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Edge networking brings computation and data storage as close to the point of request as possible. Various intelligent devices are
connected to the edge nodes where trafc packets fow. Trafc classifcation tasks are thought to be a keystone for network
management; researchers can analyze packets captured to understand the trafc as it hits their network. However, the existing
trafc classifcation framework needs to conduct a unifed analysis, which leads to the huge bandwidth resources required in the
process of transferring all captured packet fles to train a global classifer. In this paper, a semisupervised graph neural network
trafc classifer is proposed for cloud-edge architecture so that cloud servers and edge nodes could cooperate to perform the trafc
classifcation tasks in order to deliver low latency and save bandwidth on the edge nodes. To preserve the structural information
and interrelationships conveyed in packets within a session, we transform trafc sessions into graphs. We segment the frequently
combined consecutive packets into granules, which are later transformed into the nodes in graphs. Edges could extract the
adjacency of the granules in the sessions; the edge node side then selects the highly representative samples and sends them to the
cloud server; the server side uses graph neural networks to perform semisupervised classifcation tasks on the selected training set.
Our method has been trained and tested on several datasets, such as the VPN-nonVPN dataset, and the experimental results show
good performance on accuracy, recall, and F-score.

1. Introduction

In the edge network environment, tens of millions of edge
nodes are linked together through countless network nodes
for data interaction and analysis. At the same time, more and
more edge devices are also joining the Internet of Tings.
Each network application has its own corresponding trafc
behavior characteristics. With the continuous emergence of
various new network applications and network application
layer protocols, the complexity of network trafc is in-
creasing and becoming more changeable, dynamic, and
heterogeneous. To meet network specifcation requirements
for a given type of service, trafc data need to be classifed
with a high degree of accuracy to satisfy the QoS re-
quirements. Nowadays, the mainstream trafc classifcation
method always arranges its models on the centralized cloud
server [1], and the edge terminals only take responsibility for

sending the collected trafc to the cloud server to train the
trafc classifer. Tat will result in subpar real-time per-
formance and raise edge nodes’ bandwidth overhead.

Te centralized processing mode based on cloud com-
puting models has successfully aggregated computing power
and storage capacity and performed unifed network
management. Due to the limitations of the edge node’s
hardware resources, it is often necessary to provide relevant
services to users through remote cloud computing resources,
and the cloud server still bears a huge computing load.
Terefore, it is a new trend to mount neural networks on
edge nodes. With more and more edge terminals joining the
network, the existing centralized cloud computing service
has delegated computing resources to the edge, allowing
more data processing tasks to be completed nearby. Te
current trend in technology development is more inclined to
perform tasks on fexible but resource-constrained terminal
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devices. However, for AI technology, most of the intelligent
algorithms are computationally intensive and require strong
computing power for support. Due to the limitations of the
hardware performance of the edge node device itself and the
network communication environment, we are faced with the
problem that it is difcult to realize all of them at the
same time.

In this paper, we paid attention on how to perform trafc
classifcation tasks in edge networks. Te existing trafc
analysis and identifcation framework needs to conduct
unifed analysis [2–4], which leads to the huge bandwidth
resources required in the process of transferring all captured
packet fles to train a global classifer. When faced with the
current situation of edge networks featuring high dynamic,
large scale, low bandwidth resources, and weak links, the
depth model with a large parameter scale fnds it difcult to
play a role on edge nodes. In order to maintain the efciency
of edge-side trafc identifcation and traceability, it is
necessary to design lightweight trafc analysis models and
traceability suitable for cloud-edge end-to-end collaboration
scenarios and be able to match and analyze the service QoS.

Network trafc classifcation maps the trafc fow
through the network according to its type; thus, the man-
agers can have an overview of the network conditions, which
is also thought to be a prerequisite for subsequent man-
agement decisions.Tere are usually three types of classifers
applied in the trafc classifcation felds [5]: port-based
classifcation methods that group trafc’s kinds according
to port information; machine learning-based methods that
classify trafc according to the statistical features (e.g.,
conventional machine-based approaches connect the sta-
tistical signatures from trafc samples to each application
type); and expert labor to select the features to ft the models.
Te features that are usually used are packet length, packet
direction, packet arrival time, and so on. However, in recent
years, researchers have focused on automatically learning
feature-based trained deep neural network models for well-
known application kinds. Deep learning-based methods
make up for the limitations brought by classic machine
learning methods as they do not incorporate human labors.
Many deep learning models have been applied in the trafc
classifcation feld [6–8]. Recently, Pang et al. [6] proposed
a method that applied graph neural networks to trafc
classifcation. To generate graphs, session’ packets are
extracted as nodes, and edges are used to record the order
information for the trafc sessions; however, the chained
graph model only considers the order arrangement of the
packets and does not explore the interrelationships between
the packets in a session.

In this paper, we propose a novel semi-supervised trafc
classifcation method based on graph convolutional neural
networks. We process the trafc packets uploaded and
transform them into graphs to convey their structural in-
formation. Ten we use graph neural networks to further
extract the features of the trafc data. Finally, we have used

multiple GCNNs to expand the training set for the cloud
server. On the publicly available network trafc dataset
“ISCX VPN and Non-VPN dataset,” we verify the efcacy of
our model. Te experiment’s fndings show that it accom-
plished outstanding classifcation.

