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Two stage-structuredone-population (prey) models together with four prey-predator models are analyzed. Regarding the prey
models, where one of them has fecundity elements which depend on the total population while the fecundities of the other depend
on themature part of the population only, we prove that both of them are permanent andmoreover that their fxed points undergo
supercritical bifurcations, fip, andNeimark-Sacker, respectively, at the various instability thresholds. By use of themodels, we also
provide a discussion of stability and dynamical properties of species who possess diferent life histories and extent results obtained
elsewhere. Turning to predation, in contrast to what one fnds in most papers, we scrutinize cases where both the immature
subpopulation of the prey and the mature part are targets for the predator. Among our fndings, here is that increased predation
may act in both a stabilizing and destabilizing fashion depending on the size of fecundity of prey. Moreover, we present new results
about the transition from stability to instability, and we show that whenever predation acts destabilizing, the efect is most
profound in cases where the prey possesses a precocious semelparous life history. We also provide several examples where
increased predation may turn a stable system chaotic.

1. Introduction

As it is well known, nonlinear discrete age- and stage-
structured population models may serve as excellent tools
when one wants to describe and reveal dynamical prop-
erties and behaviour of a great variety of species. Te use of
age-structured models, i.e., iteroparous or semelparous
Leslie matrix models, rests upon the prerequisite that
sexual maturity is linked to age or alternatively to other
factors which are closely correlated to age. Tere is a vast
literature of theoretical studies as well as studies applied on
concrete species which make use of age-structured models.
Indeed, in [1], the authors present an analysis of 2 × 2 Leslie
matrix models where focus is on strange attractors and
suggest on how elements from statistical mechanics may be
applied in order to analyze chaotic behaviour. Te use of
Leslie matrices in order to study the dynamics of the

Oxford great tit population may be obtained in [2], and in
[3], the authors apply a nonlinear iteroparous Leslie matrix
model where fecundity elements do not depend on the total
population but on the weighted sum of age classes in order
to scrutinize the dynamical behaviour of the striped bass in
the Hudson river. Referring to [4, 5], the former considers
truncation efects and delay efects in large n-class models,
while the latter deals with iteroparous as well as semel-
parous Leslie matrix models with both few and many age
classes and discusses the fundamental diference among the
dynamical outcomes. In recent years, there has been
a growing interest of semelparous Leslie matrix models.
Except for tiny parameter regions, one does not fnd any
stable equilibria where all age classes are populated in such
models. Instead, single year class (SYC) dynamics domi-
nates where the whole population is in one age class only at
each time. Papers [6–10] focus on bifurcations, SYC
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dynamics as well as ergodic properties, and the dynamics
and remarkable periodicity of Magicicada species has been
scrutinized in [11, 12] by use of semelparous models.

In stage-structured models, which are mainly 2-
dimensional, vital rates such as sexual maturity may be
linked to other factors than age, for example, size, length, or
weight. Among studies where stage-structured models are
incorporated, we fnd in [13] a discussion of dynamical
consequences of diferent density depending rates. Condi-
tions for a population to be permanent (i.e., neither to go
extinct nor explode) are considered in [14], and in [15], the
authors present a numerical analysis of bifurcations in
a stage-structured cannibalismmodel which is applied to the
northeast arctic cod stock. Referring to [16], the authors
show that 3-dimensionalstage-structured models are not
only capable of describing but also predicting chaotic be-
haviour in laboratory insect populations.

Turning to multispecies interactions, discrete prey-
predator models of the form xt+1 � f(xt, yt)xt,
yt+1 � g(xt, yt)yt, where x is prey and y predator, have been
extensively studied from diferent perspectives, as accounted
for in several papers. In [17], it is shown that predator
populations may become extinct through subcritical bi-
furcations. Te 4-dimensional models presented in [18]
incorporate recruitment functions of both Ricker and
Beverton and Holt type, and it is shown that possible pe-
riodic dynamics of low period, either exact or approximate,
may not be generated by the predator, but it may be gen-
erated by the prey. In [19] the authors apply Holling type II
response, while [20] considers prey-predator interactions
including Allé efects. Such models often possess three
equilibria (or fxed points) which correspond to (i) ex-
tinction of both species, (ii) survival of the prey and ex-
tinction of the predator, or (iii) survival of both species. Te
dynamics found in such systems strongly depends on
compensatory or overcompensatory recruitment. In recent
years, the question of how to control and stabilize chaotic
behaviour in prey-predator systems has also been addressed,
see [21–24] and references therein.

