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In this paper, we investigated the notion of a linear Diophantine fuzzy set (LDFS) by using the concept of a score function to build
the LDF-score left (right) ideals and LDF-score (0,2)-ideals in an AG-groupoid. We used these newly developed LDF-score ideals
to characterize an AG-groupoid. We then use the proposed structure in multiattribute decision-making by considering bridge
design selection and artifcial intelligence-based chatbot selection.

1. Introduction

Te commutative law in ternary operations is given by
abc � cba. By adding brackets on the left of this equation,
that is, (ab)c � (cb)a, Kazim and Naseeruddin proposed
a novel algebraic structure called an LA-semigroup (left
almost semigroup) [1]. Te left invertive law identifes this
identity. An AG-groupoid (Abel–Grassmann’s groupoid)
was coined by Protic and Stevanovic to describe the same
structure [2]. Tis nonassociative (noncommutative) alge-
braic structure falls between a groupoid and a commutative
semigroup [3]. In [1], it was shown that an AG-groupoid S is
medial; that is, (ab)(cd) � (ac)(bd) holds for all
a, b, c, d ∈ S. A left identity may or may not exist in an AG-
groupoid. Te left identity of an AG-groupoid allows the
inverses of elements. If an AG-groupoid has a left identity,
then it is unique [3]. An AG-groupoid with a left identity is
called an AG-group if it has inverses [4]. Te paramedial law
(ab)(cd) � (dc)(ba) holds for all a, b, c, d ∈ S in an AG-
groupoid S with a left identity. We can get a(bc) � b(ac) for
all a, b, c ∈ S by applying the medial law with the left identity.

For the interest of the reader, some recent applications of
AG-groupoids in decision-making can be found, for ex-
ample, in [5, 6].

In traditional set theory, an element is either in or out of
the set. Fuzzy set theory, on the other hand, allows for the
gradual determination of the membership of elements in
a set, which is represented using a membership function
having a value in the real unit interval [0, 1]. To deal with
real-world uncertain and ambiguous problems, strategies
commonly used in classical mathematics are not always
useful. In 1965, Zadeh [7] proposed the concept of a fuzzy set
(FS) as an extension of the classical notion of sets. In many
cases, however, because the membership function is a single-
valued function, it cannot be used to represent both support
and objection evidence. Te intuitionistic fuzzy set (IFS),
which is a generalization of Zadeh’s fuzzy set, was in-
troduced by Atanassov [8]. IFS has both a membership and
a nonmembership function, allowing it to better express the
fuzzy character of data than Zadeh’s fuzzy set, which only
has a membership function. In some real-life scenarios,
however, the sum of membership and nonmembership
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degrees acquired by alternatives satisfying a decision-maker
(DM) characteristic may be larger than 1, while their sum of
squares is less than or equal to 1. Terefore, Yager [9] in-
troduced the idea of the Pythagorean fuzzy set (PFS) with
membership and nonmembership degrees that fulfll the
condition that the total squares of their membership and
nonmembership degrees are less than or equal to 1. By
Atanassov [10], PFS is also known as IFS of type 2. Many
scholars have researched another model known as a q-rung
orthopair fuzzy set (q-ROFS) to expand the space of IFS and
PFS [11–13].

In real life, variations in the cycle (periodicity) of the data
happen simultaneously as vagueness and uncertainty in the
data. Te existing concepts and approaches available for the
fuzzy information were not capable of dealing with mem-
bership and nonmembership functions taken from any part
of the domain; instead, they impose strict conditions on
them, resulting in some information loss during the process.
To overthrow it, the concept of linear Diophantine fuzzy sets
(LDFSs) was given in [14] to express uncertainty in decision-
making. LDFS is more versatile and dependable than current
ideas such as intuitionistic fuzzy sets (IFSs), Pythagorean
fuzzy sets (PFSs), and q-rung orthopair fuzzy sets (q-ROFSs)
because it includes reference or control factors with
membership and nonmembership functions. Almagrabi
et al. suggested a new generalization of the Pythagorean
fuzzy set, q-rung orthopair fuzzy set, and linear Diophantine
fuzzy set, named q-linear Diophantine fuzzy set (q-LDFS),
and analyzed its key properties [15].

Temain aim ormotivation of this paper is to develop an
algorithm for multiattribute decision-making by consider-
ing LDF-score (0,2)-ideals of AG-groupoids. An ideal of an
AG-groupoid decomposes it, which makes it easy to study
the characteristics of the AG-groupoid. Besides the (0,2)-
ideals, some other ideals include interior ideals, bi-ideals, etc.
To construct an LDF-score (0,2)-ideal, the concept of LDFSs
is considered, and some characterization problems in terms
of this ideal are constructed. Ten, an algorithm to rank
alternatives of a decision-making problem via the LDF-score
(0,2)-ideal is developed. In the end, some practical appli-
cations of LDFNs are also thoroughly discussed.

Tere are a total of six sections in this paper. In Section 1,
a brief introduction of AG-groupoids is given along with the
historical literature review of fuzzy set theory. Section 2
provides the basic defnitions to develop an understanding of
the forthcoming sections. Section 3 deals with some novel
results regarding the structural properties of LDF-score
(0,2)-ideals and also provides the algorithm for multi-
attribute decision-making with the help of the LDF-score
(0,2)-ideals. In Section 4, some real-life applications of the
proposed algorithm are given. In Section 5, a discussion and
comparison of various spaces of fuzzy sets are given in detail,
and in Section 6, a comprehensive conclusion comprising
the summary, limitations, and future work is given.

2. Preliminaries

In this section, we discuss the score and accuracy functions
for the comparative analysis of linear Diophantine fuzzy

numbers (LDFNs). Note that the concept of LDFS is similar
to that of the well-known linear Diophantine equation αs +

βt � c from number theory.

Defnition 1 (see [14]). Let S be a nonempty reference set. A
linear Diophantine fuzzy set (LDFS) is an object of the form:

A � s, 〈fA(s), gA(s)〉, 〈αA, βA〉( 􏼁 : s ∈ S􏼈 􏼉, (1)

where fA(s) and gA(s) are real-valued membership and
nonmembership functions, respectively, such that

fA(s), gA(s), αA, βA ∈ [0, 1] and αA + βA ≤ 1, (2)

satisfying

0≤fA(s)αA + gA(s)βA ≤ 1. (3)

For convenience, let A � (〈fA, gA〉, 〈αA, βA〉) be a lin-
ear Diophantine fuzzy number (LDFN), where αA and βA are
reference parameters. Tese reference parameters can
contribute to the categorization of a particular system. By
altering the physical meaning of these parameters, we can
categorize the system.