Tis paper is to address the existing issues for trafc
classifcation tasks in edge networks as the existing methods
like deep packet inspection (DPI) [9] remain, which require
unifed trafc identifcation analysis after port mirroring,
leading to huge bandwidth resources occupied during the
process of copying messages from one or more ports (the
source port) of the device to a monitoring port (the desti-
nation port) of the device. Te upload of the complete trafc
data from edge nodes to a cloud server that is frequently used
in traditional methods brings a lot of problems, as the ex-
plosive growth of trafc in its volume and complexity will
result in consuming a large number of bandwidth resources
and poor responsiveness of the edge system, thus it cannot
assume real-time performance and impede other normal
services. Semi-supervised methods can be a good choice to
solve the problem that it is easy to collect data but labeling it
is cumbersome, especially when given themassive amount of
trafc per second forwarding in and out of edge gateways.
And also, to relieve the bandwidth pressure of transferring
the trafc data from the edge nodes to the cloud server, the
edge nodes will select some samples to upload for the
training of the cloud server.

Besides, to better extract the features when generating
the raw captured trafc sessions into graphs. If we consider
the packets in a session as nodes, all nodes have their own
feature information (e.g., sequential features of raw packet
streams and statistical features concluded from packet bytes)
and structural information (e.g., its relative position in the
session and the structure of its byte-length sequence), we can
abstract a session to a graph to cover the inter- and intra-
relationships it conveys.

Te following is the paper’s primary contributions:

(1) Te designed model is typically applied to the cloud-
edge architecture as the edge nodes extract the
features from the raw capture fles that come in from
the terminal side and select the samples for the
training set, while the server side performs the
semisupervised learning that tries to fnish graph
classifcation jobs with just a few samples of labeled
graphs. In our framework, edge nodes use several
GCNNs to choose highly representative graph in-
stances from the newly collected data, and after
pseudo-labeling, add them to the training set.

(2) Rather than only regarding the packets in a session as
the nodes in the graph, in this paper, we borrow the
concept of “fow granules” to cover the internal
information between data packets. Individual
packets in sessions are extracted and packed into
several granules which are incorporated into the
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graph as nodes. Te relative positions and structural
information of the granules are transformed into
edges. A graph that represents a session and is la-
beled as the session’s trafc type is later used in
classifcation.

(3) Our model uses graph convolutional neural net-
works to capture the trafc data’s structural in-
formation. Our solution surpasses various state-of-
the-art approaches and produces great results on
labeled network trafc datasets that are publicly
available for trafc classifcation.

Te arrangement of the remaining sections in this paper
is as listed: Te proposed trafc classifcation algorithms for
semisupervised jobs are then discussed, starting with an
introduction to the associated work and a description of the
preliminary steps. Te following section of this research
paper introduces the datasets utilized and assesses the
performance of the proposed model in comparison to
previous network trafc classifcation methods. Finally, the
paper comes to a conclusion.

2. Related Works

2.1. Trafc Classifcation. In light of the swift advancement
of network technologies and the explosive growth of the
scale of network trafc, network trafc of diverse types
requires diferent underlying network resources. Terefore,
in order to achieve efcient network management and
improve the quality of network service, it is necessary to
efectively monitor and classify network trafc.

In recent years, as a result of the rapid development of
deep learning in artifcial intelligence and other domains,
many academics have started attempting to use deep
learning to solve the problem of network trafc classifca-
tion, thus achieving the purpose of online intelligent
identifcation of network trafc. Because they extract fea-
tures without the help of experts, deep learning-based ap-
proaches are diferent from conventional machine learning-
based methods or packet inspection-based methods. Ad-
ditionally, deep learning-based methods are more capable of
learning than conventional machine learning methods,
which allow them to perform better overall [4].

Wang et al. [10] proposed a 1D-CNN-based encrypted
trafc classifer extracting features directly from bytes of raw
trafc. Lotfollahi et al. [11] proposed a method called deep-
packet which used the frst 1480 bytes of each IP packet as
model input to perform packet-level trafc classifcation
tasks and accomplished excellent performance. Lopez-
Martin et al. [12] combined recurrent neural networks
(RNNs) and CNNs to categorize trafc for every packet in
the session using six extracted statistical features. An RNN-
based technique for trafc classifcation termed BSNN was
proposed by Li et al. [13]. Long short-term memory (LSTM)
or gated recurrent units (GRUs) serve as the foundation for
the RNN component of BSNN. Network datagrams are
treated as input by BSNN, which provides the categorization
outcomes immediately. Liu et al. [14] later introduced the
FS-Net, an end-to-end trafc classifcation model in which

a multilayer encoder-decoder structure fed with fows’ se-
quential features as packet length sequence was used to
further enhance the RNN-based encrypted trafc classifer.
In [15], multimodal multitask cutting-edge deep learning
approaches are applied in a systematic framework to create
a viable mobile trafc classifer, which can jointly learn the
shared representation of the sequential features (payload
bytes) and statistical features (informative protocol header
felds) of sessions. Tat work has been further improved in
[16], and explainable artifcial intelligence (XAI) is employed
to extrapolate the categorization process of the improved
version on the state-of-the-art multimodal trafc classifer
[17]. In [18], hybrid neural networks are used to analyze the
dual-mode features that are extracted from the raw
trafc data.