Te purpose of this article is twofold. In one direction, we
shall study two stage-structuredone-population models (prey
models) with varying degree of density dependence in-
corporated. Among our results found here are that we provide
new insight of what happens at bifurcation threshold. Indeed,
when the fecundity of the prey depends on the total pop-
ulation, we prove that the transition from stability to in-
stability gores through a supercritical fip bifurcation in most
of parameter space, but in contrast to what is found in most
other population models, we also prove that there exist pa-
rameter regions where the bifurcation is of subcritical nature.
If the fecundity depends on the mature part of the population
only, we prove that the fxed point of model undergoes
a supercritical Neimark-Sacker bifurcation at threshold. By
use of the results above, we thereby show how the dynamics of
(prey) species who possess a large number of diferent life
histories may vary, and we also show that population models
where the whole population contributes to density efects in
general have better stability properties than models where
only the mature part contributes.

In another direction, we shall study the impact of pre-
dation. Te stage-structured models referred to above shall
now be considered as prey, and our goal is to reveal dy-
namical consequences of predation and possible extinction
of species where (i) the immature subpopulation of the prey
is exposed to predation and (ii) the mature part if the target
population. Among our fndings of this study is that,
depending on predation skill and life history of prey, in-
creased predation may act both in a stabilizing and desta-
bilizing fashion and in the latter case give birth to a great
variety of dynamical outcomes.

Te plan of the paper is as follows: in Section 2, we
present the prey models and analyze equilibria, stability, and
dynamical behaviour. In Section 3, we introduce the
predator and study the impact of predation by use of four
diferent models. Finally, in Section 4, we summarize and
conclude.

2. The Prey Models

Let x1,t and x2,t be the immature and mature part of a prey
population at time t, and let μ1 and μ2, 0< μ1, μ2 < 1, be the
fractions of x1 and x2, respectively, that survive from time t

to time t + 1. Moreover, we assume that p, 0<p< 1, is the
fraction of the immature population which survives to be-
come mature one time unit (year) later. f � Fe− x, where
x � x1 + x2 (model 1), f � Fe− x2 (model 2), F> 0, is the
density dependent fecundity. Depending on the species
under consideration, the terms e− x and e− x2 may be linked to
cannibalistic behaviour, crowdening efects, or other efects
such that f′(x)< 0, f′(x2)< 0. Ten, see [15] or [25], we
may express the relationship between x1 and x2 at two
consecutive time steps through the models:

Mode l 1: x1, x2( 􏼁↦

μ1(1 − p)x1 + Fe
−x

x2, μ1px1 + μ2x2( 􏼁,
(1)

Mode l 2: x1, x2( 􏼁↦
μ1(1 − p)x1 + Fe

−x2x2, μ1px1 + μ2x2( 􏼁.
(2)

Although the models look pretty similar, there is
a substantial diference between the dynamical outcomes.
Model 1 was frst proposed by Neubert and Caswell, see [13].

Both map (1) and (2) cover species with a great variety of
diferent life histories. If μ2⟶ 0, the population is
semelparous (i.e., reproducing only once). Whenever
0< μ2 < 1, the population is iteroparous (repeated re-
production). μ2⟶ 0 and p⟶ 1 mean that individuals
face a rapid development with only one reproduction. In this
case, one says that the population exhibits a precocious
semelparous life history. Standard examples may be found
between biennials and annual plants. Delayed semelparity
occurs when μ2⟶ 0 and 0<p< 1. Typical examples are
periodical insects and salmon species which live for many
years before they become mature and then reproduce only
once. If 0< μ2 < 1 and p⟶ 1, the population is said to
incorporate precocious iteroparous life history. Here, we
fnd several mammals species which start to reproduce at
a young age and may survive to reproduce for several years.
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Excellent examples are small rodent populations. Delayed
iteroparity is characterized by 0< μ2 < 1 and 0<p< 1.
Species who belong to this subclass may live for several years
in the immature stage before they reach maturity and then
survive to reproduce for many years. Large mammals and
humans belong to this subclass. Hence, map (1) and (2) may
be used to capture the dynamics of a wide range of diferent
(prey) populations.