In order to rank the LDFNs, we now propose the idea of
the score function as follows.

Defnition 2. Let S be an AG-groupoid and A be the set of all
LDFNs. Te score function on A can be defned by the
mapping ξ: A⟶ [−1, 1] and given by

ξ(A) � fA − gA

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − αA − βA

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (4)

where A � (〈fA, gA〉, 〈αA, βA〉), ξ is the score function, and
ξ(A) is the score of A.

In particular, if ξ(A) � 1, then the LDFN
A � (〈fA, gA〉, 〈αA, βA〉) takes the largest value fA � 1,
gA � 0, and αA � βA or gA � 1, fA � 0, and αA � βA. On the
other hand, if the score function attains the minimum value,
i.e., if ξ(A) � −1, then the LDFN A � (〈fA, gA〉, 〈αA, βA〉)

takes the smallest value αA � 1, βA � 0 and fA � gA or βA �

1, αA � 0 and fA � gA.
LetA and B be two LDFSs on a domainU;then, for s ∈ U,

A(s) and B(s) are LDFNs. Let A(s) and B(s) be given as
follows:

A(s) � (〈0.4, 0.6〉, 〈0.7, 0.1〉),

B(s) � (〈0.8, 0.4〉, 〈0.7, 0.2〉),
(5)

and then by Defnition 2, ξ(A)(s) � −0.4 and
ξ(B)(s) � −0.1, implying that ξ(B)(s)≥ ξ(A)(s).

If we now defne another LDFN, C(s) is as follows:

C(s) � (〈0.9, 0.7〉, 〈0.8, 0.2〉), (6)

and then again by Defnition 2, ξ(C)(s) � −0.4. From here,
we see ξ(A)(s) � ξ(C)(s). To distinguish score-equivalent
LDFNs, we give the following defnition.

Defnition 3. Let S be an AG-groupoid and A be the set of all
LDFNs. Te accuracy function on A can be defned by the
mapping ϱ: A⟶ [0, 1] and given by
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ϱ(A) �
fA + αA − gA + βA( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
, (7)

where A � (〈fA, gA〉, 〈αA, βA〉), ϱ is the accuracy function,
and ϱ(A) is the accuracy degree of A.

Considering the same LDFN A(s) and C(s) given above,
by Defnition 3, we see that ϱ(A)(s) � 0.2 and
ϱ(C)(s) � 0.4, implying that, although ξ(A)(s) � ξ(C)(s),
we have ϱ(C)(s)≥ ϱ(A)(s).

Te relationship between the score function and the
accuracy function has been established to be similar to the
relationship between the mean and variance in statistics [16].
In statistics, an efcient estimator is described as a measure
of the variance of an estimate’s sampling distribution; the
lower the variance, the better the estimator’s performance.
On this basis, it is reasonable and appropriate to say that the
higher an LDFN’s accuracy degree, the better the LDFN. In
[17, 18], the techniques were developed for comparing and
rating two IFNs and IVIFNs, respectively, based on the score
and accuracy functions, which were motivated by the
aforementioned study. We can now compare and rate two
LDFNs, in the same way, using the score and accuracy
functions, as shown below.

Defnition 4. Let Ak � (〈fAk
, gAk

〉, 〈αAk
, βAk

〉); (k � 1, 2),
and then, the comparison of A1 and A2 is given as follows:

(i) If ξ(A1)< ξ(A2), then A1 <A2

(ii) If ξ(A1) � ξ(A2), then
If ϱ(A1)< ϱ(A2), then A1 <A2

If ϱ(A1) � ϱ(A2), then A1 � A2.

Remark 1. Let A be a set of all LDFNs and ξ: A⟶ [−1, 1]

be a score function, and then, we have the following:

(i) ξ(A) increases with respect to the membership
functions fA and αA

(ii) ξ(A) decreases with respect to the nonmembership
functions gA and βA.

3. LDF-Score (0,2)-Ideals of an AG-Groupoid

In this section, we introduced the concepts of linear
Diophantine fuzzy score left (right) ideals and linear
Diophantine fuzzy score (LDF-score) (0, 2)-ideals in an AG-
groupoid using the notion of a score function. We intended
to answer a question about the connection between LDF-
idempotent subsets of an AG-groupoid S and its LDF-score
(0,2)-ideals, particularly when an LDF-idempotent subset of
S is an LDF-score (0,2)-ideal in terms of an LDF-score right
ideal and an LDF-score left ideal of S. Some characterization
problems are also provided in terms of LDF-score (0,2)
-ideals. Finally, we give a method to rank diferent alter-
natives on the basis of given reference parameters.

3.1. Characterization Problems. Note that the results of this
section can be followed simply for the case of fuzzy sets,
which will be an extension of the results obtained in [19, 20].

If S is an AG-groupoid with the product ·: S × S⟶ S,
then ab · c � (ab)c and a · bc � a(bc), andboth will denote
the product (a · b) · c and a · (b · c). Similarly,
ab · cd � (ab)(cd) will denote the product (a · b) · (c · d).

Defnition 5 (see [21]). An AG-groupoid S is called a regular
AG-groupoid if for each a ∈ S, there is an s ∈ S, with
a � as · a.

Defnition 6 (see [21]). An AG-groupoid S is called
a strongly regular AG-groupoid if for each a ∈ S, there exists
s ∈ S, such that a � as · a and as � sa.

Defnition 7 (see [22]). A completely inverse AG-groupoid S

is an AG-groupoid satisfying the identity as � sa, where s is
an inverse of a; that is, a � as · a and s � sa · s for all a ∈ S.

Let S be an AG-groupoid. Ten, V(a) � s ∈ S/a{ � as ·

a, s � sa · s, as � sa} represents a collection of complete in-
verses of a ∈ S.

An AG∗∗-groupoid is an AG-groupoid S if a · bc � b · ca

for all a, b, c ∈ S. Te paramedial law is also satisfed by an
AG∗∗-groupoid. It is worth noting that an AG∗∗-groupoid is
the generalization of an AG-groupoid with the left identity
since an AG-groupoid with the left identity is an
AG∗∗-groupoid, but not the other way around.

