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In this paper, input-to-state stability (ISS) is investigated for a class of nonlinear switched systems with time-varying switching
delay, in which both ISS and non-ISS subsystems are considered simultaneously. By means of the Lyapunov function method, we
show that ISS can be ensured for switched systems with time-varying switching delay if the activation time of ISS subsystems is
sufciently large and switching delays satisfy certain conditions. Moreover, inspired by (Zhang et al. 2020), a time-dependent
multiple Lyapunov function is considered for linear switched systems with switching delay to obtain less conservative results,
where the conservativeness can be reduced by explicitly providing the lower and upper bounds of switching intervals. Finally,
simulations including an example of coordination of multiagent systems are ofered to verify the efectiveness of the proposed
results.

1. Introduction

Switched systems, as a kind of special hybrid systems, have
gained increasing research attention since switched systems
can be efciently used to model various real-world systems
displaying switching features [1–5]. Typically, a switched
system comprises a family of subsystems and a switching
signal governing the switching among subsystems. Stability
of switched systems can be classifed into two categories:
stability of switched systems with stable subsystems and
stability of switched systems containing unstable subsystems
[6–10]. Clearly, the stability of switched systems with un-
stable subsystems renders more practical signifcance than
that of the systems one with only stable subsystems [6, 10].

Usually, the performance of a real control system is
always afected by uncertainties such as unmodeled dy-
namics, parameter perturbations, exogenous disturbances,
and measurement errors. Tis arouses the investigation of
the input-to-state stability (ISS), since ISS can well char-
acterize the efects of external inputs on a control system
[11, 12]. Terefore, in the past decade, various extensions of
ISS have been made for diferent types of dynamical systems,
such as discrete-time systems, impulsive systems, and

switched systems (see [11] and the references therein).
Among them, the study of the ISS of switched systems
constitutes an important component. In the past decade,
there have been some well-studied results about the ISS of
switched systems. In [13], some sufcient conditions were
derived to ensure that the whole switched nonlinear system
is ISS when each mode is ISS. In [9], input/output-to-state
stability (IOSS) of switched nonlinear systems was studied,
in which IOSS and non-IOSS systems were considered si-
multaneously. Moreover, very recently, in [14], a general
class of switching signals was considered to ensure that
switched systems with both ISS and non-ISS subsystems are
stable, where it allows the number of switches to grow faster
than an afne function of the length of a time interval.

However, in the results mentioned above, it is implicitly
assumed that switching among system modes is synchro-
nous, which is unpractical. In practice, it usually takes some
time to detect the switching signal [15], i.e., a switching delay
is unavoidable.

Actually, when detecting a switching signal, due to
sensor/actuator failures and to changing the mode of con-
trollers, the switching law cannot be detected instantly. It
usually takes a period of time to detect the switching signal
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[16], i.e., a time delay widely exists in switching signals.Tus,
it is important to investigate the ISS of switched systems with
switching delays. It is noted that some researchers have
focused on asynchronously switched control for switched
systems [7, 15, 17, 18]. Nevertheless, in [7, 15, 17, 18], ex-
ogenous disturbances have been overlooked, which is un-
realistic since exogenous disturbances cannot be averted in
practical systems. In addition, in [15, 17, 18], only a constant
time delay was considered, and it is assumed that the
switching delay only exists in the switching controller. To the
best of the authors’ knowledge, there are few results on ISS of
switched systems with time-varying switching delays, pri-
marily due to the difculties in characterizing the efects of
switching delays, exogenous disturbances, ISS subsystems,
and non-ISS subsystems on the performance of switched
systems.

On the other hand, the multiple Lyapunov function
method (MLFM) is a very popular method for the stability
analysis of switched systems [15, 17, 19]. However, as was
shown in [20], the results obtained by using the MLFM may
be conservative since the upper bound of the dwell time was
overlooked. Te results in [20] indicated that the upper
bound of the dwell time is useful for reducing conserva-
tiveness, and the time-dependent multiple Lyapunov
function is a better method since the conservativeness can be
reduced by explicitly providing the information on both the
lower and upper bounds of the dwell time.

Based on the above discussions, in this paper, we aim to
carry out the ISS of switched systems with time-varying
switching delay, in which both ISS and non-ISS subsystems
are considered simultaneously. A sufcient condition is
obtained to ensure that the switched system with switching
delay is ISS. Ten, a time-dependent multiple Lyapunov
function is considered to obtain less conservative results for
linear switched systems with switching delay. Te main
contributions of this paper can be listed as follows: (1)
Switching delay is considered in this paper, where it will be
shown that the existence of the switching delay may destroy
or enhance the ISS due to the fact that the ISS-subsystem/
non-ISS subsystems can be replaced by non-ISS subsystem/
ISS subsystems. (2) In addition to the switching delay, both
ISS subsystems, non- ISS subsystems, and disturbances are
taken into account in a unifed model, which also brings
difculties to our theoretical analysis.

1.1. Notations. Te notations of this paper are shown in the
following Table 1.

Moreover, κ represent the class of continuous strictly
increasing function ϕ: [0,∞)⟶ [0,∞) with ϕ (0)� 0. κ∞ is
the subset of κ functions that are unbounded. A function β:
[0, ∞)× [0, ∞)⟶ [0, ∞) is said to belong to the class of
κL, if β (., t) is of class κ for each fxed t> 0 and β (s, t)
decreases to zero as t⟶∞ for each fxed s≥ 0.

