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Mathematical modelling is important for better understanding of disease dynamics and developing strategies to manage rapidly
spreading infectious diseases. In this work, we consider a mathematical model of COVID-19 transmission with double-dose
vaccination strategy to control the disease. For the analytical analysis purpose, we divided the model into two parts: model with
vaccination and without vaccination. Analytical and numerical approach is employed to investigate the results. In the analytical
study of the model, we have shown the local and global stability of disease-free equilibrium, existence of the endemic equilibrium
and its local stability, positivity of the solution, invariant region of the solution, transcritical bifurcation of equilibrium, and
sensitivity analysis of the model is conducted. From these analyses, for the full model (model with vaccination), we found that the
disease-free equilibrium is globally asymptotically stable for Rv < 1 and is unstable for Rv > 1. A locally stable endemic equilibrium
exists for Rv > 1, which shows the persistence of the disease if the reproduction parameter is greater than unity. Te model is ftted
to cumulative daily infected cases and vaccinated individuals data of Ethiopia fromMay 1, 2021 to January 31, 2022.Te unknown
parameters are estimated using the least square method with the MATLAB built-in function “lsqcurveft.”Te basic reproduction
number R0 and controlled reproduction number Rv are calculated to be R0 � 1.17 and Rv � 1.15, respectively. Finally, we
performed diferent simulations using MATLAB. From the simulation results, we found that it is important to reduce the
transmission rate and infectivity factor of asymptomatic cases and increase the vaccination coverage and quarantine rate to
control the disease transmission.

1. Introduction

Coronavirus (COVID-19) is an infectious disease caused by
a novel coronavirus, which is a respiratory illness that can
spread in a population in several diferent ways. A person can
be infected when droplets containing the virus are inhaled or
come directly into contact with the eyes, nose, or mouth. Te
novel coronavirus has been spreading worldwide starting from
the frst identifcation in December 2019. Te World Health
Organization (WHO) declared COVID-19 as pandemic on
March 12, 2020. From the frst day of the outbreak to February
21, 2023, more than 757.2 million confrmed cases and more
than 6.8 million confrmed deaths are registered worldwide [1].
Te same report shows 499833 confrmed cases and 7,572
confrmed deaths in the same period of time in Ethiopia.

Te world is struggling to control the pandemic by
imposing diferent restrictions based on country-specifc
strategies. Besides the restrictions, nowadays diferent
countries are delivering vaccines to their people. As of 21
February 2023, 11 vaccines were granted for emergency use
by WHO [2]. Tese are Novavax, COVOVAX, Moderna,
Pfzer/BioNTech, Janssen (Johnson & Johnson), AstraZe-
neca, Vaxzevria (Oxford/AstraZeneca), Covishield (Oxford/
AstraZeneca formulation), Covaxin, Sinopharm, and Sino-
vac. Country approvals of this vaccine varies. For example,
Pfzer/BioNTech and Oxford/AstraZeneca are approved by
149 countries, Janssen (Johnson & Johnson) is approved by
113, and Moderna is approved by 88 countries worldwide
[2]. Until February 18, 2023, about 13.2 billion COVID-19
vaccine doses are administered globally. Te portion 69.6%
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of the world population have received at least one dose of
COVID-19 vaccine and this coverage represents developed
counties due to scarcity of the vaccine in low-income
countries. Only 27.6% of people in low-income countries
have received at least one dose [3]. Up to 21 January 2023,
a total of 53,514,115 vaccine doses have been administered in
Ethiopia [1].

Studies involving mathematical models of infectious
disease are helping the public health authorities by giving
them an in-depth information through analysis of dynamics
of the disease to make an informed decisions and policy
making. Oftentimes, deterministic models based on classical
derivatives are used to study the disease transmission dy-
namics. Tese studies are also powerful tools for predicting
the future aspects of a disease. As far as COVID-19 is
concerned, currently there are several such researches which
have been conducted and are helping the struggle towards
containing the spread.

Before vaccines are produced, mathematical models for
COVID-19 focused on assessing the impacts of non-
pharmaceutical interventions (NPIs) such as social dis-
tancing, wearing masks, personal hygiene, partial or full
lockdown, and the like as control strategies. For the details
on this, we mention [4–10] and the references therein.
Mathematical model of SARS-CoV-2 transmission with
optimal control is studied in [4] using the data from the
USA, and they found that a major factor that diferentiates
strategies that prioritize lives saved versus reduced time
under control is how quickly control is relaxed once social
distancing restrictions expire. Tey also highlighted that the
scope of controlling the COVID-19 until vaccines are
available depends on epidemiological parameters. Te study
in [6], which studies the transmission of COVID-19 in
crowded settlements revealed that level of compliance to
standard operating procedures (SOPs) (such as use of masks,
physical distancing measures, and efective contact tracing)
increases, then the disease prevalence peaks are greatly re-
duced and delayed. Te authors in [7] studied a model of the
transmission dynamics of corona virus disease in India
focusing on basic nonpharmaceutical interventions. Teir
results showed that the implementation of an almost perfect
isolation in India and 33.33% increment in contact-tracing
on June 26, 2020 may reduce the number of cumulative
confrmed cases of COVID-19 by around 53.8% at the end of
July 2020. In [5], modifying the Kermack–McKendrick SEIR
model the authors studied the population-level impact of
implementing behavioural change control measures, the
time horizon necessary to reduce the efective contact rate,
and the proportion of people under sanitary emergency
measures in controlling COVID-19 in Mexico. Simulation
results of this paper indicated that the most likely dates for
maximum incidence happen under a scenario of high
sanitary emergency measures (SEMs) compliance and low
SEM abandonment rate. Even if the quality of the face mask
is frequently questioned, wearing a face mask is one of the
nonpharmaceutical measures. Te study in [9] suggests that
broad adaption of even the relatively inefective face masks
may signifcantly reduce the transmission and hospitaliza-
tion peak and death. For combating COVID-19, the timing

of relaxing or lifting of nonpharmaceutical measures is
essential. From this point of view, the authors in [8] showed
the crucial importance of relaxation or lifting of strict social
distancing measures in determining the future aspect of
COVID-19 pandemic. In particular, one of their results
shows that early termination of the strict social-distancing
measures could trigger a devastating second wave with
burden similar to those projected before the onset of the
strict social-distancing measures were implemented. In [10],
they evaluate and compare the efectiveness of the four types
of NPIs of COVID-19, namely, the implementation of
a mandatory mask, quarantine or isolation, and distancing
and trafc restriction in 190 countries between 23 January
and 13 April 2020. In their study, they indicated that NPIs
could signifcantly hold the COVID-19 pandemic. Social
distancing and the implementation of two or more NPIs
should be the priority strategies for holding COVID-19.

Forecasting the COVID-19 pandemic is crucial for
health care planning and controlling the disease. In this
respect, the authors in [11] proposed a COVID-19 model
with contact tracing and hospitalization strategies and
performed short-term and long-term predictions for daily
and cumulative confrmed cases of COVID-19 outbreaks for
fve provinces of India. In the short-term predictions, some
states show exponential growth and others show decay of
daily new cases. Long term predictions for India show to
exhibit oscillatory dynamics. A COVID-19 model in [12]
predicts the dynamics of COVID-19 in 17 provinces of India
and overall India. One of the results in this study shows that
combining the restrictive social distancing and contact
tracing will make the elimination of COVID-19 pandemic
possible.

Currently, vaccines are available as one of the main
control strategies. Epidemiological modelers started to in-
corporate this additional intervention to see the dynamic
properties of the disease and sort out some important policy
directions for the public health authorities. In this regard,
there are a number of studies, from which [13–16] can be
mentioned. A mathematical model of COVID-19 with
comorbidity was formulated to study the transmission dy-
namics, and an optimal control-based framework tomitigate
the disease transmission in [13]. In this study, the authors
found that disease persists with the increase in exposed
individuals having comorbidity in society and an optimal
strategy with combined measures provides efective pro-
tection of the population with minimum social and eco-
nomic costs. Even during vaccination, nonpharmaceutical
interventions are essential: in this regard, the study in [14]
showed that relaxing restrictions would cause benefts from
vaccination to be lost by increasing case numbers and hence
vaccination alone is insufcient to contain the outbreak.
Another problem in attaining herd immunity in the pop-
ulation is vaccine hesitancy in the event that vaccination is
not mandatory, in which case people are the last to decide
either to get vaccinated or otherwise. A behavioural mod-
elling approach was used to assess the impact of hesitancy
and refusal of vaccine on the dynamics of the COVID-19
[15]. In this paper, the authors showed hesitancy and refusal
of vaccination that is better contained in case of large

2 Discrete Dynamics in Nature and Society



information coverage and small memory characteristics. In
the study [16], the author analyzed the onset of COVID-19
spread in countries such as China, Italy, Spain, the
United States, the United Kingdom, Japan, France, and
Germany based on publicly available statistical data aiming
to establish the laws of the spread of COVID-19 and to use
them to develop a mathematical model to predict changes
and make informed control policy decisions. In the study,
specifc values for SARS-CoV-2 transmissibility and
COVID-19 duration were estimated for diferent countries.
It was found that in China, the viral transmissibility was 3.12
before quarantine measures were implemented and 0.36
after these measures were lifted. For the other countries, the
viral transmissibility was 2.28 − 2.76 initially, and it then
decreased to 0.87 − 1.29 as a result of quarantine measures.
Terefore, it can be expected that the spread of SARS-CoV-2
will be suppressed if 56% − 64% of the total population
becomes vaccinated or survives COVID-19.

Even with these immunizations, the virus continues to
spread in many countries, with some vaccinated people
becoming infected, necessitating the delivery of booster
shots. Recently, the authors in [17, 18] have built mathe-
matical models devoted to studying the impact of double
dosage vaccination. Te authors of [17] looked at
a COVID-19 model with a double-dose vaccination strategy
to reduce the illness outbreak in Bangladesh. According to
the fndings, a full-dose vaccination campaign has the ability
to eradicate the virus from the community. A similar study
[18] was undertaken for the case in Ghana, and it revealed
that implementing double-dose vaccination and quarantine
will help reduce the spread of COVID-19. We will consider
a similar model with double-dose vaccination in the case of
Ethiopia.