Lemma 1. An AG∗∗-groupoid S is strongly regular if and
only if V(a)≠∅ for all a ∈ S.

Proof. Necessity. Let a ∈ S. Ten, there exists some s ∈ S

such that a � as · a and as � sa. Now, � (as · a)s·

s � (sa · as)s � (as · as)s � (s · as)(as) � (as)(as · s) � ((as·
a)s)(as · s) � (sa · as)(as · s) � (as · as)(as · s) � ((as · s)a)

(as · s) . It is easy to prove that a(as ∙ s) ∙ a � a and
(as · s)a � a(as · s), which implies that V(a)≠∅ for all a ∈ S

sufciency. It is obvious. □

Corollary 1. An AG-groupoid S with the left identity is
strongly regular if and only if V(a)≠∅ for all a ∈ S.

Te proof of the following two lemmas is the same as
in [23].

Lemma 2. Let S be an AG-groupoid. For ∅≠A, B⊆S, the
following holds.

(i) CA ∩CB � CA∩B

(ii) CA°CB � CAB.

Lemma 3. If ξ is any score function of an AG-groupoid S,
then ξ is an LDF-score right (left) ideal of S if and only if
ξ ∘ S⊆ ξ°(S ∘ ξ ⊆ ξ).

Defnition 8 (see [24]). A non-empty subset A of an AG-
groupoid S is called a (0, 2) -ideal of S if SA2 ⊆A.

Defnition 9. Let τ be a score function of an AG-groupoid S

and s, y, z ∈ S. Ten, τ is called an LDF-score (0,2)-ideal of S

if
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τ(s · yz)≥ τ(y)∧ τ(z). (8)

Te proof of the following two lemmas is the same as
in [25].

Lemma 4. If τ is any score function of an AG-groupoid S,
then τ is an LDF-score (0,2)-ideal of S if and only if S ∘ τ2 ⊆ τ.

Lemma 5. Let S be an AG-groupoid and ∅≠O⊆ S. Ten, O

is a (0, 2)-ideal of S if and only if CO is an LDF-score
(0, 2)-ideal of S.

Theorem 1. Let τ be an LDF-idempotent subset of an AG-
groupoid S with the left identity. Ten, the following condi-
tions are equivalent:

(i) τ � ξ ∘ σ, where ξ is an LDF-score right ideal and σ is
an LDF-score left ideal of S

(ii) τ is an LDF-score (0, 2)-ideal of S.

Proof. (i)⟹(ii): We can obtain the following by using
Lemma 3:

S ∘ τ2 � (S ∘ S)°(τ ∘ τ) � (S ∘ τ)°(S ∘ τ) � (S ∘ (ξ ∘ σ))°(S ∘ (ξ ∘ σ))

� (ξ ∘ (S ∘ σ)) ∘ ((S ∘ S) ∘ (ξ ∘ σ))⊆(ξ ∘ S)°((σ ∘ ξ) ∘ (S ∘ S))

⊆ ξ ∘ ((S ∘ ξ) ∘ σ)⊆ ξ°(S ∘ σ)⊆ ξ°σ � τ.

(9)

As a result of Lemma 4, τ is an LDF-score (0, 2)-ideal of S.

(ii)⟹(i): Setting σ � S ∘ τ and ξ � S ∘ τ2 and then using
Lemma 4, we obtain

ξ ∘ σ � S ∘ τ2􏼐 􏼑°(S ∘ τ) � (τ ∘ S)° τ2 ∘ S􏼐 􏼑 � (τ ∘ τ)°((τ ∘ S) ∘ S)

� (S ∘ (τ ∘ S)) ∘ τ ⊆ S°τ2⊆ τ � τ°τ � τ ∘ τ2􏼐 􏼑°(τ ∘ τ)

⊆ S ∘ τ2􏼐 􏼑
°
(S ∘ τ) � ξ°σ.

(10)

Tis is what we set out to show. □

Remark 2. Assume that S is an AG-groupoid with the left
identity and a ∈ S. Te smallest (0, 2)-ideal of S containing
a2 is Oa2 � Sa2.

Theorem 2. Assume that S is an AG-group. Ten, the fol-
lowing conditions are equivalent:

(i) V(a)≠∅
(ii) Oa2 � O2

a2 , where Oa2 is the smallest (0, 2)-ideal of S

containing a2

(iii) O1 ∩O2 � O2
2O

2
1, where both O1 and O2 are any

(0, 2)-ideals of S

(iv) ξ ∩ σ � σ2°ξ2, where both ξ and σ are any LDF-score
(0,2)-ideals of S.

Proof. (i)⟹(iv): Let ξ and σ be both LDF-score
(0, 2)-ideals of S with the left identity e such that
V(a)≠∅. Now, for a ∈ S, there exists some s ∈ S such that

a � as · a � (as · a)s · (as)(sa · a) � (sa · as) as · a
2
s􏼐 􏼑

� a(sa · s) · a
2
(as · s) � (sa · a)(sa · s) · a

2
· s

2
a􏼐 􏼑

� (aa · es)(sa · s) · as2 · a
2

􏼐 􏼑

� (se · aa) s
2
(as · a)􏼐 􏼑 · a

2
s
2

􏼐 􏼑(sa · a)

� (se · aa) as · s
2
a􏼐 􏼑 · (aa · ss)(sa · a)

� (se · aa) s
2
(sa · a)􏼐 􏼑 · (ss · aa)(aa · es)

� (se · aa) s
2

· a
2
s􏼐 􏼑 · s

2
· aa􏼐 􏼑(se · aa)

� (se · aa) ss
2

· aa􏼐 􏼑 · s
2

· aa􏼐 􏼑(se · aa) � st · uv,

σ2°ξ2􏼐 􏼑(a) � σ°ξ( 􏼁
° σ°ξ( 􏼁􏼐 􏼑(a) � ∨

a�st·uv
σ°ξ( 􏼁(st)∧ σ°ξ( 􏼁(uv)􏼈 􏼉

≥ σ(a)∧ ξ(a).

(11)

Tus, by using Lemma 4, we get ξ ∩ σ � σ2°ξ2.
(iv)⟹(iii): Let O1 and O2 be any (0, 2)-ideals of S.