2. Model Formulation and Preliminaries

In this section, we present the model formulation of this
paper. Moreover, some useful defnitions and lemmas
are given.

Consider a class of switched nonlinear systems with
a time-varying switching delay given by

_x(t) � fσ(t−τ(t))(x(t), u(t)), (1)

where x(t) ∈Rn with x(t0)� x0 is the state vector and the
switching signal σ: [0,∞)⟶Q� {1, 2, . . ., N} is a piecewise
constant function, in which N is the number of subsystems
of the switched system. t0 is the initial time and tk(k ∈N)
denotes the switching sequence.Without loss of generality, it
is assumed that there are no switching efects at the initial
time. τ(t) is a continuous function representing the time-
varying switching delay that satisfes 0≤ τ(t)≤ τ.fi. i ∈Q is the
nonlinear function satisfying the Lipschitz condition, and
u(t) denotes the disturbance input.

Defnition 1 (see [11]). Te switched system (1) is said to be
input-to-state stable (ISS) if there exist class κ∞ functions α
and c and a class κL function β such that for the input u(t)
and initial state x0, the following inequality holds:

α(‖x(t)‖)≤ β x0
����

����, t􏼐 􏼑 + sup
0≤s≤t

(‖u(s)‖). (2)

Te following dwell time constraint is made on the
switching signal σ(t).

Assumption 2. Tere are two positive constants 0< µ1< µ2
such that the following condition holds true.

μ1 ≤ tk − tk−1 ≤ μ2, k ∈ N. (3)

Remark 3. Te above constraint is called as the ranged dwell
time constraint [20, 21]. In the presence of non-ISS sub-
systems, in order to retain stability, the activation time of ISS
subsystems should not be too small, while the activation time
of non-ISS subsystems should not be too large [9, 19]. Te
concept of dwell time has been introduced early in [2] and
has been proven to be efcient for the analysis of switched
systems. It is due to the fact that the lower and upper bounds
of switching intervals guarantee that the activation time of
ISS subsystems is not too small and the activation time of
non-ISS subsystems is not too large simultaneously.

Table 1: Notations.

n× n real matrices Rn×n

Te natural number N

Te absolute value |∙|
Transpose of x ∈ Rn xT
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Let QS and Qu denote respectively the sets of indices of
ISS and non-ISS systems. Obviously, Qs ∪Qu � Q,

Qs ∩Qu � ∅. For t≥ s≥ t0, Tτ
s [s, t) and Tτ

s [s, t) represent the
total activation time of ISS and non-ISS subsystems under
σ(t− τ(t))during the time interval [s, t), respectively. Denote
by tτ,i the ith switching instant of σ(t− τ(t)), i.e.,
σ(− τ(t))� r, r ∈Q, t ∈ [tτ,i, tτ,i+1). Let

∆S
j[s, t) ≔ [s, t)∩ ⋃

∞

i�0,σ tτ,i−τ tτ,i( )( )�j ∈ QS

tτ,i, tτ,,i+1􏽨 􏼑⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

∆U
l [s, t) ≔ [s, t)∩ ⋃

∞

i�0,σ tτ,i−τ tτ,i( )( )�l ∈ QU

tτ,i, tτ,,i+1􏽨 􏼑⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(4)

i.e., ∆s
j [s, t) and ∆u

l [s, t) denote, respectively, the total
activation time of the jth ISS and lth non-ISS modes in the
interval [s, t). Denote by Ns (s, t) and Nu (s, t), respectively,
the number of ISS and non-ISS modes in the interval [s, t)
under σ(t). Nτ

s (s, t) and Nτ
u (s, t), represent the number of

ISS and non-ISS modes in the interval [s, t) under σ(t− τ(t)),
respectively.

Assumption 4. Tere exists a positive constant ak ∈ [0, 1]
such that the number of stable modes under σ(t) in the
interval [0, t), t ∈ [tk, tk+1) satisfes

Ns (0, t) � kak. (5)

It can be seen that ak � 1 means that there are no non-ISS
modes in the interval [0, t), while ak � 0 means that there are
no ISSmodes in the interval [0, t). Due to the existence of the
time-varying switching delay, when t ∈ [tk, tk+1), σ(t) ∈QS
(QU), there exist the following two cases (Please refer to
Figure 1 for more details):

(1) t ∈ [tτ,i, tτ,i+1), σ(t− τ(t)) ∈QS (QU), i.e., in the pres-
ence of switching delay, ISS (non-ISS) modes are still
activated in [tk, tk+1) under σ(t− τ(t)).

(2) t ∈ [tτ,i, tτ,i+1), σ(t− τ(t)) ∈QU (QS), i.e., in the pres-
ence of switching delay, unstable (stable) modes take
the place of stable (unstable) modes and are activated
in [tk, tk+1) under σ(t− τ(t)).

Te following assumption is given to characterize the
lower and upper bounds of switching intervals and the total
activation time of ISS and non-ISS modes under σ(t− τ(t)).