A few epidemiological modelling studies of COVID-19
based on Ethiopian data have been undertaken, and we will
highlight some of them here. In [19], the authors considered
a mathematical model for the transmission dynamics of
COVID-19 by incorporating self-protection behavioral
changes in the population. Based on the available data from
Ethiopia and other countries, they estimated the unknown
parameter values using a combination of least squares and
Bayesian estimation methods. Tey found that the sensitive
parameters for the spread of the virus vary from country to
country and control of the efective transmission rate
(recommended human behavioral change towards self-
protective measures) is essential to stop the spread of the
virus. A mathematical model of COVID-19 in the case of
Ethiopia is also considered in [20]. Indeed, in this study, they
found that the spread of COVID-19 can be managed by
minimizing the contact rate of infected and increasing the
quarantine of exposed individuals. Tere is also another
COVID-19 mathematical modelling for optimal control and
assessing the impact of non-pharmaceutical interventions
on the dynamics of COVID-19 which are specifc to Ethi-
opian data [21, 22]. Even with vaccines in place as an in-
tervention for the COVID-19 pandemic, countries are still
struggling to control the disease. Better understanding of
disease dynamics and forecasting will be paramount for
developing better pandemic management strategies. We also

believe that scientifc studies on COVID-19 transmission in
Ethiopia are limited and that, as far as we reviewed, no
mathematical modelling studies have been conducted in
light of the current situation (including double-dose vac-
cination). As a result, we consider a mathematical model of
COVID-19 transmission dynamics with double-dose vac-
cination in our study.

Te paper is organized as follows. In Section 2, we de-
scribe the model and formulate the pertinent diferential
equation. In Section 3, we carry out mathematical analysis of
the model. Section 4 is devoted to numerical simulation and
discussion. In Section 5, we present prediction of the cu-
mulative vaccine administered with respect to the frst dose
vaccination rate. Finally, in Section 6, the conclusion is
presented.

2. Model Description and Formulation

In this study, we proposed a model where the total pop-
ulation is divided into nine compartments, namely, sus-
ceptible, are uninfected people with the disease but have
a chance to be infected; vaccinated with frst dose but still
have the chance to be infected; vaccinated with second dose,
individuals who completed the two doses within the spec-
ifed time; exposed, infected but not yet infectious;
asymptomatic infectious, people who are infected but does
not show symptoms but have the chance to transmit the
disease; symptomatic infectious, are those who are infected
and show symptoms; quarantine, are individuals who are
tested positive so that isolated from the population; hos-
pitalized, are those who are in critical health and joined
hospitals for treatment; and recovered, recovered from the
disease; denoted by S, V1, V2, E, Ia, Is, Q, H, and R, re-
spectively. We assumed that individuals in Q and H com-
partments are isolated from the population and hence they
will have negligible role in transmitting the disease.
Terefore, only individuals in Ia and Is are capable of
transmitting the disease. Vaccines available for COVID-19
do not totally prevent infection. Tus, individuals in S, V1,
and V2 compartments can get infected with the force of
infection h � β(τIa + Is/N − (Q + H)). Such a force of in-
fection is used in most COVID-19 models [20, 21, 23], where
β is the transmission rate, τ is the infectivity factor of
asymptomatic individuals, and N is the total population.
Due to the vaccine, individuals in V1 and V2 classes are
relatively less infected than the fully susceptible ones and
they will get infected with reduced vulnerability of (1 − η1)
and (1 − η2), respectively. Te quantities η1 and η2 measure
the efectiveness of the frst dose and the second dose
vaccine, respectively. Majority of the vaccines approved by
WHO are given in two doses with an average recommended
time interval between the two doses. We considered this
scenario in our model. Susceptible individuals get vacci-
nation (the frst dose) at the rate of p1 and those who got the
frst dose will get the second dose after an average 1/α period
of time with the rate of p2. In this study, we did not fx
a particular vaccine type therefore the value of 1/α represents
the average time needed to take the second dose. From the
population, ρ proportion of exposed individuals will move to

Discrete Dynamics in Nature and Society 3



the asymptomatic class and the rest, (1 − ρ) proportion will
move to the symptomatic class after they fnish the in-
cubation period of (1/e) day, where e is the infection rate.
Mostly, the symptoms of COVID-19 are similar to other
respiratory diseases like common cold and fue, so all
symptomatic individuals are not quarantined. Tose only
tested and confrmed can go to quarantine. Symptomatic
individuals get tested and quarantined at the rate of δ. Tose
quarantined may develop serious illness, in this case they go
to hospital at the rate of qh. Individuals in Ia, Is, Q, and H

will recover from the disease at the rate of ra, rs, rq, and rh,

respectively, and they are presumed to be immunized for the
rest of their lives once they have recovered. Asymptomatic
individuals are with less pain and assumed does not show
symptoms and will not die due to the disease. As a conse-
quence, individuals in Is, Q, and H classes die due to the
disease at the rate of d (assumed to be equal). People in all
compartments will die naturally at the rate of μ and the
quantity π is the recruitment rate to the susceptible com-
partment. Te total population size at time t is denoted by
N(t) where

N(t) � S(t) + V1(t) + V2(t) + E(t) + Ia(t) + Is(t) + Q(t) + H(t) + R(t). (1)

Te model fow diagram is shown in Figure 1.
From the schematic diagram Figure 1, the following

system of diferential equations is obtained:

dS

dt
� π − p1 + μ + h( 􏼁S,

dV1

dt
� p1S − αp2 + μ + 1 − η1( 􏼁h( 􏼁V1,

dV2

dt
� αp2V1 − μ + 1 − η2( 􏼁h( 􏼁V2,

dE

dt
� S + 1 − η1( 􏼁V1 + 1 − η2( 􏼁V2( 􏼁h − (μ + e)E,

dIa

dt
� ρeE − μ + ra( 􏼁Ia,

dIs

dt
� (1 − ρ)eE − rs + μ + d + δ( 􏼁Is,

dQ

dt
� δIs − μ + d + qh + rq􏼐 􏼑Q,

dH

dt
� qhQ − μ + d + rh( 􏼁H,

dR

dt
� raIa + rsIs + rqQ + rhH − μR,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

with initial conditions S(0)≥ 0, V1(0)≥ 0, V2(0)≥ 0, E(0)≥
0, Ia(0)≥ 0, Is(0)≥ 0, Q(0)≥ 0, H(0)≥ 0, and R(0)≥ 0.

3. Model Analysis

In this section, positivity of solution, the invariant region,
production number, stability analysis of disease-free and
endemic equilibrium point, bifurcation, and sensitivity
analysis are discussed.

3.1. Positivity and Boundedness of the Solutions. Since each
component of the given model system considers a human
population, it is necessary to show that all variables
S(t), V1(t), V2(t), E(t), Ia(t), Is(t), Q(t), H(t) and R(t) are
positive for all t> 0.

Theorem 1. If S(0)≥ 0, V1(0)≥ 0, V2(0)≥ 0,E(0)≥
0, Ia(0)≥ 0, Is(0)≥ 0,Q(0)≥ 0,H(0)≥ 0, and R(0)≥ 0, then
the solution set S(t), V1(t), V2(t), E(t), Ia(t), Is(t),􏼈

Q(t), H(t), R(t)} of the model (2) consists of positive
members for all t> 0.

Proof. From the frst equation of the system (2), we have

dS

dt
� π − p1 + μ + h( 􏼁S. (3)

Tis leads to,

dS

dt
≥ − p1 + μ + h( 􏼁S. (4)

And hence,

dS

S
≥ − p1 + μ + h( 􏼁dt. (5)

Finally upon integration, we obtain

S(t)≥ S(0) exp − 􏽚
t

0
p1 + μ + h( 􏼁du􏼠 􏼡≥ 0. (6)

Tus, S(t)≥ 0.
Similarly, it can be shown that the other equations of

system (2) are positive for all t> 0. Hence, the state variables
of the system are all positive for all t> 0. □

Theorem 2. Te feasible solution set S, V1, V2, E, Ia,􏼈

Is, Q, H, R} of the model (2) with the given initial condition
remains bounded in the region Ω � (S, V1, V2, E, Ia, Is,􏼈

Q, H, R) ∈ R9
+: 0≤N≤ (π/μ)}.

Proof. Diferentiating N in equation (1) with respect to t we
obtain
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dN

dt
�
dS

dt
+
dV1

dt
+
dV2

dt
+
dE

dt
+
dIa

dt
+
dIs

dt
+
dQ

dt
+
dH

dt
+
dR

dt
.

(7)

Using system (2) and evaluating at (7) gives us

dN

dt
� π − μN − d Is + Q( 􏼁 − H(μ + d). (8)

Since the state variables of system Is, Q and H are
positive for all t≥ 0 we have

dN

dt
≤ π − μN, (9)

in which N is asymptotically bounded

i.e.0≤N≤
π
μ

. (10)

Tis completes the proof. □

3.2. ReproductionNumber, Existence, and StabilityAnalysis of
Equilibria

3.2.1. Disease-free Equilibrium Point. In this subsection, we
determine the equilibrium point at which there is no disease
in the population (i.e., Ia � Is � Q � H � E � R � 0) by
setting the right hand side of system (2) to zero. We obtain

Edfe � S
∗
, V
∗
1 , V
∗
2 , E
∗
, I
∗
a , I
∗
s , Q
∗
, H
∗
, R
∗

( 􏼁,

�
π

p1 + μ
,

p1π
p1 + μ( 􏼁 μ + αp2( 􏼁

,
παp1p2

μ p1 + μ( 􏼁 μ + αp2( 􏼁
, 0, 0, 0, 0, 0, 0􏼠 􏼡.