In Tables 1 and 2, the related work section is com-
plemented by a table categorizing the reviewed works along
with their primary distinguishing features so as to position
the present contribution efectively. In Table 1, the single-
modal trafc classifer is presented, and within each cate-
gory, the works are presented in order of publication. Te
following defnitions are provided for acronyms and col-
umns. Column “Research” listed the research for compar-
ison. Column “Input Data” means the input data for the
deep learning models; in the entries, LX means the Xth layer
of the ISO/OSI model. Column “Trafc object,” briefy
known as TO, means the trafc classifcation granularity
adopted, Entry “B” means bifow/session, “F” means fow,
“P” means packet, and “D”means IP datagram. Column “DL
Classifer” means the deep learning models adopted for the
trafc classifer, in the entries, BiGRU means bi-directional
gated recurrent unit, CNN means convolutional neural
network, LSTM means long short-term memory, MLP
means multilayer perceptron, and SAE means stacked auto
encoder. Column “Open,” briefy known as O, means
whether the publicly available dataset has been adopted,
Entry “Y” means Yes, “N” means No, and “P” means partial.
In Table 2, multimodal trafc classifcation architectures are
listed. Te following defnitions are provided for columns
and acronyms in Table 2 that are absent from Table 1.
Column “Multimodal,” briefy as known as MM, means
whether the multimodal deep learning techniques are
employed. Column “Multitask,” briefy known as MT,
means whether the multitask deep learning techniques are
employed. Column “Supervised Shared Representation” and
Column “Training-Phase Specifcation,” briefy known as
SSR and TPS, respectively, clarify whether the trafc clas-
sifer uses those techniques. For all above columns, “Y”
means Yes, “N” means No, “P” means Partial, and “-” means
not applicable.

We can fnd that most classifers only handled single
types of features for classifers and few of them dealt with
multimodal inputs (MM columns) with specifc subsets of
the heterogeneous inputs being trained on the lowest layers.
So, we concluded the single-model and multimodal archi-
tectures, respectively, in Tables 1 and 2.

A bifow is the most frequently used trafc object (TO
column), both for extracting input data and for assigning
classifcation labels. Also, deep learning models tend to
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extract features from the raw input in an end-to-end way. It
is the way that deep learning methods learn automatically
and do not involve expert labors so that they gain popularity
thanmachine learning methods in trafc classifcation felds.
Numerous alternative methods have been developed for the
classifcation tasks, including Deep neural networks
(DNNs), various autoEncoders (AEs), one- and two-
dimensional convolutional neural networks (1D and 2D-
CNNs), and various recurrent neural networks (RNNs) (DL
classifer column). Besides, it showed that a proportion of
these publications validate and assess the performance of
their classifers using publicly accessible datasets (open
columns).

In this paper, to learn the diferent views of the classi-
fcation object, we have tried to combine the sequential
features and statistical features to extract the features from
the raw PCAP fles; that is, we have tried to take advantage of
the packet length sequence to segment the packet-byte se-
quence into granules (which could be transformed into the
nodes in the graphs). Ten graph neural networks are
employed for trafc classifcation.

2.2. Semisupervised Trafc Classifcation. In fact, we cannot
label all samples, as it will require a lot of labor. In order to
solve the problem of insufcient network trafc data labels,
methods based on semisupervised deep learning have gained
popularity. Semisupervised learning (SSL) is a key problem
in the felds of machine learning and pattern recognition. It
is a technique for learning that combines supervised and
unsupervised learning. Regarding semisupervised learning,
pattern recognition is performed on the basis of both labeled
and unlabeled data in huge quantities. Semisupervised
learning can produce relatively good accuracy while also

requiring the fewest number of workers possible. Conse-
quently, semisupervised learning is receiving increased
attention.

In recent decades, numerous deep learning-based semi-
supervised methods have proven their efciency and ef-
fectiveness in the trafc classifcation feld. Deep convolu-
tional generated adversarial networks (DCGAN) have been
employed in [19]. Te accuracy of their method is almost the
same as that of the supervised method for the labeled large
datasets. Te authors in [20, 21] adopted autoencoders,
which are thought to be a common technology in semi-
supervised learning. In [22], the author used stacked sparse
autoencoders (SSAEs). Te results obtained demonstrate
better performance than the traditional model. In [23], the
author proposed a variational automatic encoder (VAE)-
based model for anomaly detection.Temodel is superior to
other semisupervised learning models, and the evaluation
index increases by 5–10%.

Wang et al. [24] proposed a SDN edge gateway-
embedded semisupervised trafc classifer based on gener-
ative adversarial networks (GANs). By training and testing
on the public dataset “ISCX2012 VPN-nonVPN,” the ex-
perimental results demonstrate that the ByteSGAN can
efectively outperform other supervised-learning based
methods such as CNN. In this paper, the graph convolu-
tional neural networks (GCNNs) are further utilized in the
trafc categorization model. GCNN is a kind of convolu-
tional neural network that can directly act on graphs and
utilize their structural information.

2.3. Trafc Classifcation in Edge Networks. In the edge
network environment, where network trafc of various
heterogeneous types grows exponentially, how to efectively

Table 1: Related works based on deep learning models (single-modal architectures).

Research Input data TO DL classifers O

Wang et al. [10], proc. IEEE ISI (1) PCAP trace F/B 1D-CNN Y(2) First 784 bytes of L4 payload

Lopez-Martin et al. [12], IEEE access 6 felds extracted per packets and frst 20 packets per bifow B 2D-CNN
+LSTM N

Li et al. [13], IWQoS IP datagram D RNN N
Liu et al. [14], proc. IEEE INFOCOM IP packet lengths B BiGRU N
Lotfollahi et al. [11], soft computing First 1500 bytes of L2 payload P SAE/1D-CNN Y

Table 2: Related works based on deep learning models (multimodal architectures).

