϱ1, λ2 � ϵϱ2, λ3 � ϵϱ3, σ
2
η � ϵς2η,ω �

1
bϵ

. (67)

After scaling, the competence model becomes

c
◇

� 1 − ϵϱ1(c)( 􏼁c + ϵϱ2(c) c∗ − c( 􏼁 + ϵϱ3(c)z + ηϵc,

c
◇
∗ � 1 − ϵϱ1 c∗( 􏼁( 􏼁c∗ + ϵϱ2 c∗( 􏼁 c − c∗( 􏼁 + ϵϱ3 c∗( 􏼁z + ηϵc∗,

⎧⎨

⎩ (68)

where ηϵ obeys a uniform distribution with mean 0 and
variance ϵς2η. Applying the same method, the parameters in
the decision model (34) are scaled by taking the form of

c � ϵ,ω �
1
bϵ

, σ2 � ϵς2, ] � ϵρ. (69)

Correspondingly, the parameters in (34) become

θ �
4ϵ

ρ + 8ϵ
. (70)

Te decision model (34) is transformed to

x
◇

� x + ϵG c, c∗, x, x∗( 􏼁 +
4ϵ

ρ + 8ϵ
1 − ϵG c, c∗, x, x∗( 􏼁 − ϵG c∗, c, x∗, x( 􏼁( 􏼁􏼠 􏼡

× x∗ − x( 􏼁 + κ1ϵL(c, x),

x
◇
∗ � x∗ + ϵG c∗, c, x∗, x( 􏼁 +

4ϵ
ρ + 8ϵ

1 − ϵG c∗, c, x∗, x( 􏼁 − ϵG c, c∗, x, x∗( 􏼁( 􏼁􏼠 􏼡

× x − x∗( 􏼁 + κ2ϵL c∗, x∗( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(71)

where κ1ϵ and κ2ϵ obey a uniform distribution with mean
0 and variance ϵς2. Te scaled Boltzmann equation is

d
dt

􏽚
I×C

ϕ(c, x)f(c, x, t)dcdx

�
1
2bϵ

􏽚
R+

􏽚
C2×I2

ϕ c
◇

, x
◇

􏼐 􏼑 + ϕ c
◇
∗ , x
◇
∗􏼐 􏼑 − ϕ(c, x) − ϕ c∗, x∗( 􏼁􏼐 􏼑

× f(c, x, t)f c∗, x∗, t( 􏼁A(z)dcdc∗dx dx∗dz

􏼪 􏼫.

(72)

Tus, after scaling, the evolution of the average decision
over time is expressed as
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d
dt

􏽚
I×C

xg(c, x, t)dcdx �
1
b
􏽚

I2×C2
G c, c∗, x, x∗( 􏼁 − G c∗, c, x∗, x( 􏼁( 􏼁x∗

× f(c, x, t)f c∗, x∗, t( 􏼁dcdc∗dx dx∗.

(73)

When the function G(c, c∗, x, x∗) � G(c∗, c, x∗, x), there
is dY(t)/ dt � 0. Hence, when t> 0, we have Y(t) � Y(0),
indicating that scaling does not change the convergence
value of the average decision. Although for each interaction,
the variation of the decision is very small, and the same law
of the average decision can still be obtained as long as

a sufcient number of interactions are performed. We call
this property the quasi-invariant decision limit.

5.2. Fokker–Planck Equation. Based on the scaled compe-
tence model (68) and the scaled decision model (71), we
calculate the following expectation values:

c
◇

− c􏽄 􏽅 � − ϵ ϱ1(c)c + ϱ2(c) c∗ − c( 􏼁 + ϱ3(c)z( 􏼁 � ϵK c, c∗, z( 􏼁,

x
◇

− x􏽄 􏽅 � ϵ G c, c∗, x, x∗( 􏼁 +
4

ρ + 8ϵ
1 − ϵG c, c∗, x, x∗( 􏼁 − ϵG c∗, c, x∗, x( 􏼁( 􏼁􏼠 􏼡

× x∗ − x( 􏼁

� ϵH c, c∗, x, x∗( 􏼁,

c
◇

− c􏼐 􏼑
2

􏼜 􏼝 � ϵ2K2
c, c∗, z( 􏼁 + ϵς2ηc

2
,

x
◇

− x􏼐 􏼑
2

􏼜 􏼝 � ϵ2H2
c, c∗, x, x∗( 􏼁 + ϵς2L2

(c, x),

c
◇

− c􏼐 􏼑 x
◇

− x􏼐 􏼑􏽄 􏽅 � ϵ2K c, c∗, z( 􏼁H c, c∗, x, x∗( 􏼁.