(11)

Remark 1. In (11), when there is no vaccination, i.e., p1 � 0,
the disease-free equilibrium will be reduced to a fully sus-
ceptible disease-free state given by

E0 � S
∗
, V
∗
1 , V
∗
2 , E
∗
, I
∗
a , I
∗
s , Q
∗
, H
∗
, R
∗

( 􏼁

�
π
μ

, 0, 0, 0, 0, 0, 0, 0, 0􏼠 􏼡.

(12)

If p1 � 1, we get a disease-free equilibrium in which
every susceptible individual is vaccinated with the frst dose,
which can be expressed as

E01 � S
∗
, V
∗
1 , V
∗
2 , E
∗
, I
∗
a , I
∗
s , Q
∗
, H
∗
, R
∗

( 􏼁

�
π

1 + μ
,

π
(1 + μ)(μ + α)

,
πα

μ(1 + μ)(μ + α)
, 0, 0, 0, 0, 0, 0􏼠 􏼡.

(13)

3.2.2. Reproduction Number. Te basic reproduction
number (R0) is the average number of secondary cases
produced by one primary infection during the infectious
period in a fully susceptible population and the control
reproduction number (in our case denoted by Rv) is used to

S E Ia

Is

Q

V1

V2
H

R

h ρe

δ

qh

ra

μ μ μ

μ+d

μ+d μ+d

μ

μ

μ

π

p1

αp2

(1-
η 1
)h

(1
-η

2)h

r s

r q

r h

(1-ρ)e
Figure 1: Disease transmission diagram: green compartment indicates noninfected, the red compartment is infected and infectious, and the
yellow compartment shows infected but assumed to be not infectious (Q and H), on incubation period (H).
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represent the same quantity for a system incorporating
control (or intervention) strategies [24]. We will use the next
generation matrix method [25] to fnd the basic and control
reproduction number.

Let the matrix for new infection appearance at the in-
fected compartment be given by F

F �

E

Ia

Is

Q

H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S + 1 − η1( 􏼁V1 + 1 − η2( 􏼁V2( 􏼁h

0

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

and the matrix of other transactions at each of the infected
compartments can be represented by V and is given by

V �

E

Ia

Is

Q

H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

(μ + e)E

μ + ra( 􏼁Ia − ρeE

rs + μ + d + δ( 􏼁Is − (1 − ρ)eE

μ + d + rh + ra( 􏼁Q − δIs

μ + d + rh( 􏼁H − qhQ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

Now, fnding the Jacobian of F and V, we get the
matrices F (only the frst row, nonzero row) and V written as

F � 0 S + 1 − η1( 􏼁V1 + 1 − η2( 􏼁V2( 􏼁
zh

zIa

S + 1 − η1( 􏼁V1 + 1 − η2( 􏼁V2( 􏼁
zh

zIs

0 0􏼢 􏼣, (16)

where

zh

zIa

�
βτ(N − (Q + H)) − β τIa + Is( 􏼁

(N − (Q + H))
2 , (17)

zh

zIs

�
β(N − (Q + H)) − β τIa + Is( 􏼁

(N − (Q + H))
2 , (18)

and

V �

(μ + e) 0 0 0 0

− ρe μ + ra( 􏼁 0 0 0

− (1 − ρ)e 0 rs + μ + d + δ( 􏼁 0 0

0 0 − δ μ + d + rh + ra( 􏼁 0

0 0 0 − qh μ + d + rh( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

Te control reproduction number is given by
Rv � ](F(Edfe) × V− 1). Here, ] is the spectral radius of the
matrix F(Edfe) × V− 1. Tus Rv, can be written as

Rv �
μ μ + αp2( 􏼁 + 1 − η1( 􏼁p1μ + 1 − η2( 􏼁αp1p2( 􏼁

(μ + e) μ + p1( 􏼁 μ + αp2( 􏼁

ρeβτ
μ + ra

+
(1 − ρ)eβ

rs + μ + d + δ
􏼠 􏼡. (20)

Te basic reproduction number, R0 is obtained by setting
p1 � p2 � 0 in (20) and is given by

R0 �
ρeβτ

(μ + e) μ + ra( 􏼁
+

(1 − ρ)eβ
(μ + e) μ + rs + d + δ( 􏼁

. (21)

We can rewrite equation (20) in terms of R0 as

Rv �
μ μ + αp2( 􏼁 + 1 − η1( 􏼁p1μ + 1 − η2( 􏼁αp1p2

p1 + μ( 􏼁 μ + αp2( 􏼁
􏼠 􏼡R0.

(22)

In system (2), the solution for the state variables Q, H,
and R can easily be found from other variables in the system
and they do not afect them. Terefore, in the following
subsections, we restrict our mathematical analysis to the
following system of equations:
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dS

dt
� π − p1 + μ + h( 􏼁S,

dV1

dt
� p1S − αp2 + μ + 1 − η1( 􏼁h( 􏼁V1,

dV2

dt
� αp2V1 − μ + 1 − η2( 􏼁h( 􏼁V2,

dE

dt
� S + 1 − η1( 􏼁V1 + 1 − η2( 􏼁V2( 􏼁h − (μ + e)E,

dIa

dt
� ρeE − μ + ra( 􏼁Ia,

dIs

dt
� (1 − ρ)eE − rs + μ + d + δ( 􏼁Is.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

3.3. Model without Vaccination. In this subsection, we will
study the reduced model system (23) when there is no
vaccination (p1 � 0 � p2) which will further be reduced to
a system represented in the following equation:

dS

dt
� π − (μ + h)S,

dE

dt
� hS − (μ + e)E,

dIa

dt
� ρeE − μ + ra( 􏼁Ia,

dIs

dt
� (1 − ρ)eE − rs + μ + d + δ( 􏼁Is.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

For the model (24), the reproduction number can be
found by replacing p1 � 0 � p2, which is the basic

reproduction number of the full model, and it is as given
equation (21) and the disease free equilibrium is as written in
(12). Consequently, we have the following result.

Theorem 3. Te disease free equilibrium E0 is locally as-
ymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. Te Jacobian matrix of the system (24) is given by

J �

− (μ + h) 0 − H11 − H22

h − (μ + e) H11 H22

0 ρe − μ + ra( 􏼁 0

0 (1 − ρ)e 0 − rs + μ + d + δ( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

where

H11 �
zh

zIa

S,

H22 �
zh

zIs

S,

(26)

and (zh/zIa) and (zh/zIs) are as in equations (17) and (18)
respectively.

Te Jacobian matrix (25) evaluated at the disease-free
equilibrium (E0) is given by

J E0( 􏼁 �

− μ 0 − βτ − β

0 − (μ + e) βτ β

0 ρe − μ + ra( 􏼁 0

0 (1 − ρ)e 0 − rs + μ + d + δ( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(27)

Te characteristic equation of the matrix (27) is given by

(μ + λ) − λ3 − B11λ
2

+ B22λ + B33􏼐 􏼑 � 0, (28)

where

B11 � rs + 3μ + d + δ + ra + e,

B22 � (1 − ρ)eβ − rs + μ + d + δ( 􏼁 2μ + ra + e( 􏼁 + ρeβτ − (μ + e) μ + ra( 􏼁,

B33 � β(1 − ρ)e μ + ra( 􏼁 − rs + μ + d + δ( 􏼁 (μ + e) μ + ra( 􏼁 − ρeβ( 􏼁.

(29)

From (28), we have the roots given by λ1 � − μ and
− λ3 − B11λ

2 + B22λ + B33 � 0. By Descartes’ rule of sign, the
roots of the later equation will be negative if B22 < 0 and
B33 < 0.

Suppose R0 < 1. Tis implies that

βτρe μ + rs + d + δ( 􏼁 +(1 − ρ)eβ μ + ra( 􏼁<(μ + e) μ + ra( 􏼁 μ + rs + d + δ( 􏼁. (30)

Terefore,
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βτρe μ + rs + d + δ( 􏼁<(μ + e) μ + ra( 􏼁 μ + rs + d + δ( 􏼁,

(1 − ρ)eβ μ + ra( 􏼁<(μ + e) μ + ra( 􏼁 μ + rs + d + δ( 􏼁,

(31)

which are equivalently written as

βρτe − (μ + e) μ + ra( 􏼁< 0,

(1 − ρ)eβ − (μ + e) 2μ + ra + e( 􏼁< 0.
(32)

From the inequalities in (32), it can be concluded that
B22 < 0 if R0 < 1. Similarly it can be shown that B3 < 0
whenever R0 < 1. Terefore, the disease-free equilibrium E0
is locally asymptotically stable if R0 < 1. For R0 > 1, B22 will
be positive. And, hence we will have at least one positive
eigenvalue. Tus, E0 will be locally unstable. □

3.3.1. Global Stability of Disease-Free Equilibrium. For we
seek to investigate the global stability of disease-free equi-
librium, we use the technique implemented by Chavez et al.
[26]. To implement the technique, we write our model
system in the form:

dU

dt
� F(U, Z),

dZ

dt
� G(U, Z),

G(U, 0) � 0,

(33)

where U represents an uninfected compartment and Z

represents infected compartment. Tus, the disease-free
equilibrium point of the model can be represented by
U∗ � (U0, 0). Tus, for R0 < 1, for which the disease-free
equilibrium point is locally asymptotically stable the fol-
lowing two conditions are sufcient to guarantee the global
stability of disease-free equilibrium point (U0, 0).

(H1) For (du/dt) � F(U, 0), U0 is globally asymptot-
ically stable.
(H2) G(U, Z) � AZ − 􏽥G(U, Z), where 􏽥G(U, Z)≥ 0 for
all (U, Z) ∈ Ω
where A � DIG(U0, 0) is a M-matrix (the of-diagonal
elements of A are nonnegative) and Ω is the region
where the model makes biological sense.

Theorem 4. Te disease-free equilibrium point E0 is globally
asymptotically stable provided that R0 < 1.