Research Input data TO DL classifer MM MT SSR TPS O

Aceto et al. [17], Elsevier ComNet (1) First 576 bytes of L4 payload B 1D-CNN&BiGRU Y N — Y P(2) 4 felds for the frst 12 packets

Aceto et al. [15], JNCA (1) First 784 bytes of L4 payload B 1D-CNN&BiGRU Y Y Y Y Y(2) 4 felds for the frst 32 packets

Nascita et al. [16], TNSM (1) First 576 bytes of L4 payload B 1D-CNN&BiGRU Y N — Y Y(2) 4 felds for the frst 12 packets
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perform trafc classifcation tasks in edge scenarios remains
a problem for researchers. As mentioned, when dealing with
SDN edge gateways, Wang et al. [24] proposed a semi-
supervised trafc classifer using GANs. In SDN edge
gateways, various intelligent devices are connected to the
edge gateway through wireless access technologies, and all
data packets from these smart devices will be queued on the
WAN interface, waiting for the edge gateway to forward
them out of order. Te trafc classifcation process is mostly
concentrated on the SDN controller. Obviously, SDN
controllers will sufer from huge fow processing pressure.
Tough in [24] only trafc classifers that are applied in SDN
edge networks are considered, it can still give some in-
spiration for trafc classifers applied in edge networks.

In an edge environment, there is often just a virtualized
resource pool made up of many servers. However, when
a number of terminal devices are linked to the edge platform
via the edge side, there is frequently signifcant resource
demand on the edge side. Numerous terminals and sensors
are networked to the edge platform in numerous contexts,
including medical, industrial, and the Internet of vehicles.
Higher standards are needed to be presented for edge clouds.
As shown in Figure 1, in the process of edge-side network
trafc classifcation and recognition, the DL models are
trained based on the labeled network trafc data. However,
in the actual situation, the classifer often receives the net-
work trafc of unmarked categories, resulting in mis-
classifcation and other problems. In addition, because the
labeled sample size is too small, the model trained with small
samples is easy to fall into over-ftting of small samples and
under-ftting of target tasks.

With the increasing complexity of network topology and
the explosive growth of network applications, the network
trafc on the edge side presents features like nonlinearity,
high complexity, and auto-correlation. At the same time, the
network trafc of diferent applications varies greatly, which
brings difculties and challenges to the accurate marking of
network trafc. Te traditional trafc analysis and identi-
fcation framework is based on the cloud server for unifed
analysis, which leads to the need for huge bandwidth re-
sources in the process of transmitting all captured packet
fles to the cloud server. Terefore, current model applica-
tions are more and more inclined to deploy from the cloud
to the edge to reduce bandwidth consumption.

In the cloud-edge integration system, the edge gateway
can realize local linkage between the device and data pro-
cessing and analysis without networking [25]. However, the
edge node deployment trafc analysis model still has
problems. When faced with low-bandwidth resources and
weak-link edge networks, the deep learning model with huge
parameters is unable to play a role on the edge nodes. In
order to perform accurate trafc classifcation tasks on the
edge-side network, cloud-edge collaboration can be used to
balance the processing pressure of edge nodes and maximize
the advantages of cloud computing and edge computing
with high processing efciency and low latency.

Te edge gateways and cloud server can cooperate to
share the pressure of the central cloud node. Some of the
data computation and storage work is carried out by the edge

computing node, reducing the computing processing
pressure of the edge cloud server to aggregate the trafc data
of each node for unifed trafc analysis. Based on this, this
paper proposes a semisupervised network trafc classifca-
tion and identifcation method for cloud-side collaboration
scenarios. Tis method distributes part of the trafc analysis
tasks on the central cloud server and the edge gateway to
jointly complete the edge-side trafc identifcation task and
realize the efcient use of computing resources.

3. Graph-Based Traffic Classification in Edge
Computing Networks

To deal with bandwidth shortage problems brought by
traditional methods, we are considering a cloud-edge in-
tegrated collaborative system with several edge gateways and
cloud servers. Traditional trafc classifers tend to collect all
captured raw trafc fles together, and that may eat up the
network bandwidth while transmitting raw fles. In a cloud-
edge integrated system, we split the trafc classifcation tasks
into several phases and put them on edge nodes and a cloud
server to fully utilize all computing resources and prevent
latency and bandwidth insufciency when putting all models
and trafc raw captured fles on one side. Te detail is
depicted in Figure 2.

At the edge gateway layer, there are mainly two stages as
feature extraction and graph generation.Te specifc process
is as follows:

(1) Te edge-side gateway captures and processes the
features of the trafc packets uploaded by the ter-
minal node to avoid a large number of complete
packets’ information being uploaded to the cloud
center, so as to reduce the data processing delay and
relieve the resource pressure on the cloud server.

(2) At the same time, the edge gateway will use the graph
neural networks to further transform the trafc data
into graphs, using “granules” to further extract the
interrelationship between individual packets within
a session. Multiple GCNNs are also used to select and
transmit the samples with high confdence to the
cloud server.

downloading uploading

TerminalsTerminals

collecting
traffic data collecting

traffic data

edge
gateway

bandwidth

DL model is used for
training

labeled dataset
unlabeled dataset

Figure 1: Te trafc classifcation process in edge gateways.
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(3) At the edge-server layer, the cloud server conducts
semi-supervised trafc classifcation on the trafc
information selected and uploaded by the edge node,
then unifes the training model, and then delegates
the model weight and other information to the edge
gateway.