We shall now reveal the dynamical properties of map (1)
andmap (2), and we start by map (1). Besides the trivial fxed
point (􏽥x1, 􏽥x2) � (0, 0), map (1), as shown in [13], also
possesses a nontrivial fxed point

x
∗
1 , x
∗
2( 􏼁 �

1 − μ2
1 + μ1p − μ2

x
∗
,

μ1p
1 + μ1p − μ2

x
∗

􏼠 􏼡, (3)

where

x
∗

� ln
μ1pF

1 − μ2( 􏼁 1 − μ1(1 − p)( 􏼁
􏼠 􏼡 � lnR0. (4)

In order for (3) to be a feasible fxed point, we must
assume that the inherent reproductive number R0 exceeds
unity. If R0 ≤ 1, it is straightforward by stability analysis to
show that (􏽥x1, 􏽥x2) is stable. Terefore, R0 > 1 both ensures
that (􏽥x1, 􏽥x2) is repellor and that (x∗1 , x∗2 ) is feasible.
Moreover, we have the following result regarding map (1):

Theorem 1. Under the assumption R0 > 1, map (1) is
permanent.

Proof. To this end, writing map (1) in the form

x
� t+1

� Axx
� t

, (5)

where

x � x1, x2( 􏼁
T
,

Ax �
μ1(1 − p) Fe

− x

μ1p μ2
􏼠 􏼡.

(6)

Our frst observation is that the restrictions on pa-
rameters and function in (1), (5) ensure that A0 is irreducible
and that Ax is nonnegative for all (x1, x2) ∈ R2

+. Hence, map
(1), or (4), is R2

+/ 0{ } forward invariant. It remains to show
that there exists a compact set X ⊂ R2

+ such that for all
x
0
∈ R2

+, there exists tM � tM(x
0
) satisfying x

t
∈ X for all

t> tM. Now, assume e− xt x2,t ≤K0. Ten, x1,t+1 ≤ μ1(1
−p)x1,t + FK0 and by induction

x1,t+1 ≤ μ1(1 − p)( 􏼁
t
x1,0 +

FK0

1 − μ1(1 − p)
. (7)

Ten, there exists tA � tA(x1,0) such that for t> tA

x1,t ≤
2FK0

1 − μ1(1 − p)
� K1. (8)

Further on, in case of t> tA, we also have x2,t+1 ≤
μ1pK1 + μ2x2,t and again by induction, for t> tB(x2,0)

x2,t ≤
2μ1pK1

1 − μ2
� K2. (9)

Finally, take tM � max(tA, tB) and K � max(K1, K2).
Ten, for t≥ tM, we have x1,t ≤K, x2,t ≤K, and the proof is
complete.

Hence, the population density will neither go to zero nor
explode. Considering the nontrivial fxed point (3), it is
stable whenever

x
∗
F <

2 μ1(1 − p) + μ2( 􏼁 μ1p + 1 − μ2( 􏼁

1 − μ2( 􏼁 1 − μ1(1 − p)( 􏼁 1 + μ2 − μ1p( 􏼁
, (10)

and undergoes a fip (period doubling) bifurcation when (10)
becomes an equality.

We shall now scrutinize the nature of the bifurcation in
somewhat more detail. Recall that a fip bifurcation is said to
be supercritical if a stable period 2-orbit is established at
threshold when (x∗1 , x∗2 ) fails to be stable (i.e., when (10)
becomes an equality). Otherwise, it is subcritical. □

Theorem  . In case of μ1 sufciently large (not too close to
zero), the fxed point (x∗1 , x∗2 ) of map (1) will undergo a su-
percritical fip bifurcation when (10) becomes an equality.

Proof. From the linearized map, we fnd that the eigenvalues
at bifurcation threshold become λ1 � −1 and λ2 � 1 − AB/C,
where A � μ1(1 − p) + μ2, B � 1 + μ1p − μ2, and
C � 1 + μ2 − μ1p. Next, we defne the matrix T

T �

− 1 + μ2( 􏼁
λ2 − μ2
μ1p

1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (11)

whose columns are the eigenvectors associated to λ1, λ2.
Ten, after expanding the frst component of (1) up to

third order, applying the change of coordinates (􏽢x1, 􏽢x2) �

(x1 − x∗1 , x2 − x∗2 ) (in order to translate the bifurcation to
the origin), together with the transformations