Ten, by Lemma 5, CO1
and CO2

are the LDF-score
(0, 2)-ideals of S. Let s ∈ O1 ∩O2. Ten, by using Lemma 2,
we have

1 � CO1 ∩O2
(s) � CO1

∩CO2
􏼐 􏼑(s)

� CO2
2

°CO2
1

􏼐 􏼑(s) � CO2
2O2

1
(s),

(12)

which implies that a ∈ O2
2O

2
1, and therefore, O1 ∩O2 ⊆O2

2O
2
1.

It is easy to see that O2
2O

2
1 ⊆O1 ∩O2, and therefore,

O1 ∩O2 � O2
2O

2
1.

(iii)⟹(ii): It is obvious.
(ii)⟹(i): Since Sa2 is the smallest (0, 2)-ideal of S

containing a2, therefore a2 ∈ Sa2 �

Sa2 · Sa2 � a2S · a2S � a2(a2S · S) � a2(SS · aa) � a2 · aS,
which implies that a2 � aa · as � (as · a)a for some s ∈ S.
Tus, a2 � (as · a)a⟹(aa)a′ � ((as · a)a)a′⟹(a′a)a �
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(a′a)(as · a)⟹a � as · a. Similarly, we can get as � sa.
Hence, by Lemma 1, V(a)≠∅. □

Defnition 10. An AG-groupoid S is called left zero if sy � s

for all s, y ∈ S.

Lemma  . Let S be a left zero AG-groupoid with the left
identity and τ be a score function of S. Ten, for any
idempotent elements e and f of S, τ(e) � τ(f).

Proof. It is simple. □

Lemma 7. Te following conditions are equivalent for an
AG-groupoid S with the left identity:

(i) Te set of all idempotent elements of S forms a left zero
AG-subgroupoid of S

(ii) For every LDF-score (0, 2)-ideal τ of S, τ(e) � τ(f)

for all idempotent elements e and f of S.

Proof. (i)⟹(ii): It can be followed from Lemma 6.
(ii)⟹(i): Since S contains a left identity, it is obvious

that ES ≠∅. If we consider f ∈ ES, we can see that Sf2 � Sf

is the (0,2)-ideal of S. Using Lemma 5, the characteristic
function CSf is an LDF-score (0,2)-ideal of S. As a result of
the assumption, we get CSf(e) � CSf(f) � 1, and hence,
e ∈ Sf. Tus, for some s ∈ S, we have e � s · ff �

f · sf � fe � ef. □

Lemma 8. Every LDF-score (0,2)-ideal of an AG-group S is
a constant function.

Proof. If a ∈ S, then

τ(a) � τ(ea) � τ(ee · a) � τ(ae · ee)≥ τ(e)∧τ(e) � τ(ee) � τ aa−1
· aa−1

􏼐 􏼑

� τ aa · a
− 1

a
− 1

􏼐 􏼑 � τ a
−1

a
−1

· aa􏼐 􏼑≥ τ(a)∧ τ(a) � τ(a).
(13)

Tis indicates that τ(e) � τ(a). As a conclusion, τ is
a constant function. □

Theorem 3. Let S be an AG-groupoid with the left identity
such that V(a)≠∅. Ten, the following conditions are
equivalent:

(i) S is an AG-groupoid
(ii) For every LDF-score (0,2)-ideal τ of S, τ(e) � τ(f)

for all idempotent elements e and f of S

(iii) Te set of all idempotent elements of S forms a left
zero AG-subgroupoid of S.

Proof. (i)⟹(ii): It can be simply followed from Lemma 8.
(ii)⟹(i): Since the characteristic function CSf is an

LDF-score (0, 2)-ideal of S and f ∈ Sf, so
CSf(e) � CSf(f) � 1, and hence, e ∈ Sf, implying that e �

sf for some s ∈ S. Similarly, for some y ∈ S, one may obtain
f � ye. Consequently, e � sf � s · ff � f · sf � fe �

ef � e · ye � y · ee � ye � f. As ES � e{ } and V(a)≠∅, we
obtain (as)2 � as · as � sa · as � (as · a)s � as. Tus,
e � as � sa. Hence, ea � as · a � a. Tis shows that S is an
AG-groupoid.

(ii)⟺(iii): It can be followed from Lemma 7. □

3.2.MADMthrough LDF-Score (0,2)-Ideals of AG-Groupoids.
Life is all about making decisions. A lot of people avoid
taking responsibility when faced with problems or making
important decisions. Te impact of decision-making comes
in the way it helps you decide among various alternatives.
Decision-making is a conceptual process that assists you in
visualizing the implications of your choices. It enables you to
determine the optimal strategy for achieving your goals and

objectives, eventually determining your outcome. According
to contemporary decision-making theory, the multiattribute
decision-making (MADM) approach is important for
addressing the signifcant problems in our everyday life.

It is supposed that a decision-maker (DM) must review
and evaluate a set of alternatives with various characteristics.
MADM seeks to identify or rate the most preferable alter-
natives in order to improve decision-making. Certain tra-
ditional methods, such as the consensus-based TOPSIS-sort-
B method [26] and techniques for decision-making with
multigranular unbalanced linguistic information [27], have
been attempted to solve MADM problems.

Attribute values are required decision-making data in
MADM situations. Te attribute values represent the options’
features, benefts, and abilities. Because of the complexity of the
real world and humans’ limited information and perceptual
abilities, the values of attributes are unknown. As a result,
decision-makers are unable to express their preferences or
evaluations directly. Terefore, a mechanized mathematical
algorithm is required to solve such a problem.

We now devise a MADM technique to see which al-
ternative is a good choice for further analysis on the basis of
the given reference parameters.

Let us assume that a decision maker is trying to make
a decision for a collection of n alternatives. Ten, the steps of
MADM via the LDF-score (0,2)-ideal are broken down as
follows:

Step 1: take the collection of alternatives and label
them as

C � ci : i � 1, 2, 3 · · · , n􏼈 􏼉. (14)

Step 2: construct an AG-groupoid on collection C

under a combination rule “°”
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Step 3: defne the reference parameters α and β
Step 4: take the attributes with reference parameters α
and β and defne an LDFS on them
Step 5: defne LDFNs on C

Step 6: create an LDF-score (0, 2)-ideal of (C,°)

Step 7: rank all the LDFNs by using the score function
(use the accuracy function if scores are equal)

4. Applications of LDFNs and LDF-Score (0,2)-
Ideals

We can utilize mathematical modeling for ranking diferent
alternatives, but an LDFN approach is preferable to others
due to the expanded space and unrestricted choice of the
parameters α and β that are chosen based on the preferences
of the decision-makers.