Assumption 5. Tere exist positive constants b, c ∈ [0, 1],
d ∈ (0, 1) and a positive constant TS, such that the following
conditions hold:

N
τ
s t0, t( 􏼁≥ ak k(1 − b) + 1 – ak( 􏼁 kc,

N
τ
u t0, t( 􏼁≤ 1 – ak( 􏼁k(1 − c) + akkb,

T
τ
u[s, t)≤T (S) + d(t − s),

(6)

where t ∈ [tk, tk+1), t≥ s≥ t0.

Remark 6. In Assumption 5, b can be regarded as the upper
bound of the ratio of the number of ISS subsystems, that is
replaced by non-ISS subsystems with Ns (0, t). Moreover, c
can be regarded as the lower bound of the ratio of the
number of non-ISS subsystems, that is replaced by ISS
subsystems with Nu (0, t). In fact, b� 1 means that all the ISS
subsystems will be replaced by non-ISS subsystems, while
c� 1 means that all the non-ISS subsystems will be replaced
by ISS subsystems. In addition, as Tτ

u[s, t)≤Ts + d(t − s) is
assumed to hold for any interval [s, t), the selection TS is
based on the selection of a and the upper bound of unstable
subsystems.

3. Main Results

3.1. Input-to-State Stability of Switched Systems with Time-
Varying Switching Delay. In this section, we will present the
condition to ensure ISS of the switched system (1) with time-
varying switching delay, where an important lemma is frst
proved.

Lemma 7. Suppose that Assumption 2 holds. If there are
a positive constant 9> 1 and κ∞ functions αi (i� 1, 2) and c,
continuous diferential functions Vi: Rn⟶ [0, +∞) and
constants λi, i ∈Q, such that

α1 (‖x(t)‖)≤Vσ(t)(x(t))≤ α2(‖x(t)‖),

_Vσ(t)(x(t))≤ − λσ(t − τ(t)) Vσ(t)(x(t)) + c‖u‖[0, t],

Vi (x(t))≤ 9Vj (x(t)), i, j ∈ Q.

(7)

Ten for t ∈ [tk, tk+1),

Vσ(t)(x(t))≤ 9
k
e

− λ1Tτ
S t0− t[ )− λ2Tτ

U t0− t[ )Vσ t0( ) x t0( 􏼁( 􏼁 + 􏽘

k−2

i�0
9

k− i
e
Γ tk,t( )+􏽐

k−1
j�i+1Γ tj,tj+1( 􏼁

× Ξ ti, ti+1( 􏼁⎡⎣

+9e
Γ(tk,t)Ξ tk−1, tk( 􏼁 + Ξ tk, t( 􏼁􏼣 c‖u‖[0,t],

(8)

...........

.........

ISS mode

non−ISS mode

switching law
without delay

switching law
with switching
delay

t0 t1 t2 t3 t4 t5

tτ,0 tτ,1 tτ,2 tτ,3 tτ,4 tτ,5

Figure 1: A switching law with and without switching delay.
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where