􏽢x1

􏽢x2
􏼠 􏼡 � T

u

v
􏼠 􏼡⇔

u

v
􏼠 􏼡 � T

− 1 􏽢x1

􏽢x2
􏼠 􏼡, (12)

we may rewrite (1) at threshold as

u

v
􏼠 􏼡

t+1
�

−1 0

0 λ2
􏼠 􏼡

u

v
􏼠 􏼡

t

+ DQ ut, vt( 􏼁
−1

1
􏼠 􏼡, (13)

where D � μ1p(1 + λ2). Q(ut, vt) consists of terms of order
two and three and may be expressed as
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Q ut, vt( 􏼁 �
1
2

fx
∗
2

1
μ1p( 􏼁

2 − 1 + μ2( 􏼁ut + Rvt( 􏼁
2

− f 1 − x
∗
2( 􏼁

1
μ1p

− 1 + μ2( 􏼁ut + Rvt( 􏼁 ut + vt( 􏼁

− f 1 −
1
2
x
∗
2􏼒 􏼓 ut + vt( 􏼁

2
−
1
6

fx
∗
2

1
μ1p( 􏼁

3 − 1 + μ2( 􏼁ut + Rvt( 􏼁
3

+
1
2

f 1 − x
∗
2( 􏼁

1
μ1p( 􏼁

2 − 1 + μ2( 􏼁ut + Rvt( 􏼁
2

ut + vt( 􏼁

+ f 1 −
1
2
x
∗
2􏼒 􏼓

1
μ1p

− 1 + μ2( 􏼁ut + Rvt( 􏼁 ut + vt( 􏼁
2

+
1
2

f 1 −
1
3
x
∗
2􏼒 􏼓 ut + vt( 􏼁

3
,

(14)

where R � λ2 − μ2 and f � Fe− x∗ evaluated at threshold.
Te next step involves the restriction of (13) to the center

manifold. To do this, we frst seek (approximate) the center
manifold as a graph

v � i(u)

� Ku
2

+ Lu
3

+ O u
4

􏼐 􏼑,
(15)

and by considering the two components of (13), we fnd that
i(u) satisfes the relation

i(−u − DQ(u, i(u))) − λ2i(u) − DQ(u, i(u)) � 0, (16)

from which we obtain (from (15))

K �
CW

D 1 − λ2( 􏼁
,

L �
C

D
2

AW + W
2

1 − λ2
−

C(3W − A)

6
􏼠 􏼡,

(17)

where W � 1 + μ1μ2(1 − p).
Finally, by substituting (15) into the frst component of

(13), we obtain the restricted map as

ut+1 � H ut( 􏼁, (18)

where H(ut) at bifurcation may be written as

H ut( 􏼁 � −ut −
CW

D
u
2
t

+
CW

D

(A + W) μ1p + R( 􏼁 +(A − W)C

D 1 − λ2( 􏼁
􏼠

−
C(3W − A)

6μ1pW
􏼡u

3
t .

(19)

Now, following [26] (Teorem 3.5.1), the bifurcation will
be of supercritical nature whenever the relations

zH

zF

z
2
H

zu
2 + 2

z
2
H

zuzF

�
zH

zF

z
2
H

zu
2 −

zH

zu
− 1􏼠 􏼡

z
2
H

zuzF
≠ 0,

(20)

1
2

z2H

zu2􏼠 􏼡

2

+
1
3

z
3
H

zu
3􏼠 􏼡> 0, (21)

hold. Regarding the left hand side of the nondegeneracy
condition (20), it may be cast in the form

μ1pC

AB − 2C
e

− 2AB/ 1−μ2( ) 1−μ1(1−p)( )C
, (22)

which is clearly nonzero. Te left hand side of (21) becomes

2C
2
W

D
2 μ1μ2(1 − p) +

AB

2C
+

A

6W
2 −

AB

C
􏼒 􏼓􏼒

+ 1 − μ1( 􏼁
A + W

AC
−

(W − A)C

AB
􏼡.

(23)

Te fraction outside the main parenthesis is clearly
positive, and the parenthesis itself, which contains only one
negative term, is positive too in most of parameter space; i.e.,
the bifurcation is supercritical. On the other hand, in case of
μ1 sufciently small, the main parenthesis of (23) de-
generates to

μ2 1 − μ2( 􏼁

2 1 + μ2( 􏼁
+
μ2
6

2 −
μ2 1 − μ2( 􏼁

1 + μ2
􏼠 􏼡 − 1􏼠 􏼡, (24)

which is negative. Consequently, the bifurcation is subcritical
wheneverμ1is small.