For instance, let us consider an example of an automated
trafc signal at an intersection. Trafc lights are controlled by
counting the number of cars waiting to cross on any side, and
a fuzzy function bridges the gap between the number of cars
and trafc light timing. Let us consider the scenario where the
counting of cars can no longer happen due to camera mal-
function. Te automated system has the historic data on trafc
at any specifc time of the day and can keep using it to automate
trafc lights.Te problem is that the system is not being actively
monitored and that there is always a doubt about the accuracy
of implementing historic data to real-time problems. If this
system is working with simple intuitionistic fuzzy sets of the
type 〈fA, gA〉, there is no way to introduce uncertainty for the
values of fA and gA. LDFS can solve this problem by in-
troducing the reference parameters α and β.

4.1. Selection of Bridge Designs. In civil engineering, bridge
construction is among the most demanding task a civil
engineer is required to perform. Since ancient times till now,
bridges have been used to cross rivers, valleys, and roadways,
allowing people to travel between diferent parts of the
country. Because each structure has distinct needs to meet,
such as span clearance, trafc fow, geometry, and the pe-
culiarities of the construction site, a wide range of bridges
can be built. When it comes to creating a road network,
a civil engineer’s choice of bridge design is critical.

Assume that a construction company wants to construct
bridges for a highway project. It wants to select the best
construction design with lots of features and having less
completion time. Let C � b1, b2, b3􏼈 􏼉 be the set of some
bridge designs elaborated as follows:

(i) b1⟶ Arch de sign: a design with support beams in
the form of curved arches at each end

(ii) b2⟶ Truss de sign: a design whose superstructure
or load-bearing portion is made up of connected
triangle-shaped sections called trusses

(iii) b3⟶ Suspension de sign: a design that has its deck
suspended on vertical suspenders from below sus-
pension cables.

To take a decision that will rank the available alternatives
according to the attribute “environmental condition,” we
will utilize an LDF-score (0,2) -ideal of an AG-groupoid.Te
rankings of the LDFNs associated with each design in the
collection C � b1, b2, b3􏼈 􏼉 will decide the rankings.

Let us consider the collection of bridge designs C �

b1, b2, b3􏼈 􏼉 under the combination rule ⊚ given in Table 1.
It is easy to see that (C,⊚) is an AG-groupoid.
Let us defne the parameters α and β as in Table 2.
Let us defne the set of LDFS F1 on C as follows:

F1 � Ai � 〈fA bi( 􏼁, gA bi( 􏼁〉〈αA bi( 􏼁, βA bi( 􏼁〉( 􏼁; i � 1, 2, 3􏼈 􏼉,

(15)

where the LDFNs Ai are defned in Table 3.
Table 3 shows that ξ(F1) is an LDF-score (0,2)-ideal of

(C,⊚).
All of the alternatives are sorted according to their re-

spective scores. If two scores are equal, the accuracy function
can be used to sort the alternatives. Figure 1 represents the
visualization of the score, accuracy, and ranking comparison
for F1.

Te preferences of the alternatives based on an LDF-
score (0, 2)-ideal on (C,⊚) can be seen in Table 4.

Let us consider the same collection of bridge designsC �

b1, b2, b3􏼈 􏼉 under the combination rule ⊖ given in Table 5.
One can easily verify that (C,⊖) forms an AG-groupoid.
Defning an LDFS, we obtain

F2 � Bi � 〈fB bi( 􏼁, gB bi( 􏼁〉〈αB bi( 􏼁, βB bi( 􏼁〉( 􏼁; i � 1, 2, 3􏼈 􏼉,

(16)

on C, and the corresponding values are listed in Table 6.
We can see that ξ(F2) is an LDF-score (0, 2)-ideal of

(C,⊖). Figure 2 represents the visualization of score, ac-
curacy, and ranking comparison for F2.

Te preferences of the alternatives based on an LDF-
score (0, 2)-ideal on (C,⊖) can be seen in Table 7.

Table 1: Composition of C under the rule ⊚.

⊚ b2 b1 b3

b2 b2 b2 b2
b1 b2 b2 b3
b3 b2 b1 b2

Table 2: Reference parameters α and β for (C,⊚).

α Adapts to environmental conditions
β Environment efects the bridge

Table 3: LDFNs Ais along with scores, accuracies and rankings on
(C,⊚).

bi Ai fA(bi) gA(bi) αA(bi) βA(bi) Score Accuracy Rank

b1 A2 0.9 0.4 0.3 0.2 0.4 0.35 2nd
b2 A1 1.0 0.2 0.5 0.4 0.7 0.45 1st
b3 A3 0.2 0.4 0.6 0.4 0.0 0.0 3rd
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Figure 1: Score, Accuracy & Ranking Comparison for F1 on (C,⊚).

Table 4: Rankings of bridge designs under (C,⊚).

Rankings 1st 2nd 3rd
Bridge design b2 b1 b3

Table 5: Composition of C under the rule ⊖.

⊖ b2 b1 b3

b2 b1 b3 b2
b1 b2 b1 b3
b3 b3 b2 b2

Table 6: LDFNs Bis along with scores, accuracies and rankings on (C,⊝).

bi Bi fB(bi) gB(bi) αB(bi) βB(bi) Score Accuracy Rank

b1 B2 0.4 0.6 0.6 0.2 −0.2 0.1 2nd
b2 B1 0.1 0.4 0.7 0.3 −0.1 . . . 1st
b3 B3 0.6 0.8 0.5 0.1 −0.2 0.1 2nd

-0.2 0.1-0.1

1

-0.2 0.1

2

Score Accuracy Rank

2

b1

b2

b3

Figure 2: Score, Accuracy & Ranking Comparison for F2 on (C,⊝).
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4.2. Selection of AI-Based Chatbots. Artifcial intelligence
(AI) chatbots use machine learning to interact with humans.
Weizenbaum, an MIT scientist, created the frst AI chatbot
in the 1960s [28]. Chatbot technology has advanced sub-
stantially in recent years. It interacts with people on a per-
sonal and emotional level. Artifcial intelligence-powered
chatbots are revolutionizing customer care experience. Tey
understand the context and meaning of words. Tey can use
questions to elicit purpose and assist in the resolution of
customer issues. Te programs in chatbots analyze human
speech and respond appropriately using modern natural
language processing (NLP) algorithms.