3.1. Graph Generation Based on Granules in Edge Nodes.
Te edge nodes (here we mean edge computing gateways)
will collect all raw packet fles (PCAPs) captured by edge
devices that are abstracted as edge nodes in the network.Te
edge nodes will further process the PCAP fles and put them
into the graph neural networks to classify the trafc session.

Te defnition of the fow is provided frst. Flow sepa-
ration is the initial step after receiving the raw trafc fles
(PCAPs). Trafc is made up of fows, and a fow is a col-
lection of packets that can be uniquely identifed by the
traditional fve-tuple notation (source IP, destination IP,
source port, destination port, and protocol). Sessions are
made up of packets with an exchangeable pair of network
source and destination, and they include all packets sent
between two hosts during the course of a session. Tis paper
uses a session as the trafc classifcation granularity.

We typically cover 2 types of features: session-level
features and the packets’ sequential features. Packet
length sequence (i.e., the number of bytes per packet) is used
as a session-level features. Besides, we typically select the frst
M bytes for every packet to compose the byte sequence of
this session (packets with length less thanM will be pad with

zeros to reach M-byte sequence, while the packets’ bytes
exceeding the range of M will be truncated). As depicted in
Figure 3, a bifow classifcation object can be transformed
into a vector of X ∈ Rn×M, where n is the size of packets of
the session. For the packet level, the individual packet can be
vertically segmented into several granules, as shown in
Figure 3(a), that would be transformed into vertices of the
graphs. When segmenting the neighboring packets into the
granules in the next part, we use the session’ statistical
features (a session’s packet length sequence) to perform the
packet segmentation.

Secondly, the edge gateway further processes the trafc
data uploaded by the edge devices. As depicted in
Figures 3(a) and 3(b), each packet-byte sequence is vertically
segmented according to the session-level information.

To fully explain how to transform the session’s packet-
byte sequence according to the packet length sequence. At
frst, we introduce the concept of “fow granule.” Te
concept of “fow granule” used in this paper is inspired and
derived from [26].Te term “fow granule” was initially used
in [26], which explained how neighborhood data packets
with the same packet length might be aggregated to create
granules. As a result, an aggregated packet sequence rather
than a single, unique packet now represents the information
to be processed. Here, we try to segment the packet sequence
to extract the internal relationship between the packets
themselves. If consecutive interarrival data packets tend to
show similarities in their length or very probably appear in
the same neighborhood, they will be combined to become
a “granule.” Te session is composed of a sequence of

Gateway

Semi-supervised Traffic Classification
Based on GCNNsEdge Server

Pseudo labelling
some graph labels

Select high representative samples

GCNNs

Raw Captured Packet Files
e.g. PCAPs

Devices

Transform into
graphs

Segment into Flow Granules Flow Granules

Figure 2: Te fow diagram of the semisupervised trafc classifer.
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granules that will still keep the order within the granule itself
and within the session. Now suppose, we segment the
session sequence into several subsequences to fnd the
granule segments. Our goal is to segment the session’ packet
sequence X � x1:T � (x1, . . . , xT), where T is the packet size

for that session. Neighboring packets with similar sizes can
be combined together to make a granule that later can be
transformed into a node in graphs. After vertical segmen-
tation, we get the granule G(y)|y�1.2...Y per session as formula
(1); Y is the size of the granules per session.

G(y) � ∪
j

k�i
Pi ∈ U,

s.t. Pi − Pi+1


< thresholdv.

(1)

After vertically segmenting the packets to make up the
fow granules, to further transform the fow granules into
graph nodes, the packets within the fow granule are
combined, as depicted in Figure 3(c), by calculating the
average number of the packet bytes.

G
′
(y) �

1
Uj






j

k�i

Normalized BytePi

m , (2)

where m � 1, 2, . . . , M, and M means the length of the
packet sequence. |Uj| means the packet size of that granule.

Nodes correspond to granules, while edges refer to the
adjacency between the granules when transforming every
session’s packet-byte sequence into graphs. As opposed to
the proposed methods in [6], the features of every packet in
the session are extracted to represent the graph’s nodes and
then a chained graph is created according to the session’s
packet order. In this step, we not only cover the packet-byte
sequence itself but also explore the interrelationship between
the consecutive data packets, as an individual granule can be
represented as a node in graphs.

Each node is associated with a feature vector for that
granule. Ten edges generated. By default, each edge is
undirected. After obtaining the nodes, we extract the set of
edges between nodes according to the adjacency between
packets. Here we use undirected edges because undirected
edges capture the relative sequence relationship between
each granule better than directed edges. Suppose the node
feature matrix at this point is F ∈ Ry×M, accordingly, we
construct node correlation functions, which take a node
feature matrix as input and produce the corresponding
adjacency matrix. AT ∈ Ry×y: If two original messages are
adjacent in the raw sequence, an undirected edge is estab-
lished between the corresponding two nodes.

AT � Corr XT( , (3)

where Corr(∙) computes correlations or dependencies of
each channels (nodes) on the basis of XT. Node correlation
functions come in a variety of options; here, we calculate the
correlations by

Dif αa, αb( ≜ 1 −
2·αaαb

T

αaαa
T

+ αbαb
T

. (4)

In this stage, we extract the relationships between the
subsequent data packets in addition to using the isolated
packet information and transform a session into graphs.
Later, we can use the graph neural networks to model the
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Figure 3: Transforming the session’s packet-byte sequence into
graphs.
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trafc data and further mine the inner relationship between
the trafc data to its types.