Referring to Figure 1(a), we show the region in pa-
rameter space (shaded region) where the latter phenomenon
occurs. Here, we do not fnd smooth transition from (x∗1 , x∗2 )

to a stable period 2-orbit at threshold. Instead, due to the
subcritical nature of the bifurcation, we observe a jump to
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a 2-cycle which is created at a smaller F-value as demon-
strated in Figure 1(b).

Let us now in somewhat more detail scrutinize the
dynamics in the region where the bifurcation is supercritical.
Our frst observation, confer (10), is that the value of F (or
x∗ � lnR0) at instability threshold is smaller in the pre-
cocious cases compared to the delayed cases which signals
that species who possess a delayed semelparous or iter-
oparous life history have better stability properties than
species with precocious semelparous or iteroparous life
histories.

In Figure 2(a), we show the bifurcation diagram gen-
erated by (1) in the precocious semelparous case
(μ1, μ2, p) � (1, 0.1, 0.9). At instability threshold, F � 76.64,
and the stable period 2-orbit persists in a huge F interval

before chaos is introduced. Referring to Figure 2(b), the
delayed semelparous case (μ1, μ2, p) � (1, 0.1, 0.5), and the
fxed point becomes unstable when F � 453.44 and F must
exceed 1000 in order to capture chaotic dynamics. Tere is
no sign of periodic orbits of period 2k, k> 1.

However, the dynamics generated by (1) may be much
richer than reported above. Tis is due to the well-known
fact that nonlinear systems may possess multiple attractors.
In Figure 3(a), where we still use (μ1, μ2, p) � (1, 0.1, 0.9)

(precocious semelparity) but a diferent initial value than in
Figure 2(a) we fnd other attractors. Indeed, whenever
FC <F< 44.73 where FC � 23.12, the stable fxed point
(x∗1 , x∗2 ) coexists with a stable 3-cycle. Our conjecture is that
the 3-cycle is established as the third iterate of (1) which may
be expressed as

x1,t+3 � μ21(1 − p) μ1(1 − p)
2

+ pFe
−A1􏼐 􏼑 + μ1pF μ1(1 − p) + μ2( 􏼁e

− A2􏼐 􏼑x1,t

+ μ1(1 − p)F μ1(1 − p)e
−xt + μ2e

−A1􏼐 􏼑 + μ1pFe
−xt + μ22􏼐 􏼑Fe

−A2􏼐 􏼑x2,t,

x2,t+3 � μ31p(1 − p)
2

+ μ21μ2p(1 − p) + μ1μ
2
2p + μ21p

2
Fe

− A1􏼐 􏼑x1,t

+ μ1pF μ1(1 − p) + μ2( 􏼁e
−xt + μ1μ2pFe

−A1 + μ32􏼐 􏼑x2,t,

(25)

where

A1 � μ1x1,t + Fe
− xt + μ2( 􏼁x2,t,

A2 � μ21(1 − p) + μ1μ2p + μ1pFe
− A1􏼐 􏼑x1,t

+ μ1Fe
−xt + μ2Fe

−A1 + μ22􏼐 􏼑x2,t,

(26)

undergoes a saddle node bifurcation.
In order to support the conjecture, we have proved nu-

merically that the dominant eigenvalue of the linearization of
(25) evaluated at the point (x1, x2) � (6.271181, 0.384385)

(one of the points on the 3-cycle when F � FC) equals
λ1 � 1.000323(λ2 � −0.00108). Tus, our conjecture is sup-
ported. When FC <F< 45, map (25) generates 3 branches of
stable fxed points and 3 branches of unstable fxed points (not
visible). Actually, for a given value of F, map (25) has seven
fxed points since (x∗1 , x∗2 ) is a fxed point too. As F is in-
creased, see Figure 3(a), we fnd coexistence between the stable
fxed point (x∗1 , x∗2 ) and stable cycles of period 3 · 2k, k> 1,
which are established as map (25) undergoes successive fip
bifurcations. Beyond the point of accumulations for the fip
bifurcation sequence, the dynamics becomes chaotic. Hence,

1
0.8

0.6
0.4

0.2

1

0.8

0.6

0.4

0.2

0
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0

p
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(a)