(74)

Since the function ϕ(·, ·) is a smooth function that is
continuously derivable of infnite order in its domain of
defnition, through Taylor expansion at the point (c, x), we
obtain

ϕ c
◇

, x
◇

􏼐 􏼑􏽄 􏽅 � ϵK c, c∗, z( 􏼁
zϕ
zc

(c, x) + ϵH c, c∗, x, x∗( 􏼁
zϕ
zx

(c, x)

+
1
2
ϵ2K2

c, c∗, z( 􏼁 + ϵς2ηc
2

􏼐 􏼑
z
2ϕ

zc
2 (c, x) + ϵ2H c, c∗, x, x∗( 􏼁􏼐􏼠

+ϵς2L2
(c, x)􏼑

z
2ϕ

zx
2 + ϵ2K c, c∗, z( 􏼁H c, c∗, x, x∗( 􏼁

z
2ϕ

zczx
(c, x)􏼡

+ Rϵ c, c∗, x, x∗( 􏼁,

(75)

where Rϵ(c, c∗, x, x∗) is the higher order term of the Taylor
expansion.Terefore, the Boltzmann equation (72) becomes
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d

dt
􏽚

I×C
ϕ(c, x)f(c, x, t)dcdx

�
1
bϵ

􏽚
R+

􏽚
I2×C2
ϵK c, c∗, z( 􏼁

zϕ
zc

(c, x) + ϵH c, c∗, x, x∗( 􏼁
zϕ
zx

(c, x)􏼠 􏼡

× f(c, x, t)f c∗, x∗, t( 􏼁A(z)dcdc∗dx dx∗dz

+
1
bϵ

􏽚
R+

􏽚
I2×C2

ϵς2η
2

c
2z

2ϕ
zc

2 (c, x) +
ϵς2

2
L
2
(c, x)

z
2ϕ

zx
2

⎛⎝ ⎞⎠

× f(c, x, t)f c∗, x∗, t( 􏼁A(z)dcdc∗dx dx∗dz

+ r(ϵ) + O(ϵ),

(76)

in which

r(ϵ) �
1
2bϵ

􏽚
R+

􏽚
I2×C2
ϵ2 K

2
c, c∗, z( 􏼁

z
2ϕ

zc
2 (c, x) + H

2
c, c∗, x, x∗( 􏼁

z
2ϕ

zx
2 (c, x)􏼠􏼢

+ K c, c∗, z( 􏼁H c, c∗, x, x∗( 􏼁
z
2ϕ

zczx
(c, x)􏼡 + Rϵ c, c∗, x, x∗( 􏼁􏼣

× f(c, x, t)f c∗, x∗, t( 􏼁A(z)dcdc∗dx dx∗dz.

(77)

Similar to the literature [9, 20], when ϵ⟶ 0, r(ϵ)
converges to 0. Tus, equation (76) becomes

d
dt

􏽚
I×C

ϕ(c, x)f(c, x, t)dcdx �
1
b
􏽚
R+

􏽚
I2×C2

K c, c∗, z( 􏼁
zϕ
zc

(c, x)

× f(c, x, t)f c∗, x∗, t( 􏼁A(z)dcdc∗dx dx∗dz

+
1
b
􏽚
R+

􏽚
I2×C2

H c, c∗, x, x∗( 􏼁
zϕ
zx

(c, x)

× f(c, x, t)f c∗, x∗, t( 􏼁A(z)dcdc∗dx dx∗dz

+
ς2η
2b

􏽚
I×C

c
2z

2ϕ
zc

2 (c, x)f(c, x, t)dcdx

+
ς2

2b
􏽚

I×C
L
2
(c, x)

z
2ϕ

zx
2 (c, x)f(c, x, t)dcdx.