Proof. For the system (24) we have E0 � (U0, 0), U � S ∈ R1
+

andZ � (E, Ia, Is) ∈ R3
+. For condition (H1), F(U, Z) can be

written as

F(U, Z) � π − (μ + h)S. (34)

Hence,

F(U, 0) � π − μS. (35)

It is obvious that U0 � (π/μ, 0) is globally asymptotically
stable for F(U, 0).

For condition (H2), from the system (24) we can get
G(U, Z),

G(U, Z) �

(hS − (μ + e)E

ρeE − μ + ra( 􏼁Ia

(1 − ρ)eE − rs + μ + d + δ( 􏼁Is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (36)

and the M-matrix is calculated as

A �

− (μ + e) βτ β

eρ − μ + ra( 􏼁 0

(1 − ρ)e 0 − rs + μ + d + δ( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (37)

Tus, we have
􏽥G(U, Z) � AZ − G(U, Z),

�

􏽦G1(U, Z)

􏽦G2(U, Z)

􏽦G3(U, Z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

β τIa + Is( 􏼁 1 −
S

S + E + Ia + Is

􏼢 􏼣

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(38)

which leads to 􏽥G(U, Z)≥ 0 for all (U, Z) ∈ Ω. Hence, both
the conditions (H1) and (H2) are satisfed. Terefore, by
Chavez et al. [26], the disease-free equilibrium point is
globally asymptotically stable for R0 < 1.

Te endemic equilibrium of the model with no vacci-
nation (24) is calculated as

E
e0

� S
e0

, E
e0

, I
e0
a , I

e0
s􏼐 􏼑, (39)

and the components are given by

S
e0

�
π

μ + h
e0 ,

E
e0

�
πh

e0

μ + h
e0

􏼐 􏼑(μ + e)
,

I
e0
a �

ρeπh
e0

μ + h
e0

􏼐 􏼑(μ + e) μ + ra( 􏼁
,

I
e0
s �

(1 − ρ)eπh
e0

μ + h
e0

􏼐 􏼑(μ + e) μ + rs + d + δ( 􏼁
,

(40)

where
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h
e0

�
(μ + e) R0 − 1( 􏼁

∆(μ + e) + 1
, (41)

and

∆ �
ρe

μ + ra( 􏼁(μ + e)
+

(1 − ρ)e

μ + rs + d + δ( 􏼁(μ + e)
. (42)

From equation (41), he0 > 0 if and only ifR0 > 1, therefore
we have the following result. □

Lemma 1. The system (24) have a unique endemic equi-
librium ifR0 > 1 and have no endemic equilibrium forR0 < 1.

Te characteristic equation of the Jacobian matrix (25)
evaluated at the endemic equilibrium (41) is obtained as

λ4 + M1λ
3

+ M2λ
2

+ M3λ + M4 � 0, (43)

where

M1 � 2μ + e + ra + rs + 3μ + d + δ + h
e0

,

M2 � (μ + e) μ + ra( 􏼁 + rs + 2μ + d + δ + h
e0

􏼐 􏼑 2μ + e + ra( 􏼁 + μ + h
e0

􏼐 􏼑 rs + μ + d + δ( 􏼁 − ρeH
e0
11 − (1 − ρ)eH

e0
22,

M3 � rs + 2μ + d + δ + h
e0

􏼐 􏼑(μ + e) μ + ra( 􏼁 + μ + h
e0

􏼐 􏼑 rs + μ + d + δ( 􏼁 2μ + e + ra( 􏼁 − ρeH
e0
11 μ + h

e0
􏼐 􏼑 − (1 − ρ)eH

e0
22 2μ + h

e0
+ ra􏼐 􏼑,

M4 � μ + h
e0

􏼐 􏼑 rs + μ + d + δ( 􏼁(μ + e) μ + ra( 􏼁 − ρeH
e0
11 μ + h

e0
􏼐 􏼑 rs + μ + d + δ( 􏼁 − μ + h

e0
􏼐 􏼑(1 − ρ)eH

e0
22 μ + ra( 􏼁,

(44)

and He0
11 and He0

22 are values of H11 and H22 evaluated at the
endemic equilibrium respectively. Since M1 > 0 by Descartes
rule of sign the characteristic equation (43) will have neg-
ative roots if M2 > 0, M3 > 0 and M4 > 0. Terefore we have
the following result.

Theorem  . Te endemic equilibrium (39) is locally as-
ymptotically stable if R0 > 1, M2 > 0, M3 > 0, and M4 > 0.

3.4. Model with Vaccination. In this subsection, we will
consider the system with vaccination (23) and present its
mathematical analysis.

3.4.1. Local Stability of Disease-Free Equilibrium

Theorem 6. Te disease-free equilibrium, Edfe is locally
asymptotically stable if Rv < 1 and unstable if Rv > 1.

Proof. Te Jacobian matrix of the system (23) is given by

J �

− p1 + μ + h( 􏼁 0 0 0 −
zh

zIa

S −
zh

zIs

S

p1 − μ + αp2 + 1 − η1( 􏼁h( 􏼁 0 0 − 1 − η1( 􏼁V1
zh

zIa

− 1 − η1( 􏼁V1
zh

zIs

0 αp2 − μ + 1 − η2( 􏼁h( 􏼁 0 − 1 − η2( 􏼁V2
zh

zIa

− 1 − η2( 􏼁V2
zh

zIs

h 1 − η1( 􏼁h 1 − η2( 􏼁h − (μ + e) H1 H2

0 0 0 ρe − μ + ra( 􏼁 0

0 0 0 (1 − ρ)e 0 − rs + μ + d + δ( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (45)

where
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H1 �
zh

zIa

× S + 1 − η1( 􏼁V1 + 1 − η2( 􏼁V2( 􏼁,

H2 �
zh

zIs

× S + 1 − η1( 􏼁V1 + 1 − η2( 􏼁V2( 􏼁,

(46)

and (zh/zIa) and zh/zIs are as in equations (17) and (18).
Te Jacobian matrix (45) evaluated at the disease-free

equilibrium Edfe is given by

J Edfe( 􏼁 �

− μ + p1( 􏼁 0 0 0
zh

zIa

Edfe( 􏼁S
∗ zh

zIs

Edfe( 􏼁S
∗

p1 − μ + αp2( 􏼁 0 0 − 1 − η1( 􏼁
zh

zIa

Edfe( 􏼁V
∗
1 − 1 − η1( 􏼁

zh

zIs

Edfe( 􏼁V
∗
1

0 αp2 − μ 0 − 1 − η2( 􏼁
zh

zIa

Edfe( 􏼁V
∗
2 − 1 − η2( 􏼁

zh

zIs

Edfe( 􏼁V
∗
2

0 0 0 − (μ + e) H
∗
1 H

∗
2

0 0 0 ρe − μ + ra( 􏼁 0

0 0 0 (1 − ρ)e 0 − rs + μ + d + δ( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (47)

where

zh

zIa

Edfe( 􏼁 �
βτμ p1 + μ( 􏼁 μ + αp2( 􏼁

μπ μ + αp2( 􏼁 + p1πμ + παp1p2
,

zh

zIs

Edfe( 􏼁 �
βμ p1 + μ( 􏼁 μ + αp2( 􏼁

μπ μ + αp2( 􏼁 + p1πμ + παp1p2
,

H
∗
1 � βτ

μ μ + αp2( 􏼁 + μ 1 − η1( 􏼁p1 + 1 − η2( 􏼁p1p2α
p1 + μ( 􏼁 μ + αp2( 􏼁

,

H
∗
2 � β

μ μ + αp2( 􏼁 + μ 1 − η1( 􏼁p1 + 1 − η2( 􏼁p1p2α
p1 + μ( 􏼁 μ + αp2( 􏼁

,

(48)

and its characteristic equation is

(μ + λ) μ + p1 + λ( 􏼁 μ + αp2 + λ( 􏼁( 􏼁 − λ3 − B1λ
2

+ B2λ + B3􏼐 􏼑 � 0, (49)

where

B1 � rs + 3μ + d + δ + ra + e,

B2 � (1 − ρ)eH
∗
2 − rs + μ + d + δ( 􏼁 2μ + ra + e( 􏼁 + ρeH

∗
1 − (μ + e) μ + ra( 􏼁,

B3 � (1 − ρ)e μ + ra( 􏼁H
∗
2 − rs + μ + d + δ( 􏼁 (μ + e) μ + ra( 􏼁 − ρeH

∗
1( 􏼁.

(50)

From (49), we have the roots given by λ1 � − μ,
λ2 � − (μ + αp2), λ3 � − (μ + p1), and
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− λ3 − B1λ
2 + B2λ + B3 � 0. By Descartes’ rule of sign, the

roots of the later equation will be negative if B2 < 0 and
B3 < 0.

Let us write the equation for Rv in (20) in terms of H∗1
and H∗2 as

Rv �
ρe

μ + ra( 􏼁(μ + e)
H
∗
1 +

(1 − ρ)e

μ + rs + d + δ( 􏼁(μ + e)
H
∗
2 .

(51)

Suppose Rv < 1. Tis implies that

ρe μ + rs + d + δ( 􏼁H
∗
1 +(1 − ρ)e μ + ra( 􏼁H

∗
2 <(μ + e) μ + ra( 􏼁 μ + rs + d + δ( 􏼁. (52)

Terefore,

ρe μ + rs + d + δ( 􏼁H
∗
1 <(μ + e) μ + ra( 􏼁 μ + rs + d + δ( 􏼁,

(53)

and

(1 − ρ)e μ + ra( 􏼁H
∗
2 <(μ + e) μ + ra( 􏼁 μ + rs + d + δ( 􏼁< μ + rs + d + δ( 􏼁 μ + ra( 􏼁 2μ + ra + e( 􏼁, (54)

which are equivalently written as

ρeH
∗
1 − (μ + e) μ + ra( 􏼁< 0,

(1 − ρ)eH
∗
2 − (μ + e) 2μ + ra + e( 􏼁< 0.