Γ tk,t􏼐 􏼑 � 􏽘

nk−1

i�0
−λ

σ ti
τ,k

− τ ti
τ,k

􏼐 􏼑􏼐 􏼑
ti+1
τ,k

−ti
τ,k

􏼐 􏼑
−λ

σ t
nk
τ,k

− τ t
nk
τ,k

􏼐 􏼑􏼐 􏼑
t−t

nk
τ,k

􏼐 􏼑

Ξ tk,t􏼐 􏼑 �
1 − e

− λ
σ t

nk
τ,k

−τ t
nk
τ,k

􏼐 􏼑􏼐 􏼑
t− t

nk
τ,k

􏼐 􏼑

λ
σ t

nk
τ,k

−τ t
nk
τ,k

􏼐 􏼑􏼐 􏼑

+ e
− λ

σ t
nk
τ,k

−τ t
nk
τ,k

􏼐 􏼑􏼐 􏼑
t− t

nk
τ,k

􏼐 􏼑

×
1 − e

− λ
σ t

nk−1
τ,k

−τ t
nk−1
τ,k􏼐 􏼑􏼐 􏼑

t
nk
τ,k

− t
nk−1
τ,k􏼐 􏼑

λ
σ t

nk−1
τ,k

−τ t
nk−1
τ,k

􏼐 􏼑􏼐 􏼑

+ 􏽘

nk−2

i�0
e

− 􏽐
nk−1
j�i+1λ

σ t
j

τ,k
−τ t

j

τ,k
􏼐 􏼑􏼐 􏼑

t
j+1
τ,k

−t
j

τ,k
􏼐 􏼑

×
1 − e

− λ
σ ti

τ,k
−τ ti

τ,k
􏼐 􏼑􏼐 􏼑

ti+1
τ,k

− ti
τ,k

􏼐 􏼑

λ
σ ti

τ,k
−τ ti

τ,k
􏼐 􏼑􏼐 􏼑

,

Γ tp,tp+1􏼐 􏼑 � 􏽘

np−1

i�0
−λ

σ ti
τ,p− τ ti

τ,p( 􏼁( 􏼁
ti+1τ,p

−tiτ,p􏼐 􏼑
−λ

σ t
np
τ,p− τ t

np
τ,p( 􏼁( 􏼁

tp+1−t
np
τ,p􏼐 􏼑

Ξ tp,tp+1􏼐 􏼑 � 􏽘

np−2

i�0
e

− 􏽐
np−1
j�i+1λ

σ t
j
τ,p

−τ t
j
τ,p􏼐 􏼑􏼐 􏼑

t
j+1
τ,p

−t
j
τ,p􏼐 􏼑

×

1 − e
− λ

σ tiτ,p
−τ tiτ,p􏼐 􏼑􏼐 􏼑

ti+1
τ,p− ti

τ,p􏼐 􏼑

􏼠 􏼡

λσ ti
τ,p−τ ti

τ,p( 􏼁( 􏼁

+

1 − e
− λ

σ t
np
τ,p

−τ t
np
τ,p􏼐 􏼑􏼐 􏼑

tp+1− t
np
τ,p( 􏼁

􏼠 􏼡

λσ t
np
τ,p−τ t

np
τ,p( 􏼁( 􏼁

+ e
− λ

σ t
np
τ,p

−τ t
np
τ,p􏼐 􏼑􏼐 􏼑

tp+1− t
np
τ,p( 􏼁

×

1 − e
− λ

σ t
np−1
τ,p

−τ t
np−1
τ,p

􏼐 􏼑􏼐 􏼑
t
np
τ,p− t

np−1
τ,p( 􏼁

􏼠 􏼡

λ
σ t

np−1
τ,p −τ t

np−1
τ,p( 􏼁( 􏼁

, p � 0, 1, 2, . . . , k − 1.

(9)

4 Discrete Dynamics in Nature and Society



in which tk � t0τ,k ≤ t1τ,k < t2τ,k<. . .<tnk

τ,k ≤ t, tp � t0τ,p ≤ t1τ,p < t2τ,p

< . . . < t
np

τ,p ≤ tp+1, where ti
τ,k, t

j
τ,p, 1≤ i≤ nk, 1≤ j≤ np are

switching instants under σ(t− τ(t)).

Proof. In view of (5), we have for t ∈ [tk, tk+1):

Vσ(t)(x(t))≤ e

− λ
σ t

nk
τ,k

−τ t
nk
τ,k

􏼐 􏼑􏼐 􏼑
t− t

nk
τ,k

􏼐 􏼑

Vσ tk( ) x t
nk

τ,k􏼐 􏼑􏼐 􏼑 + c ‖u‖[0,t]􏼐 􏼑 􏽚
t

t
nk
τ,k

e

− λ
σ t

nk
τ,k

−τ t
nk
τ,k

􏼐 􏼑􏼐 􏼑
(t− s)

ds

≤ e

− λ
σ t

nk
τ,k

−τ t
nk
τ,k

􏼐 􏼑􏼐 􏼑
t− t

nk
τ,k

􏼐 􏼑

× e

􏽘

nk−1

i�0
− λ

σ ti
τ,k

−τ ti
τ,k

􏼐 􏼑􏼐 􏼑
t
i+1
τ,k − t

i
τ,k􏼐 􏼑

Vσ tk( ) x tk( 􏼁( 􏼁

+ e

− λ
σ t

nk
τ,k

−τ t
nk
τ,k

􏼐 􏼑􏼐 􏼑
t− t

nk
τ,k

􏼐 􏼑

􏽘

nk−2

i�0
e

− 􏽘

nk−1

j�i+1
λ
σ t

j

τ,k
−τ t

j

τ,k
􏼐 􏼑􏼐 􏼑

t
j+1
τ,k − t

j

τ,k􏼐 􏼑

× c ‖u‖[0,t]􏼐 􏼑 􏽚
ti+1
τ,k

ti
τ,k

e

− λ
σ t

j

τ,k
−τ t

j

τ,k
􏼐 􏼑􏼐 􏼑

(t− s)

ds+e

− λ
σ t

nk
τ,k

−τ t
nk
τ,k

􏼐 􏼑􏼐 􏼑
t− t

nk
τ,k

􏼐 􏼑

c ‖u‖[0,t]􏼐 􏼑

× 􏽚
t
nk
τ,k

t
nk−1
τ,k

e

− λ
σ t

nk−1
τ,k

−τ t
nk−1
τ,k

􏼐 􏼑􏼐 􏼑
(t− s)

ds + c ‖u‖[0,t]􏼐 􏼑 􏽚
t

t
nk
τ,k

e

− λ
σ t

nk
τ,k

−τ t
nk
τ,k

􏼐 􏼑􏼐 􏼑
(t− s)

ds

≤ e
Γ tk,t( )Vσ tk( ) x tk( 􏼁( 􏼁 + Ξ tk, t( 􏼁c ‖u‖[0,t]􏼐 􏼑.

(10)

By repeating similar steps as in (10), we obtain for t ∈
[tk−1, tk):

Vσ(t)(x(t))≤ 9e
Γ tk,t( )+Γ tk−1 ,tk( )Vσ tk−1( ) x tk−1( 􏼁( 􏼁

+ Ξ tk, t( 􏼁 + 9e
Γ tk,t( )Ξ tk−1, tk( 􏼁􏼚 􏼛 × c ‖u‖[0,t]􏼐 􏼑.