(78)

By using integration back by part, we obtain the cor-
responding Fokker–Planck equation:
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z

zt
f(c, x, t) � −

z

zc

1
b
K[f](c, t)f(c, x, t) −

z

zx

1
b
H[f](c, x, t)f(c, x, t)

+
ς2η
2b

z
2

zc
2 c

2
f(c, x, t)􏼐 􏼑 +

ς2

2b
L
2
(c, x)f(c, x, t)􏼐 􏼑,

(79)

where

K[f](c, t) � 􏽚
R+

􏽚
I×C

K c, c∗, z( 􏼁f c∗, x∗, t( 􏼁A(z)dc∗dx∗dz

� − ϱ1 + ϱ2( 􏼁c + ϱ2mc + ϱ3mz,

H[f](c, x, t) � 􏽚
I×C

H c, c∗, x, x∗( 􏼁f c∗, x∗, t( 􏼁dc∗dx∗

� 􏽚
C×I

G c, c∗, x, x∗( 􏼁 +
4

ρ + 8ϵ
1 − ϵG c, c∗, x, x∗( 􏼁(􏼠

−ϵG c∗, c, x∗, x( 􏼁􏼁􏼁 x∗ − x( 􏼁f c∗, x∗, t( 􏼁dc∗dx∗.

(80)

Considering the complicated structure of the Fokker–
Planck equation in this article, it is difcult to calculate the
solution. To further analyze the evolution of decision-
making, simulation experiments will be conducted by ap-
plying the DSMC approach.

6. Simulation Experiments

Te DSMC method is commonly employed in the study of
rarefed gas dynamics. Te key notion of the simulation is to
decouple molecular mobility and collision within a given time
step. In this section, the DSMC approach is utilized to simulate
the decision model. We employ simulated molecules to rep-
resent agents and directly simulate the evolution of competence
and decisions which are caused by binary interactions. Te
images of the density distribution of agents are the kinetic
solutions at diferent time steps, respectively. To demonstrate
the evolution of decision-making more clearly, we assume that
the distribution of agents obeys the Gaussian distribution at the
initial time. In the graph, the horizontal axis represents decision
and the vertical axis represents competence. Te color changes
from blue to yellow, indicating an increasing concentration of
agents. After the interaction, the movement of the yellow area
indicates a shift in the decision consensus, while the shrinking
of the yellow area suggests a higher consistency of collective
decision. If not specifed, the number of agents in the simu-
lation is N � 104. Te evolution of competence is conducted
according to the competence model (2), and the parameters
take the values λ1 � λ2 � λ3 � 0.01, z � 0.01, σ2η � 0.01, and
mz � 1.

6.1. A Consensus Is Required. Te evolution of decision-
making is conducted according to the decision model
(34), in which the manager’s objective is to make agents

reach a consensus. We simulate the efect of diferent control
forces on the evolution of decision-making.

6.1.1. Test 1.Te Efect of θ Taking on DecisionsWhen the Aim
Is Reaching a Consensus. For simplicity, we assume that the
compromise functions satisfy

G c, c∗, x, x∗( 􏼁 � G(c) � (1 + c)
− 2

,

G c∗, c, x∗, x( 􏼁 � G c∗( 􏼁 � 1 + c∗( 􏼁
− 2

,

⎧⎨

⎩ (81)

which are decreasing functions in c ∈ (0, +∞]. According to
the compromise function, low competence decision makers
are often more likely to compromise due to their lack of
knowledge and cognition. However, low competence de-
cision makers are not useless. As the interaction progresses,
the abilities of low competence individuals are also improved
and lead to greater confdence which results in a decrease in
compromise. Terefore, the consensus is not solely de-
termined by high competence decision makers. In the de-
cision model (34), the parameters take the values c � 1 and
σ2 � 0.01 and the difusion term L(c, x) � 1 − x2. Te larger
the value of θ, the greater the control force. By setting θ � 1/3
(on the left side of Figure 1) and θ � 1/5 (on the right side of
Figure 1), we investigate the diferent efects of various
control forces on the evolution of decision-making under
the same remaining conditions.