(55)

From the inequalities in (55), we summarize that B2 < 0 if
Rv < 1. And, it can also be shown that B3 < 0 wheneverRv < 1.
Terefore, the disease-free equilibrium Edfe is locally as-
ymptotically stable if Rv < 1. For Rv > 1, B2 will be greater
than zero. And, hence we will have at least one positive
eigenvalue. Tus, Edfe will be unstable. □

3.4.2. Global Stability of Disease-Free Equilibrium Point.
We use the method implemented in Section 3.3.1 to show the
global stability. Let X � (S, V1, V2)

T ∈ R3
+ be represent

uninfected individual and Y � (E, Ia, Is)
T ∈ R3

+ be represent
infected compartments.

Theorem 7. Te point Edfe � (X∗, 0) is globally asymptot-
ically stable provided that Rv < 1 and

(S + (1 − η1)V1 + (1 − η2)V2/N − (Q + H))≤ (S∗+

(1 − η1)V∗1 + (1 − η2)V∗2 /N
∗).

Proof. For condition (H1) from the system (23) we can get
F(X, Y), i.e.,

F(X, Y) �

π − p1 + μ + h( 􏼁S

p1S − αp2 + μ + 1 − η1( 􏼁h( 􏼁V1

αp2V1 − μ + 1 − η2( 􏼁h( 􏼁V2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (56)

Hence,

F(X, 0) �

π − p1 + μ( 􏼁S

p1S − αp2 + μ( 􏼁V1

αp2V1 − μV2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (57)

It is obvious that X∗ � ((π/p1 + μ), (p1π/(p1 + μ)(μ +

αp2)), (παp1p2/μ(p1 + μ)(μ + αp2)), 0) is globally asymp-
totically stable for F(X, 0) as X⟶ X∗ when t⟶∞.

For condition (H2), from the system (23) we can get
G(X, Y),

G(X, Y) �

S + 1 − η1( 􏼁V1 + 1 − η2( 􏼁V2( 􏼁h − (μ + e)E

ρeE − μ + ra( 􏼁Ia

(1 − ρ)eE − rs + μ + d + δ( 􏼁Is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (58)

A �

− (μ + e) S
∗

+ 1 − η1( 􏼁V
∗
1 + 1 − η2( 􏼁V

∗
2( 􏼁

βτ
N
∗ S
∗

+ 1 − η1( 􏼁V
∗
1 + 1 − η2( 􏼁V

∗
2( 􏼁

β
N
∗

eρ − μ + ra( 􏼁 0

(1 − ρ)e 0 − rs + μ + d + δ( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (59)
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where

N
∗

� S
∗

+ V
∗
1 + V
∗
2 . (60)

We have

􏽥G(X, Y) � AY − G(X, Y),

�

􏽦G1(X, Y)

􏽦G2(X, Y)

􏽦G3(X, Y)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

β τIa + Is( 􏼁
S
∗

+ 1 − η1( 􏼁V
∗
1 + 1 − η2( 􏼁V

∗
2

N∗
−

S + 1 − η1( 􏼁V1 + 1 − η2( 􏼁V2

N − (Q + H)
􏼠 􏼡􏼢 􏼣

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(61)

thus,

􏽥G(X, Y)≥ 0 iF
S + 1 − η1( 􏼁V1 + 1 − η2( 􏼁V2

N − (Q + H)
≤

S
∗

+ 1 − η1( 􏼁V
∗
1 + 1 − η2( 􏼁V

∗
2

N
∗ . (62)

Terefore, the disease-free equilibrium point is globally
asymptotically stable for Rv < 1 and the condition given in
equation (30) is satisfed. □

3.4.3. Existence of Endemic Equilibrium. By equating the
system (2) to zero, we get the endemic equilibrium in terms
of the force of infection h and we denote it by

Eend � S
e
, V

e
1, V

e
2, E

e
, I

e
a, I

e
s , Q

e
, H

e
, R

e
( 􏼁. (63)

Te components of Eend are given as follows:

S
e

�
π

p1 + μ + h
e ,

V
e
1 �

p1π
p1 + μ + h

e
( 􏼁 αp2 + μ + 1 − η1( 􏼁h

e
( 􏼁

,

V
e
2 �

p1p2απ
p1 + μ + h

e
( 􏼁 αp2 + μ + 1 − η1( 􏼁h

e
( 􏼁 μ + 1 − η2( 􏼁h

e
( 􏼁

,

E
e

�
h

eπ μ + 1 − η2( 􏼁h
e

( 􏼁 αp2 + μ + 1 − η1( 􏼁h
e

( 􏼁 + p1 1 − η1( 􏼁 μ + 1 − η2( 􏼁h
e

( 􏼁 + αp1p2 1 − η2( 􏼁􏼂 􏼃

(μ + e) p1 + μ + h
e

( 􏼁 αp2 + μ + 1 − η1( 􏼁h
e

( 􏼁 μ + 1 − η2( 􏼁h
e

( 􏼁
,

I
e
a �

ρeh
eπ μ + 1 − η2( 􏼁h

e
( 􏼁 αp2 + μ + 1 − η1( 􏼁h

e
( 􏼁 + p1 1 − η1( 􏼁 μ + 1 − η2( 􏼁h

e
( 􏼁 + αp1p2 1 − η2( 􏼁􏼂 􏼃

μ + ra( 􏼁(μ + e) p1 + μ + h
e

( 􏼁 αp2 + μ + 1 − η1( 􏼁h
e

( 􏼁 μ + 1 − η2( 􏼁h
e

( 􏼁
,

I
e
s �

(1 − ρ)eh
eπ μ + 1 − η2( 􏼁h

e
( 􏼁 αp2 + μ + 1 − η1( 􏼁h

e
( 􏼁 + p1 1 − η1( 􏼁 μ + 1 − η2( 􏼁h

e
( 􏼁 + αp1p2 1 − η2( 􏼁􏼂 􏼃

rs + μ + d + δ( 􏼁(μ + e) p1 + μ + h
e

( 􏼁 αp2 + μ + 1 − η1( 􏼁h
e

( 􏼁 μ + 1 − η2( 􏼁h
e

( 􏼁
,
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Q
e

�
δ

μ + d + qh + rq

× I
e
s,

H
e

�
qh

μ + d + rh

× Q
e
,

R
e

�
raI

e
a + rsI

e
s + rqQ

e
+ rhH

e

μ
,

(64)

where he is the positive root of the following equation:

g h
e

( 􏼁 � A h
e

( 􏼁
3

+ B h
e

( 􏼁
2

+ Che
+ D � 0, (65)

obtained from

h
e

�
β τI

e
a + I

e
s( 􏼁

S
e

+ V
e
1 + V

e
2 + E

e
+ I

e
a + I

e
s + R

e
( 􏼁

, (66)

and the coefcients in equation (65) are given by

A � 1 − η1( 􏼁 1 − η2( 􏼁,

B �
J1 + μ μ + αp2( 􏼁 p1 + μ( 􏼁 1 − η1( 􏼁 1 − η2( 􏼁( 􏼁 1 − Rv( 􏼁

μ μ + αp2( 􏼁 + 1 − η1( 􏼁p1μ + 1 − η2( 􏼁αp1p2
,

C �
J2 + p1 + μ( 􏼁 μ2 1 − η1( 􏼁 μ + αp2( 􏼁 + μ 1 − η2( 􏼁 μ + αp2( 􏼁

2
􏼐 􏼑 + p1μ 1 − η1( 􏼁 αp2 + μ( 􏼁 p1 + μ( 􏼁 1 − η2( 􏼁􏼐 􏼑 1 − Rv( 􏼁

μ μ + αp2( 􏼁 + 1 − η1( 􏼁p1μ + 1 − η2( 􏼁αp1p2
,

D � μ p1 + μ( 􏼁 αp2 + μ( 􏼁 1 − Rv( 􏼁,

(67)

where

J1 � μ μ + αp2( 􏼁 μ 1 − η1( 􏼁 + μ + αp2( 􏼁 1 − η2( 􏼁( 􏼁 + p1μ 1 − η1( 􏼁
2 μ + p1 + μ( 􏼁 1 − η2( 􏼁 + αp2 + μ( 􏼁( 􏼁

+ αp1p2 1 − η2( 􏼁 μ 1 − η1( 􏼁 + p1 + μ( 􏼁 1 − η1( 􏼁 1 − η2( 􏼁 + αp2 + μ( 􏼁 1 − η2( 􏼁( 􏼁,

J2 � μ2 αp2 + μ( 􏼁
2

+ p1μ
2 1 − η1( 􏼁 p1 + μ( 􏼁 1 − η1( 􏼁 + αp2 + μ( 􏼁( 􏼁

+ μαp1p2 1 − η2( 􏼁 1 − η1( 􏼁 p1 + μ( 􏼁 + αp2 + μ( 􏼁 + αp2 + μ( 􏼁 p1 + μ( 􏼁 1 − η1( 􏼁( 􏼁.

(68)

It can easily be seen that A> 0. If Rv > 1 then <0,
therefore h(0)< 0. In addition, lim he⟶∞g(he)> 0.
Terefore, from the continuity of g, there exists at least one
positive he

∗ such that g(he
∗) � 0 and hence there will be at

least one endemic equilibrium of the model system (2). On
the other hand, if Rv < 1, then B> 0, C> 0 and D> 0 then by
Descartes’ rule of sign, (65) has no positive real root, which
proves that there is no endemic equilibrium point when
Rv < 1. From the above-given discussion, we can state the
following theorem.

Theorem 8. If Rv > 1, there exists at least one endemic
equilibrium point for the model system (2) and there is no
endemic equilibrium point for the model system (2) when
Rv < 1.