(11)

Ten by induction method, we obtain (8) and thus the
proof is completed. □

Theorem 8. Suppose that the following conditions and
Lemma 7 hold true

η � −λ1 ak(1 − b) + 1 − ak( 􏼁c􏼂 􏼃μτ1

− λ2 akb + 1 − ak( 􏼁(1 − c)􏼂 􏼃kμτ2 ln 9< 0,

(12)

ε �
ln 9

μ1
− λ1 + λ1 − λ2( 􏼁d< 0, (13)

where are the lower and upper bounds of the switching in-
terval under σ(t− τ(t)), respectively, i.e., μτ1 ≤ tτ,k+1 − tτ,k ≤ μτ2.
Ten, the switched system in (1) with time-varying switching
delay is ISS.

Proof. From Defnition 1, in order to prove ISS of (1), we
need to prove the following two propositions:

(1) 9ke− λ1Tτ
u[t0− t)− λ2Tτ

u[t0− t) is bounded by a κL function;
(2) the upper bound 􏽐

k−2
i�0 9k− ie

Γ(tk,t)+􏽐
k−1
j�i+1Γ(tj,tj+1)Ξ (ti,

ti+1) + 9eΓ(tk,t)Ξ(tk−1, tk)+Ξ (tk, t) exists.

(1) In view of Assumption 5, the following inequality
can be derived:

9
k
e

− λ1Tτ
u t0− t[ )− λ2Tτ

u t0− t[ ) ≤ e
kln9

e
− λ1 ak(1− b)+ 1− ak( )c[ ]kμτ1 × e

− λ2 1− ak( )(1− c)+akb[ ]kμτ2 ≤ e
ηk

. (14)

It can be checked from µ1≤ k≤ µ2 that (k+ 1)µ
2≥ t− t0. Ten, we have eηk ≤ e− η

eηt− t0/μ2 ,whichmeans that e− λ1Tτ
u[t0− t)− λ2Tτ

u[t0− t) is
bounded by a κL function e− ηeηt− t0/μ2 .

(2) Tere exist two cases:
(i) λσ(ti

τ,k
−τ(ti

τ,k
)) > 0, then and

1 − e

− λ
σ ti

τ,k
−τ ti

τ,k
􏼐 􏼑􏼐 􏼑

ti+1
τ,k

− ti
τ,k

􏼐 􏼑

λ
σ ti

τ,k
−τ ti

τ,k
􏼐 􏼑􏼐 􏼑

<
1
λ1

. (15)

(ii) λσ(ti
τ,k

−τ(ti
τ,k

)) < 0, then
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1 − e

− λ
σ ti

τ,k
−τ ti

τ,k
􏼐 􏼑􏼐 􏼑

ti+1
τ,k

− ti
τ,k

􏼐 􏼑

λ
σ ti

τ,k
−τ ti

τ,k
􏼐 􏼑􏼐 􏼑

<
e

− λ
σ ti

τ,k
−τ ti

τ,k
􏼐 􏼑􏼐 􏼑

ti+1
τ,k

− ti
τ,k

􏼐 􏼑

λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
.

(16)

For t ∈ [tk, tk+1), the defnition of Ξ(tk, t) and As-
sumption 5 yields

Ξ tk, t( 􏼁≤
1
λ1

􏽘
1≤i≤nkσ

ti
τ,k

−τ ti
τ,k

􏼐 􏼑􏼐 􏼑
�pϵQS

e
− λ1􏽐pϵQS

∆S
p ti

τ,k
,t􏽨 􏼑

× e
− λ2􏽐qϵQU

∆U
q ti

τ,k
,t􏽨 􏼑

+ 􏽘
0≤i≤nσ

ti
τ,k

−τ ti
τ,k

􏼐 􏼑􏼐 􏼑
�qϵQuk

e
− λ1 􏽐pϵQS

∆S
p ti

τ,k
,t􏽨 􏼑

×
1
λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
e

− λ2 􏽐qϵQU
∆U

q ti
τ,k

,t􏽨 􏼑

≤
1
λ1

􏽘
1≤i≤nk

e
− λ1 t− ti

τ,k
􏼐 􏼑e

λ1−λ2( )Tτu ti
τ,k

,t􏽨 􏼑

+
1
λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
0≤i≤nk

e
− λ1 t− ti

τ,k
􏼐 􏼑e

λ1−λ2( )Tτu ti
τ,k

,t􏽨 􏼑

≤ e
λ1− λ2( )TS

1
λ1

+
1
λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼠 􏼡 􏽘
0≤i≤nk

e
ε t− ti

τ,k
􏼐 􏼑

+ 􏽘
0≤i≤nk

e
ε t−ti

τ,k
􏼐 􏼑⎛⎝ ⎞⎠.

(17)

From Assumption 2, we can obtain that
k − i≤ t − ti/μ1(i< k). Ten for t ∈ [tk, tk+1)

􏽘

k−2

i�0
9

k− i
e
Γ tk,t( )+􏽐

k−1
j�i+1Γ tj,tj+1( 􏼁Ξ ti,ti+1( )

≤ 􏽘

k−1

i�0

e
ln 9 t− ti( )/μ1

λ1
􏽘

0≤ q≤ ni

σ
t
q

τ,i
−τ t

q

τ,i
􏼐 􏼑􏼐 􏼑

�l∈Qs

e
− λ1 􏽐l∈Qs

∆s
l

t
q

τ,i
,t( 􏼁

× e
− λ2 􏽐m∈Qu

∆u
m t

q

τ,i
,t( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+
1
λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