3.2. Semisupervised Trafc Classifcation in Edge Server and
Centralized Server. In the last subsection, sessions have been
transfered into graphs to convey the structural information
between packets within the session. In this stage, our goal is to
forecast the class labels of graphs in order to forecast the label
of the trafc session that turned into the graph. A node in
a graph often symbolizes an object in the real world; in this
paper, it means the granules. Moreover, sessions can also be
interconnected and abstracted as nodes in the global graph.
Here we explore a more difcult but practically valuable
scenario in which a node is a graph instance in and of itself.
After the raw byte sequence of the trafc sessions has been
transformed into several graphs to model the in-
terdependency within the sessions’ packets themselves. We
can fnd that the session-level graphs show their similarity
when the graphs are categorized in the same application types,
which means, a set of graph instances can be modeled into
a hierarchical graph connecting individual graphs with edges.

Regarding graph classifcation tasks, typical graph-based
neural network algorithms often need a large number of
labeled graph samples. However, since large-scale labeled
graph datasets often come at a signifcant cost in terms of
time and efort, graph classifcation jobs frequently en-
counter the issue of a lack of labeled graph samples. Besides,
considering the edge networks, we cannot deploy all the
neural networks on the edge nodes since only limited re-
sources are allowed on edge nodes. If all the work is pursued
on the centered servers, it would lead to high latency and
wasting computing resources. In this paper, active learning
techniques are employed to enhance the efciency of semi-
supervised learning, which unifes the edge nodes and
central server.

In this part, we frst introduce a self-attentive graph
embedding techniques to include graphs of any size into
fxed-length vectors, which are frequently utilized as semi-
supervised classifcation input. In addition to greatly sim-
plifying the representation of a hierarchical graph, the
embedding approach also ofers meaningful interpretations
of an individual graph instance through a self-attentive
mechanism that distinguishes their role in categorizing
a graph instance. Tis phase that connects and unifes the
edge nodes and cloud server can be simply separated into
two parts as graph embedding and graph-based classifca-
tion, which are depicted in Figure 4. Te former is to
transform the graph with variable node sizes into a fxed
length vector, and latter can be the classifcation input in the
latter part.

As follows, we give the descriptions for the graph em-
bedding part that takes the processed samples from the
previous stage as input. As depicted in Figure 5, the purpose
of this part is to convert the graph with diferent number of
nodes into a vector en with a unifed dimension and then use
it as the input for graph classifcation. Firstly, two layers of
GCNs are applied, with the adjacency matrix A ∈ Ry×y and
attribution matrix F ∈ Ry×M as input. Ten, we get

H � AReLU AFW0
 W1

. (5)

In the former formula, A � D− (1/2)
(A + In) D− (1/2) is the

normalized form of adjacency matrix A where In is identity
matrix and D � m(A + In)im. Here, W0 ∈ RM×h and
W1 ∈ RM×v are two weight matrices.

Next, we use the self-attentive mechanism to assign
diferent weights to nodes in the graph, to diferentiate the
nodes within a graph. After softmax, we can also get the
predicted class probabilities ψ after a fully connected layer.

S � softmax Ws2tanh Ws1H
T

  , (6)

where Ws1 ∈ Rd×v and Ws2 ∈ Rr×d. Te purpose of multi-
plyingWs1 is to convert the node representation from a v- to
a d-dimensional space linearly. After that, nonlinearity is
added by coupling with the function tanh. Ws2 is used to
infer the importance assigned to each node within the graph.

Lastly, we get the e ∈ Rr×v by multiplying S and H.
Te predicted class probabilities ψ would be used for

picking out the samples sent to the cloud server. To enhance
graph classifcation performance, we should choose which
samples may be successfully fltered out and applied to
a graph neural network-based classifer on a cloud server
afterwards. Te framework determines which graph ex-
amples are often considered to be signifcant for enhancing
the performance of the graph classifcation model by
employing a number of supervised classifers. Te training
set is then updated with these examples.

We introduce a unifed classifer system, which uses
weighted majority voting to combine the decisions of P
classifers to decide the fnal label of the graph sample after P
isolated GCN-based classifers and obtains the weight by
maximizing the performance of the whole expert set. To be
more specifc, each classifer has the same set-up as Figure 4
but has a diferent kernel size. When the individual classifer
gets its predicted class probabilities ψ, the fnal decisions
could be calculated. If the results show the same label as the
fnal voting results, then we add weights to that classifer.Te
weighted voting method assigns a certain weight to each
classifer member, and the weight is obtained by measuring
the classifer accuracy of each member on the training set.
Te weight is proportional to the accuracy; that is, the base
classifer with good classifcation ability is given a larger
weight coefcient, while the base classifer with relatively
poor classifcation ability is given a smaller weight co-
efcient, and the integration result depends on the
weighted sum.

Now, we need to select the samples with high perfor-
mance gain which is mathematically described as the
weighted mean value of the class output probability value
calculated by the last phase. To be more specifc, we defne
the graph samples that will be picked out as training samples
with a weighted mean classifcation probability of P clas-
sifers higher than a threshold. Te selected samples would
be annotated and added to the labeled training set to im-
prove the efectiveness of the GCN-based classifer on the
cloud server and further improve the accuracy of the graph
classifcation tasks.
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TeGraph Embedding phase tends to enlarge the labeled
training set and produce the fx length e ∈ Rr×v that would
be the model input in the cloud server. Te semi-supervised
classifcation phase is set up on cloud servers.