3.5. BifurcationAnalysis. Wewill use the approach in [27] to
determine the occurrence of a transcritical bifurcation at

Rv � 1. Te method relies on the general center manifold
theory, where the normal form representing the dynamics of
the system on the central manifold is given by

_u � au
2

+ bβu, (69)

with

a � 􏽘

n

k,i,j�1
]kωiωj

z
2
fk

zxizxj

Edfe, β
∗

( 􏼁, (70)

and

b � 􏽘
n

k,i�1
]kωi

z
2
fk

zxizβ
Edfe, β

∗
( 􏼁. (71)

Here, β has been chosen as a bifurcation parameter and
β∗ is its critical value, f represents the right–hand side of the
system (23), x represents the state variable vector,
x � (x1, x2, x3, x4, x5, x6) � (S, V1, V2, E, Ia, Is), ] and ω are
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the left and right eigenvectors corresponding to the zero
eigenvalue of the Jacobian matrix at the disease-free equi-
librium and the critical value, i.e., at Edfe and β � β∗. When
Rv � 1, which is equivalent to β � β∗, with

β∗ �
(μ + e) μ + p1( 􏼁 μ + αp2( 􏼁

μ μ + αp2( 􏼁 + 1 − η1( 􏼁p1μ + 1 − η2( 􏼁αp1p2
× C,

(72)

where

C �
μ + ra( 􏼁 rs + μ + d + δ( 􏼁

ρeτ rs + μ + d + δ( 􏼁 +(1 − ρ)e μ + ra( 􏼁
. (73)

Tus, according to Teorem 4.1 [27], the disease-free
equilibrium is locally asymptotically stable if β< β∗, and it is
unstable when β> β∗. Te direction of the bifurcation oc-
curring at β � β∗ can be derived from the sign of the co-
efcients (70) and (71). More precisely, if a> 0 (resp. a< 0)
and b> 0, then at β � β∗ there is a backward (resp. forward)
bifurcation.

By evaluating the Jacobian matrix of system (23) at Edfe
and β � β∗, we get

J Edfe, β
∗

( 􏼁 �

− μ + p1( 􏼁 0 0 0 K1 K4

p1 − μ + αp2( 􏼁 0 0 K2 K5

0 αp2 − μ 0 K3 K6

0 0 0 − (μ + e) H
∗
1 H

∗
2

0 0 0 ρe − μ + ra( 􏼁 0

0 0 0 (1 − ρ)e 0 − rs + μ + d + δ( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (74)

where

K1 � S
∗ zh

zIa

Edfe, β∗( 􏼁,

K2 � − 1 − η1( 􏼁V
∗
1

zh

zIa

Edfe, β∗( 􏼁,

K3 � − 1 − η2( 􏼁V
∗
2

zh

zIa

Edfe, β∗( 􏼁,

K4 � S
∗ zh

zIs

Edfe, β∗( 􏼁,

K5 � − 1 − η1( 􏼁V
∗
1

zh

zIs

Edfe, β∗( 􏼁,

K6 � − 1 − η2( 􏼁V
∗
2

zh

zIs

Edfe, β∗( 􏼁,

H
∗
1 � β∗τ

μ μ + αp2( 􏼁 + μ 1 − η1( 􏼁p1 + 1 − η2( 􏼁p1p2α
p1 + μ( 􏼁 μ + αp2( 􏼁

,

H
∗
2 � β∗

μ μ + αp2( 􏼁 + μ 1 − η1( 􏼁p1 + 1 − η2( 􏼁p1p2α
p1 + μ( 􏼁 μ + αp2( 􏼁

.

(75)
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We observed that one of the eigenvalues of J(Edfe, β
∗) is

0 and the remaining are negative. Hence, when β � β∗ (when
Rv � 1), the disease-free equilibrium is nonhyperbolic.

After some calculations, we get

] � 0, 0, 0, ]4,
]4H
∗
1

μ + ra

,
]4H
∗
2

rs + μ + d + δ
􏼠 􏼡,

ω � ω1,ω2,ω3, 1,
eρ

μ + ra

,
e(1 − ρ)

rs + μ + d + δ
􏼠 􏼡

T

.

(76)

where

]4 �
μ + ra( 􏼁

2
rs + μ + d + δ( 􏼁

2

μ + ra( 􏼁
2

rs + μ + d + δ( 􏼁
2

+ H
∗
1 eρ rs + μ + d + δ( 􏼁

2
+ H
∗
2 e(1 − ρ) μ + ra( 􏼁

2 ,

ω1 �
K1eρ rs + μ + d + δ( 􏼁 + K4e(1 − ρ) μ + ra( 􏼁

μ + p1( 􏼁 μ + ra( 􏼁 rs + μ + d + δ( 􏼁
< 0,

ω2 �
p1ω1 μ + ra( 􏼁 rs + μ + d + δ( 􏼁 + K2eρ rs + μ + d + δ( 􏼁 + K5e(1 − ρ) μ + ra( 􏼁

μ + αp2( 􏼁 μ + ra( 􏼁 rs + μ + d + δ( 􏼁
< 0,

ω3 �
p2αω2μ μ + ra( 􏼁 rs + μ + d + δ( 􏼁 + K3eρ rs + μ + d + δ( 􏼁 + K6e(1 − ρ) μ + ra( 􏼁

μ μ + ra( 􏼁 rs + μ + d + δ( 􏼁
< 0,

(77)

are a left and right eigenvector associated with the zero
eigenvalue, respectively, such that ] · ω � 1. By considering
only the nonzero components of the eigenvectors and

computing the corresponding second derivatives of f, we
can explicitly compute the coefcients a and b as

a � 􏽘
6

k,i,j�1
]kωiωj

z
2
fk

zxizxj

Edfe, β
∗

( 􏼁,

� 2 ]4ω1 ω5
z
2
f4

zSzIa

Edfe, β
∗

( 􏼁 + ω6
z
2
f4

zSzIs

Edfe, β
∗

( 􏼁􏼠 􏼡 + ]4ω2 ω5
z
2
f4

zV1zIa

Edfe, β
∗

( 􏼁 + ω6
z
2
f4

zV1zIs

Edfe, β
∗

( 􏼁􏼠 􏼡,􏼢

+ ]4ω3 ω5
z
2
f4

zV2zIa

Edfe, β
∗

( 􏼁 + ω6
z
2
f4

zV2zIa

Edfe, β
∗

( 􏼁􏼠 􏼡􏼣,

�
2β∗

μ + ra( 􏼁 rs + μ + d + δ( 􏼁
eω1 τρ rs + μ + d + δ( 􏼁 +(1 − ρ)(μ + ra)( 􏼁􏼂

+ eω2 ρτ 1 − η1( 􏼁 rs + μ + d + δ( 􏼁 +(1 − ρ) 1 − η1( 􏼁 μ + ra( 􏼁( 􏼁

+ eω3 ρτ 1 − η2( 􏼁 rs + μ + d + δ( 􏼁 +(1 − ρ) 1 − η2( 􏼁 μ + ra( 􏼁( 􏼁􏼃.

(78)

Since ω1,ω2, and ω3 are negative, it follows that a< 0 and
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b � 􏽘
6

k,i�1
]kωi

z
2
fk

zxizβ
Edfe, β

∗
( 􏼁,

� ]4 ω2
z
2
f4

zV1zβ
Edfe, β

∗
( 􏼁 + ω2

z
2
f4

zV2zβ
Edfe, β

∗
( 􏼁 + ω2

z
2
f4

zIazβ
Edfe, β

∗
( 􏼁 + ω2

z
2
f4

zIszβ
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∗
( 􏼁􏼢 􏼣,

� ]4
eρτ

μ + ra

S
∗

+ 1 − η1( 􏼁V
∗
1 + 1 − η2( 􏼁V

∗
2( 􏼁 +

e(1 − ρ)

rs + μ + d + δ
S
∗

+ 1 − η2( 􏼁V
∗
1 + 1 − η2( 􏼁V

∗
2( 􏼁􏼢 􏼣,

� ]4 S
∗

+ 1 − η1( 􏼁V
∗
1 + 1 − η2( 􏼁V

∗
2( 􏼁

eρτ
μ + ra

+
e(1 − ρ)

rs + μ + d + δ
􏼢 􏼣> 0.

(79)

From the fact that a< 0 and b> 0, by the result of Chavez
and Song [27], as Rv passes through 1 a locally stable en-
demic equilibrium appears with the unstable disease free
equilibrium. Terefore, model (23) exhibits a forward bi-
furcation at Rv � 1 (see Figure 2). We summarize the above
discussion with the following theorem.

Theorem 9. Te endemic equilibrium point, Eend of the
model system (23) is locally asymptotically stable for Rv > 1
and the system exhibits a forward (or transcritical) bi-
furcation at Rv � 1.

Remark 2. From the bifurcation analysis and Teorem 6 for
the full model (model with), we note that when R0 � 1, we

have Rv < 1 in such case the disease free equilibrium is at
least locally asymptotically stable.

3.6. Sensitivity Analysis. In what follows, we investigate the
sensitivity analysis for the control reproduction number Rv

to identify the parameters that have a high impact on disease
expansion in the community. Te sensitivity index with
respect to a parameter Xi is given by a normalized forward
sensitivity index [28]

ΓRv

Xi
�

zRv

zXi

×
Xi

Rv

, (80)

where, Xi represent the basic parameters. Hence,

ΓRv

e �
zRv

ze
×

e

Rv

�
μ

μ + e
> 0,

ΓRv

η1
�

zRv

zη1
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p1μ
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􏼠 􏼡 ×

η
Rv

< 0,

ΓRv
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�
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(81)

We summarize the sensitivity analysis indices of the
reproduction number with respect to some parameters in
Table 1.

From Table 1, the sensitivity indices with negative signs
indicate that the value of Rv decreases when the parameter
values are increased and the value of Rv increases when the
parameter values are decreased, while sensitivity indices with
positive signs indicate that the value of Rv increases when the
parameter values are increased and the value of Rv decreases
when the parameter values are decreased.

3.7. Te Role of Vaccination. If there is no vaccination (i.e.,
p1 � p2 � 0), then Rv � R0. In such case disease elimination
is possible if R0 < 1 and the disease will be endemic if R0 > 1
(Teorem 3). Suppose R0 > 1 and according to Teorem 6,
disease elimination is possible if Rv < 1.