Assume that an IT company is looking for the best AI
chatbot for customer engagement and customer service. As
a consequence, the company’s top executives agreed to do
a feasibility study on several AI bots.

Te selection has to be made from the collection B �

d1, d2, d3, d4, d5􏼈 􏼉 of fve chatbots elaborated as follows:

(i) d1⟶ Mitsuku: It is the world’s most human-like
talking bot. Te chatbot has received the Loebner
Prize for the most human-like conversation on
many occasions.

(ii) d2⟶ Tidio: It distinguishes from its competitors
by providing a solution that allows one to construct
his own chatbots without requiring any coding
skills.

(iii) d3⟶ ProProfs: It improves your company’s
customer service, marketing, and sales activities all
at the same time.

(iv) d4⟶ Botsify: It is easy to use and does not require
any coding knowledge. Advanced chatbots can be
built for education, customer support, sales, and the
HR department.

(v) d5⟶ MobileMonkey: It has advanced automation
and integration assists to connect with the audience
in real-time. Anyone with no coding experience can
use the program to construct efective chatbots.

To take a decision that will rank the available alternatives
according to the attribute “customer rating,” we will utilize
an LDF-score (0, 2)-ideal of an AG-groupoid. Te rankings
of the LDFNs associated with each bot in the collection B

will decide the rankings.
Let us consider the collection of bots

B � d1, d2, d3, d4, d5􏼈 􏼉 under the combination rule ⊞ given
in Table 8.

One can easily verify that (B,⊞) forms an AG-groupoid.
Let us defne the parameters α and β as shown in Table 9.
Now, we consider the following LDFS F1 on B:

F1 � Ai � 〈fA di( 􏼁, gA di( 􏼁〉, 〈αA di( 􏼁, βA di( 􏼁〉( 􏼁; i � 1, 2, 3, 4, 5􏼈 􏼉,

(17)

where Ai are LDFNs as given in Table 10.
It is obvious from the table that ξ(F1) is an LDF-score

(0, 2)-ideal of (B,⊞).
All of the alternatives are sorted according to their re-

spective scores. If two scores are equal, the accuracy function
can be used to sort the alternatives. Figure 3 represents the
visualization of the score, accuracy, and ranking comparison
for F1.

Te preferences of the alternatives based on an LDF-
score (0, 2)-ideal on (B,⊞) can be seen in Table 11.

Now, we consider the collection of bots
B � d3, d1, d4, d2, d5􏼈 􏼉 under the combination rule ⊟ given
in Table 12.

It is easy to verify that (B,⊟) is an AG-groupoid.
Now, we defne the collection of LDFS on B as follows:

F2 � Bi � 〈fB di( 􏼁, gB di( 􏼁〉, 〈αB di( 􏼁, βB di( 􏼁〉( 􏼁; i � 1, 2, 3, 4, 5􏼈 􏼉,

(18)

where Bi are LDFN and are provided in Table 13.
It is obvious from Table 13 that ξ(F2) is an LDF-score

(0, 2)-ideal of (B,⊟). Figure 4 represents the visualization of
score, accuracy, and ranking comparison for F2.

Te preferences of the alternatives based on an LDF-
score (0, 2)-ideal on (B,⊟) can be observed in Table 14.

Again, we consider the collection of bots
B � d3, d1, d4, d2, d5􏼈 􏼉 under the combination rule ⊠ given
in Table 15.

Clearly, (B,⊠) forms an AG-groupoid.
Now, we defne the collection of LDFS on B as follows:

F3 � Ci � 〈fC di( 􏼁, gC di( 􏼁〉, 〈αC di( 􏼁, βC di( 􏼁〉( 􏼁; i � 1, 2, 3, 4, 5􏼈 􏼉,

(19)

where Ci are LDFN and are provided in Table 16.

Table 8: Composition of B under the rule ⊞.

⊳ d3 d1 d4 d2 d5

d3 d3 d3 d3 d3 d3
d1 d3 d5 d5 d4 d5
d4 d3 d5 d5 d1 d5
d2 d3 d1 d4 d2 d5
d5 d3 d5 d5 d5 d5

Table 9: Reference parameters α and β for chatbot selection.

α Good customer rating
β Bad customer rating

Table 10: LDFNs Ais along with scores, accuracies and rankings on
(B,⊞).

di Ai fA(di) gA(di) αA(di) βA(di) Score Accuracy Rank

d1 A2 0.5 0.5 0.6 0.6 0.0 . . . 4th
d2 A4 0.3 0.7 0.9 0.1 −0.4 . . . 5th
d3 A1 1 0 0.5 0.5 1.0 . . . 1st
d4 A3 0.7 0.1 0.5 0.1 0.2 0.55 3rd
d5 A5 0.9 0.1 0.8 0.2 0.2 0.7 2nd

Table 7: Rankings of bridge designs under (C,⊖).

Rankings 1st 2nd 2nd
Bridge design b2 b1 b3
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Again, it can be checked from the table that ξ(F3) is an
LDF-score (0, 2)-ideal of (B,⊠). Figure 5 represents the
visualization of the score, accuracy, and ranking comparison
for F3.

Te preferences of the alternatives based on an LDF-
score (0, 2)-ideal on (B,⊠) are given in Table 17.

Te parameters α and β in the above examples are chosen
based on the preferences of decision-makers, whereas at-
tribute functions are determined based on actual facts. Te
primary advantage of reference parameters is that we can
choose the attribute functions we want without being
constrained by the 0≤fA + gA ≤ 1 condition.Te evaluation
is parameterized by these parameters, which expand the
space of our mathematical model. On the same reference set
Y, we can defne various LDFSs for distinct sets of

parameters. Simply expressed, it is clear to see that the input
data values chosen start outside of the IFS and PFS spaces.