0≤ q≤ ni

σ
t
q

τ,i
−τ t

q

τ,i
􏼐 􏼑􏼐 􏼑

�m∈Qu

e
− λ1 􏽐l∈Qs

∆s
l

t
q

τ,i
,t( 􏼁

× e
− λ2 􏽐m∈Qu

∆u
m t

q

τ,i
,t( 􏼁

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ 􏽘
k−1

i�0
e

λ1− λ2( )Ts 􏽘

0≤ q≤ ni

σ
t
q

τ,i
−τ t

q

τ,i
􏼐 􏼑􏼐 􏼑

�l∈Qs

1
λ1

e
ln 9 t

q

τ,i
− ti( 􏼁/μ1 × e

ε t− t
q

τ,i( 􏼁
+ 􏽘

0≤ q≤ ni

σ
t
q

τ,i
−τ t

q

τ,i
􏼐 􏼑􏼐 􏼑

�m∈Qu

e
ln 9 t

q

τ,i
− ti( 􏼁/μ1 1

λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× e
ε t− t

q

τ,i( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(18)
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Ten 􏽐
k−2
i�0 9k− ie

G(tk,t)+􏽐
k−1
j�i+1G(tj,tj+1)

H(ti, ti+1) + H(tk, t) +

9eG(tk,t)H(tk−1, tk) is bounded due to the fact that Q is fnite,
thus completing the proof. □

Remark 9. It can be obtained from (10) that the stability
criteria heavily depend on the values of ak, b, c, uτ

1 and uτ
2. In

(11), for a fxed ak, if b is relatively large, then a large c is
required such that (11) can be satisfed.Tis means that if the
number of ISS-subsystems that replaced by non-ISS sub-
systems is large, then larger number of non-ISS subsystems
replaced by ISS subsystems is needed to make that the total
activation time of ISS subsystems is large enough to ensure
stability.

Remark 10. Recently, the stability problem of switched
systems with switching delay has been investigated by some
existing well-studied results [5, 6, 17, 22–24]. To compare
with existing results, here we take the following special kind
of nonlinear systems as an example.

_x(t) � Aσ(t−τ(t)) + Bσ(t−τ(t))f1(x(t)) + Cσ(t−τ(t))u(t).

(19)

In [5, 6, 17, 22–24], the asynchronously switching only
exists in the input u(t) and the switching delay is shown in
the form of τ(t)� τ. In fact, the switching delay may exist in
the whole switching signal rather than in the switching
controller. For instance, in application layer multicast
(ALM) networks, the switching delay exists in the whole
switching signal due to the complexity of ALM networks
[25]. Clearly, the time-varying switching delay is more
general than the constant delay and it will make the results
more challenging. Actually, the switching instants under the
constant switching delay are tk + τ, k � 1, 2, . . . , i.e., the
switching instants are fxed and the delayed switching in-
terval is also the same as the case without switching delay.
However, from (19), we know that the switching instants
considered here are time-varying and therefore the
switching interval is time-varying as well. In addition to this
main diference, the switching system considered in this
paper is also more general than those in [5, 6, 17, 22–24].

Moreover, the ISS of nonlinear switching systems is con-
sidered here, which is also more general than the exponential
stability of nonlinear switching systems.

Remark 11. If there is no switching delay in (1), then
condition (10) and (11) becomes

ln 9

μ1
− λ1 + λ1 − λ2( 􏼁d< 0. (20)

In the past few years, there have been some existing
results on the stability analysis of switched systems with both
stable and unstable subsystems [8, 19, 26], where it was
shown that the stability of switched systems can be achieved
if the total activation time of stable modes is large enough
such that the negative efect of unstable modes can be
prevailed over by stable modes. Tis point is consistent with
the expression in (20). In addition, a necessary condition for
(20) is that-λ1 + (λ1 − λ2)d< 0, which further means that
d< λ1/λ1 − λ2. Tis is also consistent with Teorem 2 in [9],
which manifests the advantage of this paper.

3.2.Te Linear Switched SystemCase. In this section, we will
extend the results derived in Section A into the linear case. A
time-dependent multiple Lyapunov function is considered
to get the main results. Te advantage of the time-dependent
multiple Lyapunov function is that the time-dependent
multiple Lyapunov function can explicitly provide the in-
formation involving the bounds on switching interval.

Consider the following linear switched systems with
time-varying switching delay:

_x(t) � Aσ(t−τ(t))x(t). (21)

In the following, we will provide a dwell-time dependent
stability criterion for the linear switched system in (21).

Theorem 12. Suppose that Assumption 2 holds. Assume that
there exist positive defnite matrices Pi,1, Pi,2, i ∈ Q, a positive
constant 9> 1, and constants λ1, λ2 such that (10) and the
following conditions hold:

A
T
σ(t−τ(t))Pσ(t),l + Pσ(t),lAσ(t−τ(t)) + λσ(t−τ(t))Pσ(t),l +

Pσ(t),1 − Pσ(t),2

μm

β(t)< 0,

Pi,2 < 9Pj,1, i, j ∈ Q,

(22)

where l, m� 1,2. λ1 and λ2 are the same as the ones inTeorem
8. Ten the linear switched system in (21) with time-varying
switching delay is exponentially stable.