From

Rv < 1⇔R0 <
p1 + μ( 􏼁 μ + αp2( 􏼁

μ μ + αp2( 􏼁 + 1 − η1( 􏼁p1μ + 1 − η2( 􏼁αp1p2
> 1,

(82)

we get

p1 R0 μ + αp2( 􏼁 − μ R0η1 + 1( 􏼁 + R0η2 + 1( 􏼁αp2( 􏼁( 􏼁< μ μ + αp2( 􏼁 1 − R0( 􏼁. (83)

Since the right hand side of the inequality (83) is negative
we must have

R0 μ + αp2( 􏼁< μ R0η1 + 1( 􏼁 + R0η2 + 1( 􏼁αp2. (84)

Terefore, Rv < 1 if and only if p1 >p∗1 . Here,

p
∗
1 �

μ μ + αp2( 􏼁 R0 − 1( 􏼁

μ R0η1 + 1( 􏼁 + R0η2 + 1( 􏼁αp2 − R0 μ + αp2( 􏼁
. (85)

We call p∗1 as a critical frst dose vaccination rate.

Using the parameter values in Table 2 the critical frst
dose vaccination can be calculated as p∗1 � 7.3946 × 10− 6. As
it can be seen from Figure 3, the control reproduction
number will be less than one if p1 >p∗1 . From epidemio-
logical point of view to control the disease, it is critical to
increase the vaccination rate above p∗1 .

4. Numerical Simulation and Discussion

To justify the analytical results and explore additional im-
portant properties of the model, we ftted the model to real

0

0.5

1

1.5

h e

0.2 0.4 0.6 0.8 1.210
RV

Edfe-LAS
Edfe-Unstable

Eend-LAS

×10-5

Figure 2: Transcritical bifurcation of model (2) when Rv � 1.
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Table 1: Sensitivity index table.

Parameter Index
e +ve
β +ve
τ +ve
η1 − ve
η2 − ve
p1 − ve
p2 − ve
α − ve
ra − ve
rs − ve
δ − ve
d − ve

Table 2: Parameter description and their baseline values used in the model (2).

Parameter Description Value Sources
π Recruitment rate 4646 day− 1 Calculated Section 4.1
μ Natural death rate (1/67.8 × 365)day− 1 Calculated Section 4.1
p1 First dose vaccination rate 8.157 × 10− 7 day− 1 Fitted
p2 Second dose vaccination rate 0.974 day− 1 Fitted
β Transmission rate 0.513 day− 1 Fitted
τ Infectivity factor for asymptomatic individuals 0.116 Fitted
η1 Efcacy of frst dose vaccine 0.8 Fitted
η2 Efcacy of second dose vaccine 0.95 Fitted
α Inverse of average time needed to take the second dose 0.14 day− 1 Fitted
ρ Fraction of infections that become asymptomatic 0.112 Fitted
e Infection rate after incubation period 0.2071 day− 1 Fitted
rs Recovery rate for individuals with symptom 1.89 × 10− 7 day− 1 Fitted
ra Recovery rate for asymptomatic individuals 0.0148 day− 1 Fitted
rq Recovery rate for quarantined individuals 0.0356 day− 1 Fitted
rh Recovery rate for individuals in hospital 0.213 day− 1 Fitted
δ Quarantine rate 0.453 day− 1 Fitted
d Disease induced death rate 0.177 day− 1 Fitted
qh Hospitalization rate from quarantine 0.999 day− 1 Fitted

×10-5

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 70
p1

Rv
R0
p*

1 = 7.3946 * 10–6

Figure 3:Te role of the vaccination rate p1 on the control reproduction number Rv and the basic reproduction number R0.Te red broken
line is used to mark the horizontal line at 1. p∗1 is calculated using the parameter values in Table 2.

18 Discrete Dynamics in Nature and Society



COVID-19 data of Ethiopia to fx the unknown parameters
of the model and carried out numerical simulations using
the MATLAB solver ODE45. In this section, we used the full
model (2).

4.1. Parameter Estimation. In this subsection, we will fnd
the best values of unknown parameters in our model, with
the so-called model ftting process. Here, we shortly present
how the ftting process works using the least square method.
Te system of equations (2) can generally be written as

dX

dt
� F(t, X, θ),

X(0) � X0,

(86)

where X � (x1, x2, . . . , xJ) represents the state vector of the
system with (dX/dt) � [(dx1/dt), (dx2/dt), . . . , (dxJ/dt)],
J is number of compartments in the population, X0 is
a vector of initial values, θ � (θ1, θ2 . . . , θp) are unknown
parameters of the system, and t is the independent variable
(time in our case) [29].

In order to estimate the unknown parameters θ, the state
variable X(t) is observed at N time instants t1, t2, . . . , tN􏼈 􏼉

so that we have

Y ti( 􏼁 � X ti( 􏼁 + Ei,

i � 1, 2, 3, . . . , N,
(87)

where Y(ti) is the observed values of the state variables at
time instant ti and Ei􏼈 􏼉

N

i�1 are the diference between the
observed value yi and the corresponding ftted value xi (i.e.
Ei � yi − xi). Te objective is to determine appropriate
parameter values so that the sum of the squared errors
between the outputs of the estimated model (X(t)) and the
observed data (Y(t)) are minimized.

Te best ft was achieved by searching for the set of
parameters 􏽢θ � (􏽢θ1, 􏽢θ2, . . . 􏽢θp) which satisfes the objective
function

􏽢θ � min
θ

􏽘

N

i�1
yi − xi( 􏼁

2
. (88)

To fnd the best ft parameters for our model which
satisfes the equation (88), we used the nonlinear curve
fttingmethod with the help of “lsqcurveft,” MATLAB built-
in function. Lsqcurveft is an optimization toolbox which
solves nonlinear data-ftting problems in the least-squares
sense. In our case the number of parameters, p, to be es-
timated is 16. We ftted our model to the real data of
COVID-19 daily cumulative confrmed cases and vaccinated
population of Ethiopia fromMay 1, 2021 to January 31, 2022,
which is available online by Our World in Data [30]. Two of
the parameter values are estimated from literature:
according to the data by Worldometer, the Ethiopian av-
erage life expectancy at birth for the year 2021 and the
approximate total population is 67.8 and 114963588, re-
spectively [31]. Terefore, the natural death rate of in-
dividuals per day is calculated as the reciprocal of the life

expectancy at birth times days in a year, given by
μ � (1/67.8 × 365). We approximated the recruitment rate
from (π/μ) � N(0) (initial population). Hence, we found
π � μ × N(0) � 4646 individuals per day [20, 32]. In the
estimation process of the rest parameters the following
initial conditions are used: from the data in Our World in
Data, we have Is(0) � 620, V1(0) � 20385, R(0) � 946, and
D(0) � 21. Here, t � 0 corresponds to May 01, 2021. We
assumed 80% of COVID-19 infected individuals become
asymptomatic. Terefore, we estimated Ia(0) � 620/0.8 �

775. We also assumed E(0) � 1400, which is approximately
equal to the sum of the symptomatic and asymptomatic
cases, and V1(0) � Q(0) � H(0) � 0. Hence, the initial
susceptible population is taken as S(0) � N(0) − (V1(0) +

V2(0) + E(0) + Ia (0) + Is(0) + Q(0) + H(0) + R(0)).
Te best ft to the daily cumulative COVID-19 confrmed

cases and vaccination through our model is shown in Fig-
ure 4 and it can be observed that the estimated parameters
for the cumulative daily cases is well ftted as compared the
observed data. Te estimated and calculated parameter
values are given in Table 2. Using these parameters, we
calculated R0 � 1.17 and Rv � 1.15. Te estimated value of
the basic reproduction number is greater than 1 which is
similar as the study for Ethiopia in [20] in which they es-
timated R0 � 1.0029. In the same study the estimated
transmission rate is β � 0.88 which is greater than our case,
which is can be expected due to in our case we have vac-
cination as a control strategy. Tus, apart from the un-
certainty in the parameter values due to the model’s
complexity, the estimated parameters can represent the
situation in Ethiopia at the time the data are collected.

4.2. Long-TermDynamics of theModel. Figures 5(a) and 5(b)
show the local stability of the endemic equilibrium Eend �

[3.77 × 10− 7, 225, 6.91× 105, 1.49 × 104, 2.334 × 104, 4.36
×103, 1.632 × 103, 4.181 × 103, 3.201 × 107] for Rv � 2.98> 1.
Panels (c) and (d) portrays the stability of the disease free
equilibrium,
Edfe � [1.127 × 108, 673.9, 2.2741 × 106, 0, 0, 0, 0, 0, 0], for
Rv � 0.556< 1.Tese results support our analytical results in
Section 3 of Teorems 7 and 9. For better use of spacing and
view we did not include the plot for E compartment, but the
dynamics of this state variable converges to its equilibrium
point. Te convergence to the endemic equilibrium is
through damped oscillation, which shows the disease may
re-emerge. Such long-term oscillatory dynamics are con-
sistent with the fndings of an Indian study [11], suggesting
that COVID-19 could become a seasonal disease.

When Rv � 1 an exchange of stability (forward bi-
furcation) arises, Tis property is shown in Figure 2 which
shows the disease persists in the population if the re-
production parameter excedes the threshold value.

4.3. Variation of Rv and R0 with Respect to Some Important
Parameters. An important parameter in modelling in-
fectious disease transmission is the reproduction parameter
which measures the potential spread of an infectious disease
in a community, in our case we have a control reproduction
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parameter, Rv. In particular, if Rv < 1 the disease dies out and
if Rv > 1 the disease persists in the population. Terefore,
reducing such parameter below the critical value Rv � 1 is
important. In our model, reducing the transmission rate β
and infectivity factor of asymptomatic individuals, τ will
help reduce Rv from unity, Figures 6(a) and 6(b). It is worth
noting that the infuence of the second dose vaccination rate
on varying the control reproduction number is minimal.
Keeping parameters other than the transmission rate β
constant as in Table 2,Rv < 1 if β< 0.4464 (See Figures 6(a) or
6(c)). If τ < 0.0764, then Rv < 1 fxing other parameters
constant, Figure 6(b).