5. Discussion and Comparison

Fuzzy information techniques include fuzzy sets, intui-
tionistic fuzzy sets, Pythagorean fuzzy sets, and q-rung
orthopair fuzzy sets. Tere are, however, signifcant re-
strictions, such as FS’s inability to perform nonmembership
functions. IFS overcame this problem; however, it imposed
strong restrictions on membership and nonmembership
functions, restricting the potential space. To address this
issue, PFS and q-ROFS boosted potential space even further,
yet the vast majority of it remained unused. LDFS makes use
of the entire region, allowing users to freely select mem-
bership and nonmembership functions from any point in
space. In various MADM scenarios, we encounter various
types of criteria and input data depending on the circum-
stance. Te space comparison is given in Figure 6.

Te optimum choice of bridge designs carried out
through LDF-score (0, 2) -ideals of two diferent AG-
groupoids is given in Table 18.

Te optimum choice of chatbots carried out through
LDF-score (0, 2)-ideals of three diferent AG-groupoids is
given in Table 19.

0

4

-0.4

5

1 1
0.2

0.55

3

0.2
0.7

2

Score Accuracy Rank

d1

d2

d3

d4

d5

Figure 3: Score, Accuracy & Ranking Comparison for F1 on (B,⊞).

Table 11: Rankings of chatbots under (B,⊞).

Rankings 1st 2nd 3rd 4th 5th
Chatbots d3 d5 d4 d1 d2

Table 12: Composition of B under the rule ⊟.

⊟ d3 d1 d4 d2 d5

d3 d1 d3 d3 d3 d3
d1 d3 d1 d1 d1 d1
d4 d3 d1 d4 d2 d5
d2 d3 d1 d5 d4 d2
d5 d3 d1 d2 d5 d4

Table 13: LDFNs Bis along with scores, accuracies and rankings on
(B,⊟).

di Bi fB(di) gB(di) αB(di) βB(di) Score Accuracy Rank

d1 B2 0.6 0.3 0.3 0.0 0.0 0.3 1st
d2 B4 0.4 0.6 0.6 0.2 −0.2 0.1 2nd
d3 B1 0.5 0.2 0.4 0.1 0.0 0.3 1st
d4 B3 0.3 0.5 0.5 0.1 −0.2 0.1 2nd
d5 B5 0.5 0.7 0.7 0.3 −0.2 0.1 2nd
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Figure 4: Score, Accuracy & Ranking Comparison for F2 on (B,⊟).

Table 14: Rankings of chatbots under (B,⊟).

Rankings 1st 1st 2nd 2nd 2nd
Chatbots d3 d1 d4 d2 d5

Table 15: Composition of B under the rule ⊠.

⊠ d3 d1 d4 d2 d5

d3 d3 d3 d3 d3 d3
d1 d3 d1 d1 d1 d1
d4 d3 d1 d2 d5 d4
d2 d3 d1 d4 d2 d5
d5 d3 d1 d5 d4 d2

Table 16: LDFNs Cis along with scores, accuracies, and rankings.

di Ci fC(di) gC(di) αC(di) βC(di) Score Accuracy Rank

d1 C2 0.8 0.3 0.2 0.1 0.4 . . . 2nd
d2 C4 0.3 0.5 0.4 0.3 0.1 0.05 3rd
d3 C1 0.9 0.1 0.4 0.3 0.7 . . . 1st
d4 C3 0.1 0.3 0.5 0.4 0.1 0.05 3rd
d5 C5 0.5 0.7 0.3 0.2 0.1 0.05 3rd
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It is evident that, for both AG-groupoids (C,⊚) and
(C,⊖), the “truss design bridge” b2 is ranked as no. 1. For the
selection of AI-based chatbot problems, the chatbot d3,

which is “ProProfs,” is the most optimum option to select via
all AG-groupoids (B,⊞), (B,⊟), and (B,⊠).

6. Conclusion

A crucial and essential area of research for multiattribute
decision-making (MADM) is how to encode these per-
plexing pieces of information. IFSs, PFSs, and q-ROFSs are
all great approaches to dealing with ambiguous data. Al-
though LDFSs are more generic, by integrating reference/
control parameters, they excel at easing the restrictive limits
of IFS, PFS, and q-ROFS.Te tactics used for this assignment
are mostly determined by the type of problem being ex-
amined. Our everyday lives are erratic, imprecise, and
blurry. Te present structures are based on the assumption
that decision-makers take into account defned limitations
while evaluating various alternatives and characteristics.
However, given other circumstances, this type of scenario
prevents decision-makers from allocating membership
grades and nonmembership grades. To address these con-
straints, the LDFS technique utilizes two reference or control
parameters in place of membership grades and non-
membership grades.

In this research, we used LDF data along with the AG-
groupoid to tackle real-world multiattribute decision-
making problems. We reviewed the advantages of LDFS
over other strategies and compared the ranks of other al-
ternatives by changing the AG-groupoids over the exact
same problem.

As the applications considered in this paper are from
very diverse felds of science, i.e., one from engineering and
the other from information technology. It is therefore ob-
served that the propound method is a very useful tool for

d1

d2

d3

d4

d5

Score Accuracy Rank

0.4

2

0.1 0.05

3

0.7
1

0.1 0.05

3

0.1 0.05

3

Figure 5: Score, accuracy, and ranking comparison for F3.

Table 17: Rankings of chatbots under (B,⊠).

Rankings 1st 2nd 3rd 3rd 3rd
Chatbots d3 d1 d4 d2 d5

1.0

1.0

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1
0.0
0.0

IFS

PFS

LDFS

Figure 6: Space comparison of IFS, PFS, and LDFS.

Table 18: Ranking comparison with the optimal choice of bridge
designs.

AG-groupoids Ranking Comparison Choice
(C,⊚) b2 > b1 > b3 b2
(C,⊖) b2 > b1 � b3 b2

Table 19: Ranking comparison with the optimal choice of chatbots.

AG-groupoids Ranking Comparison Choice
(B,⊞) d3 >d5 > d4 >d1 >d2 d3
(B,⊟) d3 � d1 >d4 � d2 � d5 d3
(B,⊠) d3 >d1 >d4 � d2 � d5 d3
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decision-making in a wide variety of real-life scenarios.
Another advantage of this method is the freedom of choice
for LDFNs in the space of LDFSs because an LDFS does not
impose restrictions on membership and nonmembership
functions; therefore, the proposed method could also be
applied to other types of fuzzy sets such as intuitionistic
fuzzy sets, picture fuzzy sets, and q-rung orthopair fuzzy sets.
Since the LDFS could be generalized to interval-valued LDFS
by considering membership and nonmembership functions
as intervals instead of numbers, hence the proposed method
could also be generalized to interval-valued LDF-score (0,2)-
ideals.
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grassmann’s 3-bands, novi sad,” Journal of Mathematics,
vol. 34, pp. 175–182, 2004.