Proof. Defne by

β(t) �
tk+1 − t

tk+1 − tk

, t ∈ tk, tk+1􏼁􏼂 . (23)

Obviously, we can conclude that β(tk) � 1. Note that
t−
k ∈ [tk−1, tk), β(t−

k ) � tk − t−
k /tk − tk−1 � 0 due to the con-

tinuity of time domain. Denote by Pσ(t)(t)

� (1 − β(t))Pσ(t),l + β(t)Pσ(t),2. Ten, construct the follow-
ing Lyapunov function.

Vσ(t)(x(t)) � x
T
(t)Pσ(t)(t)x(t). (24)
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Ten the derivative of Vσ(t)(x(t)) along system (21) is as
follows,

_Vσ(t)(x(t)) � x
T
(t)Pσ(t)(t)Aσ(t−τ(t))x(t) + x

T
(t)A

T
σ(t−τ(t))Pσ(t)(t)x(t)

+ x
T
(t) _Pσ(t)(t)x(t)

� x
T
(t)Pσ(t)(t)Aσ(t−τ(t))x(t) + x

T
(t)A

T
σ(t−τ(t))Pσ(t)(t)x(t)

+ x
T
(t)

Pσ(t),1 − Pσ(t),2

tk+1 − tk

x(t).

(25)

Note that μ1 ≤ tk+1 − tk ≤ μ2. Ten
1
μ2
≤

1
tk+1 − tk

≤
1
μ1

. (26)

Terefore,
Pσ(t),1 − Pσ(t),2

tk+1 − tk

� (1 − ](t))
Pσ(t),1 − Pσ(t),2

μ1

− ](t)
Pσ(t),1 − Pσ(t),2

μ2
,

(27)

where v(t): [0,∞)⟶ [0, 1]. From (25)–(27), we get

_Vσ(t)(x(t))≤ x
T
(t)􏼨1 − α(t) A

T
σ(t−τ(t))Pσ(t),1(t) + Pσ(t),1Aσ(t−τ(t))􏽨 􏽩 + α(t) A

T
σ(t−τ(t))Pσ(t),2(t)+Pσ(t),2Aσ(t−τ(t))􏽨 􏽩

+ 9(t)
Pσ(t),1 − Pσ(t),2

μ2
+(1 − 9(t))

Pσ(t),1 − Pσ(t),2

μ1
􏼩.

(28)

From (22) and the well-known Schur complement
lemma, it is easy to see that

_Vσ(t)(x(t))≤−λσ(t−τ(t))Vσ(t)(x(t)). (29)

Ten by repeating the similar steps in Teorem 8 and by
considering u(t) � 0, we can conclude that the linear
switched system in (21) with time-varying switching delay is
exponentially stable. Tis completes the proof.

InTeorem 12, if the switching delay is overlooked, then
the following dwell-time dependent stability criterion for
linear switched system can be obtained directly, which has
been investigated in [20]. □

Corollary 1 . Assume that there exist positive defnite
matrices Pi,1, Pi,2, i ∈Q, a positive constant 9> 1, and con-
stants λ1, λ2 such that (11) and the following conditions hold:

A
T
i Pi,l + Pi,lAi + λiPi,l +

Pi,1 − Pi,2

μm

< 0,

ϵ �
ln 9

μ1
− λ1 + λ1 − λ2( 􏼁d< 0,

Pi,2 < 9Pj,1, i, j ∈ Q,

(30)

where l, m � 1, 2.λ1 � minj∈QS
λj􏽮 􏽯.λ1 � maxq∈Qu

λq􏽮 􏽯. Ten
the linear switched system in (21) without time-varying
switching delay is exponentially stable.

Remark 14. Te time-dependent multiple Lyapunov func-
tion was proposed in [20] and it was shown that it can
explicitly provide more information on upper and lower
bounds of switching interval, so as to obtain less

8 Discrete Dynamics in Nature and Society



conservative results. Compared with [20], the novelties of
this paper can be summarized as follows:

(1) Model diference: Te switched system with
switching delay is considered in this paper. It can be
seen from Figure 1 that due to the existence of
switching delay, some number of ISS subsystems
may be replaced by non-ISS subsystems, and some
number of non-ISS subsystems may be replaced by
ISS subsystems. It is known to all that, if too many
ISS subsystems are replaced by non-ISS subsystems,
then the ISS will be destroyed and if there are suf-
fciently many non-ISS subsystems are replaced by
ISS subsystems, then the ISS can be enhanced.
Terefore, it is very important to characterize how

many ISS subsystems will be replaced by non-ISS
subsystems under the switching signal σ(t− τ(t)). In
this paper, an assumption (Assumption 5) is pro-
posed to characterize the ratio of the number of ISS
subsystems that is replaced by non-ISS subsystems.

(2) Objective diferences: Te main aim of [20] is to
investigate the quasi-consensus problem of non-
linear multiagent systems with both cooperation and
competition interactions. Te main purpose is to
derive some sufcient conditions such that quasi-
consensus is achieved. However, in this paper, our
main aim is to investigate the ISS problem of
switched systems with switching delay, where the
system is subjected to disturbance input. Te
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0.06
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x1 (t)
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Figure 2: States of the subsystem 1 in (32).
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Figure 3: States of the subsystem 2 in (32).
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existence of the disturbancemakes the system cannot
converge to zero, which also brings difculties in our
theoretical analysis.