Te defnitions of the problems are given at frst. Graphs
are represented asGm � (V, E), V is the set of nodes while E

is the set of edges that defne a graph. Te goal is to map the
graph to its class label as function f: Gm 

M
m�1⟶ Y given

the set of graphs Gm 
M

m�1. We incorporate the active graph
classifcation phase to select a set of graphs
Gselect � Gl+1, . . . ,Gl+k  from the unlabeled samples GU to
the labeled training set GL after annotation so that the new
training set in the center server can have a better ability to
predict the unlabeled class labels. In order to enhance graph
classifcation outcomes for semi-supervised learning, our
method chooses unlabeled graph samples with high conf-
dence in multiple GCNs’ clustering and adds them to the
training set after pseudo labeling.

GCN-based models are chosen to be employed in semi-
supervised training on the cloud server. Now the graph
embedding E � e{ }L+U

i�1 and the adjacency matrix
Θ ∈ R(L+U)×(L+U) have been given, which are calculated
according to formula (4). Two GCN layers are later used
here; the classifcation probability of each graph example will
be represented by the Softmax layer as follows:

Φ � softmax ΘReLU ΘFW0
Θ W1
Θ . (7)

Θ � D− (1/2)
(Θ + In) D− (1/2) is the normalized form of

adjacency matrix Θ and In is represented as identity matrix
and D � m(Θ + In)im. W0

Θ and W1
Θ are weight matrices.

Te parameters in edge nodes are not retrained but
rather fne-tuned depending on the parameters gained in the
previous iteration to further increase the efciency.

In the cloud server, the graph neural network-based
semi-supervised trafc classifer uses pseudo labeled sam-
ples to further train itself and a softmax layer to get its
outputs.

4. Results and Discussion

4.1. Dataset. Based on the dataset of packet capture (PCAP)
fles from the University of New Brunswick (UNB): “ISCX
VPN-nonVPN trafc dataset” [27] and “ISCX Tor-nonTor
dataset” (ISCX-Tor) [28], which are publicly accessible la-
beled datasets, we analyzed and examined our methodology.
Te trafc of fourteen programs, including Skype, VPN-
VOIP, VPN-P2P, and others, is covered within the
ISCX-VPN dataset. ISCX-nonVPN includes trafc from
ffteen applications, including Skype, FTPS/SFTP, and
others. ISCX-nonTOR carries the trafc of sixteen apps,
classifed into several categories as Web Browsing, e-mail,
Chat, and others. Initially, these trafcs are identifed by the
acts that caused them.

4.2. Evaluation Metrics. All approaches are evaluated based
on their accuracy (A.), recall (R.), and F1-score (F1). Te
following are the defnitions:

Accuracy �
i∈classesTPi

i∈classes TPi + FPi( 
,

Recall �
i∈classesTPi

i∈classes TPi + FNi( 
,

F1 �
2 × recall × accuracy
recall + accuracy

.

(8)

+ softMax

Self-Attention
Predicted class

probabilities

FC
layers

GCN_1
GCN_2

n×v n×v

r×v

HH

Figure 4: Graph embedding by the self-attention mechanism.

Graph Embedding Graph-Basd Classification

Input layer Output layer

FC
layers

Φŷ
e

Figure 5: Te process of graph-based classifcation.
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Te number of packets accurately classifed into each
class is represented by the TP for that class. Te amount of
instances that are erroneously classifed into a specifc class is
known as FP. Te number FN indicates how many

occurrences are incorrectly categorized into one class but
truly belong to another. In further detail, examples of class A
are considered the positive class for computing F1 for that
class, whilst instances of all other classes are considered the
negative class.

4.3. Baselines. To completely illustrate the usefulness and
efciency of our suggested approaches, we compare our
model with four trafc categorization methods, including
DeepPacket [11], GCNN [6], DISTILLER [15], and the
semisupervised classifer ByteSGAN [24]. Te detailed ex-
planations and comparison are given as follows.

Deep-Packet: Tis method combines the steps of feature
extraction and classifcation into a single system and is based
on CNNs to process the byte sequence of a packet. On the
UNB ISCX VPN-nonVPN dataset, it performs admirably.

GCNN: Tis method uses a chained graph model on the
trafc packet data and performs supervised trafc classif-
cation tasks on graph neural networks over automatically
extracted features over the chained graphs.

DISTILLER: Tis method leverages the combined and
efcient use of multitasking and multimodal deep learning
techniques. It handles three jobs at once: encapsulation,
trafc kinds, and trafc application categorization tasks.
Additionally, it ofers the trafc object from the packet-level
and fow-level viewpoints. However, in this study, we just
focus on the problem of trafc type categorization.

ByteSGAN: Tis method typically employs semi-
supervised learning approaches based on generative
adversarial networks (GAN) for the categorization of
encrypted data. It is intended to be incorporated in the SDN
edge gateways. Te method uses the packet-byte data for the
model input.