In Figure 1, at the initial time t � 1, there are two
subgroups with distinct decisions, each including N � 104/2
agents. In the low competence subgroup, the average
competence equals 0.5 and the average decision equals −0.5.
In the high competence subgroup, the average competence
equals 1.5 and the average decision equals 0.5. Tis indicates
that agents with diferent competence make diferent de-
cisions. Te simulation results are consistent with the
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conclusion of equation (13). Tat is to say, after t � 30 in-
teractions, the average competence of the whole group
equals mz and the competence gap between agents is
gradually reduced due to the natural forgetfulness of
competence, mutual learning, and improvement from the
background.

Besides, we fnd that the consistency of collective
decisions is improved. At the initial time, there exist two
opposite subgroup decisions. After t � 10 binary in-
teractions, the consensus is obtained. Comparing

Figures 1(C) and 1(F), when θ � 1/3, agents concentrate in
the interval (0.4147, 0.4149), and when θ � 1/5, the agents
concentrate in the interval (0.4375, 0.4385). It demon-
strates that the greater the managers’ control, the higher
the concentration of decisions. Meanwhile, due to the
narrowing of the competence gap, it is easier to have
similar cognition about a certain event. It is concluded
that competence evolution and managers’ control facili-
tate the consistency of collective decisions.
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Figure 1: Kinetic solution at diferent time steps when θ � 1/3 (a) and θ � 1/5 (b).
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6.2. Reaching a Specifc Consensus. In fact, there exists a rare
circumstance in which managers require agents to attain
a particular consensus xd. It is essential to highlight that the
article’s consensus xd is not necessarily the ultimate decision,
as xd simply indicates the subjective intents of management.
Tus, the control term satisfes the cost function:

u � argmin􏽚
T

0

1
N

􏽘

N

j�1

1
2

xj − xd􏼐 􏼑
2

+
]
2
u
2

􏼒 􏼓ds, u(t) ∈ uL, uR􏼂 􏼃,

(82)

which is a special form of the cost function (16).We still use the
model predictive control (MPC)method to obtain the concrete
expression of the control term. After calculation, we obtain

u
n

� −
∆t

2 ] + ∆t
2

􏼐 􏼑
x

n
j − xd􏼐 􏼑 + x

n
i − xd( 􏼁􏼐 􏼑

−
∆t

2

4 ] + ∆t
2

􏼐 􏼑
G ci, cj, xi, xj􏼐 􏼑 − G cj, ci, xj, xi􏼐 􏼑􏼐 􏼑 x

n
j − x

n
i􏼐 􏼑.

(83)
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Figure 2: Kinetic solution at diferent time steps when xd � 0.3 (a) and xd � 0.5 (b).
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Figure 3: Kinetic solution at diferent time steps when θ takes diferent values.
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Figure 4: Comparison of decision models (34) and (84).
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Terefore, the decision model becomes

x
◇

� x + cG c, c∗, x, x∗( 􏼁 x∗ − x( 􏼁 −
θ
2

x∗ − xd( 􏼁 + x − xd( 􏼁( 􏼁

−
cθ
2

G c, c∗, x, x∗( 􏼁 − G c∗, c, x∗, x( 􏼁( 􏼁 x − x∗( 􏼁 + κ1L(c, x),

x
◇
∗ � x∗ + cG c∗, c, x∗, x( 􏼁 x − x∗( 􏼁 −

θ
2

x − xd( 􏼁 + x∗ − xd( 􏼁( 􏼁

−
cθ
2

G c∗, c, x∗, x( 􏼁 − G c, c∗, x, x∗( 􏼁( 􏼁 x∗ − x( 􏼁( 􏼁 + κ2L c∗x∗( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(84)

where θ � 4c2/(] + 4c2) and θ ∈ [0, 1].