4.4.Te Impact of Transmission Rate. In this and subsequent
subsections, we say infectious population to refer to the sum
of the population in symptomatic and asymptomatic classes
per time (Ia(t) + Is(t)). Tis is due to the fact that in our
model, we assumed people in these two compartments are
potential transmitters of the disease. Unless explicitly
mentioned, when we say vaccinated individuals, it refers to
the total number of individuals vaccinated either with the
frst dose or the second dose per unit time (V1(t) + V2(t)).
Figure 7 shows the role of the transmission rate β on the
dynamics of the infectious, vaccinated, and hospitalized
classes. A decrease in the transmission rate results in
a prevalence decrease.When the transmission rate is equal to

0.55da ys− 1 the prevalence reaches a high peak of 1424101,
but by decreasing it to β � 0.49da ys− 1 (below the ftted
value), the infectious peak can be decreased to 410094
Figure 7(a). Tis shows that if we can further decrease the
transmission rate, it is possible to achieve an infectious
number of insignifcant value and eradication of the disease.
When the transmission rate is small, a small number of
people will be infected, which means the number of people
in the susceptible class will be large, hence the number of
vaccinated people will rise, Figure 7(b). Te burden of
hospitalization can be decreased by decreasing the trans-
mission rate. As it can be seen in Figure 7(c), when the
infectious population is high, correspondingly we have
a large number of individuals in the hospital and vice versa.

4.5. Te Impact of First Dose Vaccination Rate. Figure 8
shows the role of the frst dose vaccination rate on the
dynamics of infectious, vaccinated, and hospitalized pop-
ulation. Increasing this vaccination rate results in a decrease
of infectious and hospitalized population Figures 8(a) and
8(c). For example when p1 � 8.16 × 10− 7day− 1 the in-
fectious population reaches a high peak of value 759544 and
hospitalized peak of 118624 individuals. If we are able to
increase the rate to p1 � 8.16 × 10− 5day− 1 the above peaks
will decrease to 171226 and 26151 of infectious and hos-
pitalized individuals, respectively. Such a decrease in
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Figure 4: Te ftted data to the reported cumulative cases (a) and cumulative vaccinated (b) using the model (2) for Ethiopia from May
01, 2021 to January 31, 2022.
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prevalence is achieved with high proportion of vaccinated
individuals in the population Figure 8(b). Simulation results
shows that the role of the second dose vaccination rate, p2
and time delay between the two doses, α does not have

signifcant impact on the dynamics. From the formulation of
themodel, everyone who got the frst dose and not infected is
assumed to get the second dose and therefore will be
transferred to V2 class after an average time of 1/α hence the
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Figure 5: Local stability of the endemic equilibrium for Rv � 2.98> 1 (infected compartments (a), and noninfected compartments, (b)) and
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Figure 7: Te efect of transmission rate β. (a) Infectious population Ia(t) + Is(t), (b) Vaccinated population, V1(t) + V2(t), and (c)
hospitalized individuals. Other parameter values are given in Table 2.
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Figure 8: Te impact of the frst dose vaccination rate p1: on the dynamics of infectious population (a), vaccinated population (b), and
hospitalized population (c) Other parameter values are given in Table 2.
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Figure 9: Te impact of the infectivity coefcient of asymptomatic population, τ1 on the dynamics of infectious population, (a), total
vaccinated population, (b), and hospitalized population, (c) Other parameter values are as in Table 2.
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role of the vaccination is visible when p1 varies. If health
ofcials attempt to encourage people to get the second dose
of the vaccination, the prevalence will drop dramatically.

4.6. Te Impact of the Infectivity Factor of Asymptomatic
Individuals. According to the study [33], asymptomatic
cases of COVID-19 are a potential source of substantial
spread of the disease within the community and one of the
results found was people with asymptomatic COVID-19 are
infectious but might be less infectious than symptomatic
cases. Since the majority of COVID-19 infected individuals
become asymptomatic, even if they are less infectious than
the symptomatic individuals, their role in spreading the
disease might be signifcant. Figure 9 proves this hypothesis.
As the infectivity factor increases, we observed a rise of the
infectious population to a relatively high pick (2799983
infectious for τ � 0.2) Figure 9(a), which is not observed in
the impact of other parameters, like β. Decreasing the in-
fectivity factor decreases the infectious population signif-
cantly. As observed in other plots here also the increase of
infectious population will result in increase in the number of
hospitalized individuals and vice versa Figure 9(c). Te
increase in the infectivity factor τ makes more people to be
infected from vaccinated compartments which results in
a decrease in the number of vaccinated individuals, Fig-
ure 9(b). Terefore, the number of vaccinated individuals is
inversely proportional to the infectivity factor. Detection of
asymptomatic individuals (for example: by contact tracing)
and isolating them may reduce their infectiousness.

5. Prediction of Cumulative Vaccine Dose
Administered with respect to the First Dose
Vaccination Rate

Most of COVID-19 vaccines approved by WHO are being
ofered in two doses and a booster. In Ethiopia Sinopharm,
AstraZeneca, Johnson and Johnson/Janssen, and Pfzer-
BioNTech vaccines are being used. From these vaccines
except Johnson&Johnson/Janssen all are being given in two
doses. Te total number of COVID-19 vaccine dose ad-
ministered fromMay 01, 2021 to January 31, 2022 (276 days)
is 9517539. Using the ftted parameters, our model estimates
this number by 9152542 vaccine doses (See, the highlighted
row third column of Table 3). If the frst dose vaccine ad-
ministration rate remains the same for the next two years,

(i.e., after 1006 days) 66483093 number of vaccine doses will
be administered. According to World Population Review
projection, Ethiopian population in 2024 will be 126.8
million [34]. Since a person can get vaccinated with two
doses, we can approximate the number of people vaccinated
with at least one dose by
1/2 × number of vaccine dose administered. Tis means
33241546 number of people (approximately 26% of the total
population (in 2024)) will get at least one dose of COVID-19
vaccination. Increasing p1 to 3.16 × 10− 6da ys− 1 it can be
achieved, after two years, 199688874 number of adminis-
tered vaccine doses. Which is equivalent to 99844437
number of people (approximately 79% of the total pop-
ulation in the year 2024) can get at least frst dose (see fourth
row of Table 3). It needs a lot to work on increasing the
vaccination rate beyond the critical value
p∗1 � 7.3946 × 10− 6 so that Rv < 1.

 . Conclusion

In this study, we used a compartmental model for
COVID-19 transmission with vaccination. We divided the
vaccinated portion of the population into two: vaccinated
with the frst dose and fully vaccinated (those who got the
two doses). Using the next generation matrix, we found
a reproduction number which exists when vaccination is in
place. We called this parameter the control reproduction
number and denoted it by Rv. We calculated the disease-free
and endemic equilibrium of model (2) and showed that the
disease-free equilibrium Edfe is globally asymptotically stable
if the control reproduction number Rv < 1 and unstable if
Rv > 1. We performed a center manifold analysis based on
the method mentioned in Castillo–Chavez and Song [27]
and found that the model exhibits a forward bifurcation at
Rv � 1, which ensures the nonexistence of the endemic
equilibrium below the critical value, Rv � 1 and the unique
endemic equilibrium which exists for Rv > 1 is locally as-
ymptotically stable. From epidemiological point of view, this
implies that the disease dies out if the control reproduction
number is below the threshold quantity and it persists in the
population if greater. Tis informs public health policy
makers to work on reducing the control reproduction
number so as to make it less than unity. We performed
a sensitivity analysis from which we observed that the model
is sensitive to p1, p2, δ with negative sign and β, τ with
positive sign. Tis shows that increasing the vaccination and

Table 3: Values of: control reproduction number (second column), cumulative vaccine administered at the end of the parameter ftting time
(third column) and predicted number of cumulative vaccine to be administered (fourth column). For diferent values of p1. Other parameter
values are given in Table 2. Te light Cyan shaded row is for the base line p1 value.

p1 Rv

Vaccine dose administered
in [0, 276]

days (interval of
ftting time)

Predicted after two
years ([0, 1006]
days interval)

8.157 × 10− 7 day− 1 1.15 9152542 66483093
9.16 × 10− 7 day− 1 1.147 9588497 72169187
1.16 × 10− 6 day− 1 1.141 10652193 86042042
3.16 × 10− 6 day− 1 1.09 19369216 199688874
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quarantine rate and decreasing the transmission rate and
infectivity factor of asymptomatic individuals will reduce the
disease burden.

We performed model ftting to the Ethiopian real
COVID-19 data for the period from May 1, 2021 to January
31,2022 to estimate the unknown parameters in the model.
In the numerical simulation section, we validate our ana-
lytical analysis regarding the stability of the disease-free and
endemic equilibrium with respect to the parameter Rv. We
also examined the role of some important parameters on the
dynamics of the disease and arrived at the following points:
reducing the transmission rate and the infectivity factor of
asymptomatic individuals will greatly help in reducing the
infection burden. Increasing the frst dose vaccination rate
has a high impact in reducing the infection. Furthermore,
simulation results show that the second dose vaccination
rate has no signifcant efect on the dynamics of the in-
fectious population.

In addition to this, we also predicted the cumulative
vaccine dose administered by changing the frst dose vac-
cination rate. In this prediction, if we increase p1 to a value
3.16 × 10− 7day− 1 after two years, the total vaccine dose
administered will reach 1996888974, which will cover ap-
proximately 79% of the total population.Terefore, from the
numerical simulation and analytical analysis, we summarize
that it will be essential to reduce the transmission rate,
infectivity factor of asymptomatic cases, and increase the
vaccination rate beyond the critical value
P∗1 � 7.3946 × 10− 6, quarantine rate to control the disease.
As a future work, we will point out that this model can be
extended by including additional interventions (for example,
nonpharmaceutical interventions), by considering the
behavioural aspect and via optimal control problem. We
would also want to point out that the model can be studied
further using fractional order derivatives and the fndings
obtained can be compared.
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