4.4. Efectiveness Analysis. It is evident that the enhanced
algorithm performs well. Te fndings will be displayed in
Figures 6, 7, 8, and 9 in order to more clearly illustrate how
this method has improved things.
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Figure 6: Te experimental comparison for the VPN dataset.
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4.4.1. Experimental Setup. We set P � 3 graph convolutional
neural networks built on edge nodes to vote for the last label
outcome and set a 1500-byte input sequence length limit; if
length is less than 1500, pad zeros; if more, then truncate the
byte sequence. We set 2 layers of graph convolutional
networks for each classifer and their input and output
dimensions which are n× 64, n× 128, n× 256, where n
represents the number of nodes. To perform semi-
supervised trafc classifcation learning, we randomly
choose 30% of labeled datasets to train the ByteSGAN and
SSGAN (our semi-supervised classifer).

4.4.2. Experimental Results of VPN Dataset. Figure 6 shows
that our method shows excellent performance when applied
to the VPN dataset.Te accuracy, recall, and F1-score all rise
when compared to the DISTILLERmethod by 9.42%, 9.67%,
and 8.91%, respectively. Contrasting with the GCNN al-
gorithm, the accuracy and F1-score are improved by the
method we use by 0.46% and 3.40%, respectively. Compared
to the ByteSGAN semi-supervised algorithm, by 0.92%,
1.57%, and 3.03%, respectively, our technique raises accu-
racy, recall, and the F1-score.

4.4.3. Experimental Results of Non-VPN Dataset.
Figure 7 shows that our method applied to the non-VPN
dataset performs best. Compared to the DISTILLER algo-
rithm, the accuracy improves by 18.67%, the recall increases
by 25.38%, and there is a 17.83% boost in the F1-score. In
contrast to the deep-packet algorithm, the accuracy, recall,
and F1-score are improved by our approach by 0.87%,
4.55%, and 1.71%, respectively. In contrast to the GCNN
algorithm, ourmethod increases accuracy, recall, and the F1-
score by 2.77%, 5.10%, and 3.61%, respectively. Compared to
the ByteSGAN semi-supervised algorithm, our method in-
creases by 1.79%, 4.01%, and 2.69% in terms of accuracy,
recall, and the F1-score.

4.4.4. Experimental Results of TOR Dataset. Figure 8 shows
that our method shows excellent performance when applied
to the TOR dataset. Te accuracy rises by 2.74%, the recall
rises by 12.41%, and the F1-score rises by 5.75% in com-
parison to the DISTILLER method. In contrast to the Deep-
Packet algorithm, our method increases accuracy, recall, and
the F1-score by 0.33%, 2.14%, and 1.83%, respectively. In
contrast to the GCNN algorithm, our method increases
accuracy, recall, and the F1-score by 0.95%, 2.62%, and
3.57%, respectively. Compared to the ByteSGAN semi-
supervised algorithm, our method increases accuracy, recall,
and the F1-score by 0.92%, 3.22%, and 3.01%, respectively.

4.4.5. Experimental Results of Non-TOR Dataset.
Figure 9 shows that our method applied to the non-TOR
dataset performs best. Compared to the DISTILLER algo-
rithm, the accuracy improves by 5.01%, the recall increases
by 7.74%, and the F1-score increases by 4.21%. Compared to
the deep-packet algorithm, our method increases accuracy,
recall, and F1-score by 12.63%, 13.6%, and 12.39%, re-
spectively. When compared to the GCNN algorithm, our
method increases accuracy, recall, and F1-score by 7.72%,
12.15%, and 10.16%, respectively. Compared to the Byte-
SGAN semisupervised algorithm, our method improves
accuracy, recall, and F1-score by 3.0%, 5.38%, and 5.78%,
respectively.

Figure 10 shows the confusion matrix for the VPN and
non-VPN dataset, and we can see that almost all the trafc
types have good performance. In the graph generation part,
since we extract the trafc features by grouping packets as
granules according to their sequential features, we can have
better performance than simply transforming the simple
packets into nodes and generating chained graphs when we
use these graphs to perform trafc classifcation later. Also,
we compare our methods with the fully-supervised methods
since we want to prove that the SSGCN can have the same
efcacy as the supervised methods such as deep-packet using
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Figure 10: Te confusion matrix for the VPN and non-VPN dataset.

Discrete Dynamics in Nature and Society 11



only 30% part of the labeled dataset. Besides, SSGCN also
shows its efectiveness when compared to the semi-
supervised methods like ByteSGAN, as we employ the
graphs to extract the structural information for the
trafc data.

5. Conclusions

In this paper, we have presented a novel semi-supervised
trafc classifcation approach based on improved graph
convolutional neural networks. In the edge-server
integrated-system, the trafc packets uploaded are pro-
cessed and transformed into graphs. We have used multiple
GCNNs to enlarge the training set for the cloud server. Te
cloud server performs the semisupervised trafc classifca-
tion tasks based on graph convolutional networks. On
publicly available network trafc datasets, we verify the
efcacy of our model. Te experiment’s fndings show that it
is possible to accomplish outstanding classifcation.

In further study, we will investigate these aspects of the
suggested methodology:

(1) Te majority of current trafc classifers operate
inside the predefned trafc categories. Tese tech-
niques cannot handle unrecognized trafc from
unrecognized classes. Zero-day applications are
trafc classifcations for which the classifer has not
been trained. Just a small number of recent studies,
many of which rely on locating unlabeled clusters
and later classifying them, have ofered solutions for
zero-day applications.

(2) Te procedure for deploying the network will be
extended to the real environment. More metrics will
be introduced to measure the trafc classifer’
performance.
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