6.2.1. Test 2. Impact of xd Taking on Decisions. In Figure 2,
the parameters of the decision model (84) take the values
c � 1, θ � 1/3, and σ2 � 0.01 and the difusion term
L(c, x) � 1 − x2. At the time t � 1, the mean competence is
equal to 1 and the mean value of the decision is 0. In the left
graph, the expected consensus of managers xd � 0.3, and in
the right graph, the expected consensus of managers
xd � 0.5. After t � 5 interactions, the decision is centered in
the interval [0.2, 0.3] when xd � 0.3 and the interval
[0.4, 0.5] when xd � 0.5. Tis indicates that the manager’s
control makes the decisions close to the target consensus xd.

6.2.2. Test 3. Impact of θ Taking on Decisions As Obtaining
a Particular Consensus Is Required. Figure 3 illustrates the
infuence of managers’ control on decisions by comparing
the magnitude of the parameter θ. In the decision model
(84), we let c � 1 and xd � 0.3. At the initial time, the mean
value of competence is 1 and the mean decision is 0. In the
left graph, the parameter θ � 1/3, and in the left graph, the
parameter θ � 1/5. When the managers’ control force
θ � 1/3, the decisions after interaction are mainly concen-
trated in the interval (0.25, 0.35). When the managers’
control force θ � 1/5, the decisions after interaction are
mainly concentrated in the interval (0.2, 0.3). It demon-
strates that the stronger the manager’s infuence, the more
decisions move toward the expected consensus.

6.2.3. Test 4. Comparison of Decision Models (34) and (84).
In Figure 4, the left graph simulates decision model (34),
where manager’s goal is to urge the agents to reach a con-
sensus; the right graph simulates decision model (84), where
the managers require the agents to reach a particular con-
sensus xd. We let the parameters in decision model (34) take
the values c � 1 and θ � 1/5, and the parameters in decision
model (84) take the values c � 1, xd � 0.3, and θ � 1/5. After
the interaction, in the left graph, the actual consensus ob-
tained is centered around 0.2, and in the right graph, the
actual consensus obtained is centered around 0.3.Tis shows

that if managers require a specifc consensus xd � 0.3, the
control will drive agents to move closer to 0.3.

7. Conclusion

In collective decision-making, agents are infuenced by their
competence and managers’ control. In order to combat
natural disasters, for instance, the government unites the
populace in order to formulate a concerted counterstrategy,
which is necessary for the country’s stability. While the
previous research on decision-making has focused on the
infuence of a single factor, such as beliefs, biases, and
knowledge, we investigate the infuence of agents’ compe-
tence and managers’ control simultaneously, which is the
novelty of this paper. First, we develop a kinetic model of
decision based on competence in which competence evolves
in interaction. Terefore, we incorporate the model of
competence into the model of decision. Second, our model
explores the impact of managers’ control on decision-
making. A control term is used to describe a situation in
which managers, through supervision and coordination,
urge agents to achieve a consensus.Te control term satisfes
a cost function requiring that the decision variance between
agents be minimized. Using the MPC approach, we con-
struct a concrete expression for the control term and derive
a kinetic model of decision-making (34) that includes agents’
competence and managers’ control. Tird, the Boltzmann
equation is established to describe the evolution of the
density distribution of agents, and the main properties are
discussed. It is mathematically proved that while the average
decision of all agents remains constant, the managers’
control will drive the distribution of agents to become in-
creasingly concentrated. Fourth, the DSMC method is used
to simulate the evolution of decisions based on agents’
competence and managers’ control. It demonstrates that the
greater the infuence of the managers’ control, the more
concentrated and consistent the decision distribution. Te
simulation also shows that the interaction narrows the
variance of competence between agents, which helps agents
easily achieve a consensus.Te limitation of this paper is that
the stationary solution of the Boltzmann equation is not
obtained. In the future, with the improvement in
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mathematics, it is believed that the stationary solution of the
model can be calculated. Besides, only the binary interaction
case is considered, and the interaction process is linear.
Inspired by references [13, 14], we can try to add a trust
index to the decision interaction model or consider the
evolution of group decision-making in more complex in-
teraction networks.
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