4. Numerical Example

In this section, two examples will be given to illustrate the
efectiveness of our theoretical results. Te frst example is
given to verify the theoretical results of the paper. Te
second example is presented to show that our results can be
applied to consensus of multi-agent systems with co-
operation and competition interactions.

Example 1. In this example, we consider the following
nonlinear switched system in (1) with switching delay.

_x(t) � fσ(t−τ(t))(x(t), u(t)), (31)

where fσ(t−τ(t))(x(t), u(t)) � Aσ(t−τ(t))x(t) + gσ(t−τ(t))

(x(t)) + Bσ(t−τ(t))u(t). For simplicity, we assume that there
are two modes and the parameters are chosen as follows:

A1 � diag −3, −3{ },

A2 � diag 0.2, 0.2{ },

g1(x(t)) �
0.2 0.1

0.1 01
􏼢 􏼣

sin x1(t)( 􏼁

sin x2(t)( 􏼁
􏼢 􏼣,

B � [0.1 0.1]
T

,

g2(x(t)) � 0.8∗
0.2 0.1

0.1 0.1
􏼢 􏼣

sin x1(t)( 􏼁

sin x2(t)( 􏼁
􏼢 􏼣.

(32)

Te state trajectories of subsystems 1 and 2 are shown in
Figures 2 and 3, respectively. From which, it can be seen that
the subsystem 1 is ISS stable, while the subsystem 2 is non-
ISS stable. Te Lyapunov function is chosen as:
V1(x(t)) � x2

1 + x1x2 + x2
2, V2(x(t)) � xT(t)x(t). Ten, we

can obtain μ1 � 1.5, λ1 � 2.1879 and λ2 � −1.0587. Let TS �

0.75 and d � 0.6. Assuming that ak � 0.4, b� 0.2 and c� 0.5.
Te switching signal is chosen as follows:
1⟶ 2⟶ 1⟶ ..., where the activation time of ISS and
non-ISS subsystems are 2 s and 1.5 s, respectively. Choosing
τ(t)� 0.5|sin(t)|, then µτ1 � 0.9597 and µτ2 � 2.422. It is easy
to see that σ(t) satisfes Assumption 5. Letting u(t)� sin(t)|,
the state of the switched system in (31) with and without
switching delay are plotted in Figures 4 and 5, respectively. It
can be seen from Figures 4 and 5 that although both the ISS
of the switching systems in (31) with and without switching
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0.03
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0.05
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x1 (t)
x2 (t)

Figure 4: ISS of the switched system in (32) with time-varying
switching delay.
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Figure 5: ISS of the switched system in (32) without time-varying
switching delay.
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Figure 6: States of the multi-agent system in (33) with time-
varying switching delay.
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delay can be guaranteed, the system with switching delay
shows better convergence.

Example 2. In this example, we will show that our results
can be applied to the consensus problem of multi-agent
systems. Usually, the interactions among agents can be
classifed into two categories: one is called cooperation that
is benefcial to consensus and the other is called competition
that is harmful to consensus [20]. Assume that the dynamics
of three linear agents are as follows:

_x(t) � Ax(t) + μi,σ(t−τ(t)), i � 1, 2, 3, (33)

where A�
−0.5 0
0 0.2􏼢 􏼣, xi ∈ R2 is the state the agent

i, ui ∈ R2 is the control input. For simplicity, we also assume
that there are two modes and the two kinds of protocols are
designed as μi,σ(t−τ(t)) � 􏽐

3
j�1(xi − xj) if σ(t − τ(t)) ∈ QS and

μi,σ(t−τ(t)) � 􏽐
3
j�1(xj − xi) if σ(t − τ(t)) ∈ Qu. Ten the

multi-agent system in (33) can be rewritten as the following
compact form by using the Kronecker product technique:

_x(t) � I3 ⊗A( 􏼁x(t) + Lσ(t−τ(t)) ⊗ In􏼐 􏼑x(t). (34)

Choose V1(x(t)) � (x1 − x2)
2 + (x2 − x3)

2 and
V2(x(t)) � 1.2[(x1 − x2)

2 + (x2 − x3)
2], which leads to

9 � 1.4. Ten, we can get λ1 � 5.6 and λ2 � −7.68. For sim-
plicity, we assume that there are two switching modes and
the switching signals are the same as the ones in Example 1.
According to Teorem 12, choosing ak � 0.5, b� 0.3 and
c� 0.6, we can get that the activation time of the cooperative
interaction and competitive interaction be 2.5 s and 1 s,
respectively. In addition, the switching delay is the same as
the one in Example 1. Ten the state trajectories of x(t) are
shown in Figure 6, which means that the consensus of multi-
agent system in (33) with cooperative and competitive in-
teraction can be reached.

5. Conclusion

In this paper, the ISS has been investigated for a class of
nonlinear switched systems with time-varying switching
delay, where ISS and non-ISS subsystems are considered
simultaneously. Some sufcient conditions for ISS of
switched systems with time-varying switching delay have
been provided by using Lyapunv function based approach.
Te results are then extended into the linear switched sys-
tems with switching delay, and a time-dependent multiple
Lyapunov function is constructed to obtain less conservative
results mainly because that the useful information on lower
and upper bounds of the switching interval can be provided
by the time-dependent multiple Lyapunov function.
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