[3] Q. Mushtaq and S. M. Yusuf, “On LA-semigroups,” Journal of
Advanced Research in Pure Mathematics, vol. 8, pp. 65–70,
1978.

[4] M. S. Kamran, Structural Properties of LA-semigroups, M. Phil
Tesis, Quaid-i-Azam University, Islamabad, Pakistan, 1987.

[5] H. Guan, F. Yousafzai, M. D. Zia, M. I. Khan, M. Irfan, and
K. Hila, “Complex linear diophantine fuzzy sets over AG-
groupoids with applications in civil engineering,” Symmetry
Plus, vol. 15, no. 1, p. 74, 2022.

[6] F. Yousafzai, M. D. Zia, M. M. Khalaf, and R. Ismail, “A new
look of interval-valued intuitionistic fuzzy sets in ordered AG-
groupoids with applications,” AIMS Mathematics, vol. 8,
no. 3, pp. 6095–6118, 2022.

[7] L. A. Zadeh, “Fuzzy sets,” in Fuzzy Sets, Fuzzy Logic, and
Fuzzy Systems: Selected Papers by Lotf A Zadeh, pp. 394–432,
World Scientifc, Toh Tuck Link, Singapore, 1996.

[8] K. T. Atanassov and R. Parvathi, “Intuitionistic fuzzy sets,”
Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87–96, 1986.

[9] R. R. Yager, “Pythagorean membership grades in multicriteria
decision making,” IEEE Transactions on Fuzzy Systems,
vol. 22, no. 4, pp. 958–965, 2014.

[10] K. T. Atanassov, “Geometrical interpretation of the elements
of the intuitionistic fuzzy objects,” International Journal
Bioautomation, vol. 20, no. 1, 1989.

[11] R. R. Yager, “Generalized orthopair fuzzy sets,” IEEE
Transactions on Fuzzy Systems, vol. 25, no. 5, pp. 1222–1230,
2017.

[12] P. Liu and P. Wang, “Some q-rung orthopair fuzzy aggre-
gation operators and their applications to multiple-attribute
decision making,” International Journal of Intelligent Systems,
vol. 33, no. 2, pp. 259–280, 2018.

[13] M. I. Ali, “Another view on q-rung orthopair fuzzy sets,”
International Journal of Intelligent Systems, vol. 33, no. 11,
pp. 2139–2153, 2018.

[14] M. Riaz and M. R. Hashmi, “Linear Diophantine fuzzy set and
its applications towards multi-attribute decision-making
problems,” Journal of Intelligent and Fuzzy Systems, vol. 37,
no. 4, pp. 5417–5439, 2019.

[15] A. O. Almagrabi, S. Abdullah, M. Shams, Y. D. Al-Otaibi, and
S. Ashraf, “A new approach to q-linear diophantine fuzzy
emergency decision support system for covid19,” Journal of
Ambient Intelligence and Humanized Computing, vol. 1,
pp. 1–27, 2021.

[16] D. H. Hong and C. H. Choi, “Multicriteria fuzzy decision
making problems based on vague set theory,” Fuzzy Sets and
Systems, vol. 114, no. 1, pp. 103–113, 2000.

[17] Z. Xu and R. R. Yager, “Some geometric aggregation operators
based on intuitionistic fuzzy sets,” International Journal of
General Systems, vol. 35, no. 4, pp. 417–433, 2006.

[18] S. Z. Xu, “Methods for aggregating interval-valued intui-
tionistic fuzzy information and their application to decision
making,” Control and Decision, vol. 22, pp. 215–219, 2007.

[19] M. Khan, Y. B. Jun, and F. Yousafzai, “Fuzzy ideals in right
regular left almost semigroups,” Hacettepe Journal of Math-
ematics and Statistics, vol. 44, pp. 569–586, 2015.

[20] F. Yousafzai, N. Yaqoob, and A. Ghareeb, “Left regular AG-
groupoids in terms of fuzzy interior ideals,” Afrika Mathe-
matika, vol. 24, pp. 577–587, 2013.

[21] M. Khan, F. Yousafzai, and V. Amjad, “On some classes of
Abel-Grassmann’s groupoids,” Journal of Advanced Research
in Pure Mathematics, vol. 3, no. 4, pp. 109–119, 2011.

[22] W. A. Dudek and R. S. Gigon, “Congruences on completely
inverse AG∗∗-groupoids,” Quasigroups and related systems,
vol. 20, pp. 203–209, 2012.

[23] J. N.Mordeson, D. S. Malik, and N. Kuroki, Fuzzy Semigroups,
Springer-Verlag, Berlin, Germany, 2003.

[24] W. Khan, F. Yousafzai, and M. Khan, “On generalized ideals
of left almost semigroups,” European Journal of Pure and
Applied Mathematics, vol. 9, pp. 277–291, 2016.

[25] F. Yousafzai, M. M. Khalaf, M. U. I. Khan, A. Borumand
Saeid, and Q. Iqbal, “Some studies in fuzzy non-associative
semigroups,” Journal of Intelligent and Fuzzy Systems, vol. 32,
no. 3, pp. 1917–1930, 2017.

[26] Z. Zhang and Z. Li, “Consensus-based TOPSIS-Sort-B for
multi-criteria sorting in the context of group decision-
making,” Annals of Operations Research, vol. 17, pp. 1–28,
2022.

[27] Z. Zhang, Z. Li, and Y. Gao, “Consensus reaching for group
decision making with multi-granular unbalanced linguistic
information: a bounded confdence and minimum
adjustment-based approach,” Information Fusion, vol. 74,
pp. 96–110, 2021.

[28] J. Weizenbaum, “Eliza a computer program for the study of
natural language communication between man and ma-
chine,” Communications of the ACM, vol. 9, no. 1, pp. 36–45,
1966.

12 Discrete Dynamics in Nature and Society