0
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x1

1.5

2
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111 112 113 114 115110
F

(b)

Figure 1: (a) Parameter space (shaded region) where the bifurcation is subcritical and (b)(x∗1 , x∗2 ) undergoes a subcritical bifurcation when
F � 113.244, parameter values (μ1, μ2, p) � (0.05, 0.1, 0.2).
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there exists an F interval where (x∗1 , x∗2 ) coexists with a chaotic
attractor as well. At F � 76.6373, (x∗1 , x∗2 ) experiences a su-
percritical fip bifurcation which means that there is also an
interval where a stable 2-cycle and the chaotic attractor coexist.
Te structure of the latter is shown in Figure 3(b). Hence, the
ultimate fate of an orbit in this part of parameter space strongly
depends on the initial conditions. Te chaotic attractor dis-
appears when F � 78.89. We suspect that it happens as the
attractor is hit by a branch of unstable equilibria (born when
F � FC) generated by (25). In order to scrutinize this, see
Figure 3(a), we have found numerically one of the lowest points
of the upper subset of the attractor to be
(x1, x2) � (5.0539, 1.71103) and then used it as input in map
(25). After one iteration, the result is
(x1,A, x2,A) � (5.0590, 1.7093), thus (x1, x2) ≈ (x1,A, x2,A)

which clearly suggests that (x1, x2) is a fxed point of map (25).
Evidently, the point must be located at a branch of unstable
equilibria.

We may also describe the dynamics by use of the
maximal Lyapunov exponent L. Recall that L< 0 corre-
sponds to a stable fxed point or a stable periodic orbit. L � 0
(which we do not fnd in our case) corresponds to quasi-
periodic orbits restricted to an invariant curve, while L> 0
implies chaotic dynamics. In Figure 4(a), we show the results
of computing L by use of the same values as when Figure 2(a)
was generated. What the diagram shows is that whenever
F< 76.6373, the fxed point (x∗1 , x∗2 ) is stable (i.e., L< 0). It
becomes unstable when F � 76.6373, and thereafter, the
dynamics turns to a stable 2-orbit (i.e., L< 0). Referring to
Figure 4(b), the F interval where L> 0 corresponds to
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Figure 3: (a) Bifurcation diagram generated by map (1): parameter values (μ1, μ2, p) � (1, 0.1, 0.9) and diferent initial values than in
Figure 2(a) and (b) chaotic dynamics generated by map (1), with zooms showing fractal structure. Parameter values
(μ1, μ2, p, F) � (1, 0.1, 0.9, 77).
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Figure 2: Bifurcation diagram generated by map (1): (a)(μ1, μ2, p) � (1, 0.1, 0.9) and (b)(μ1, μ2, p) � (1, 0.1, 0.5).
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chaotic dynamics. Prior to this, we fnd stable 3 · 2k, k≥ 0,
cycles (L< 0), and whenever F> 78.79, the dynamics is 2-
periodic(L< 0). Evidently, there is an excellent agreement
between the results. Finally, as already mentioned, the fate of
an orbit depends on the initial condition. In order to pin-
point where orbits starting at diferent initial points
(x1,0, x2,0)will settle, we have computed the trapping regions
for the various attractors. One such example is shown in
Figure 5 where (μ1, μ2, p, F) � (1, 0.1, 0.9, 50). Te trapping
region for the 6-cyclic attractor is the shaded part of the
fgure while the trapping region for the stable fxed point is
the white part. Clearly, the shaded part is by far the largest.
Moreover, similar computations by use of other values of F

lead to much of the same qualitative picture. Hence, it is
natural to conclude that in the interval 35<F< 77, most
orbits will not settle on (x∗1 , x∗2 ), but on one of the other
attractors.

Next, let us give a short description of the dynamical
behaviour of species who possess other life histories.Tere is
a fairly good resemblance between both the delayed
semelparous case, the precocious iteroparous case, and the
one already accounted for. For small values of F, the only
attractor is the fxed point, but there are also F intervals
where we fnd multiple attractors. For example, if
(μ1, μ2, p) � (1, 0.1, 0.5) (delayed semelparity), there exists
an F interval where the stable fxed point coexists with
a stable 3-cycle, but also F intervals F>FC where a stable 2-
cycle coexists with stable 6-cycles, 12-cycles as well as
a chaotic attractor. In the precocious iteroparous case, we
observe much of the same qualitative picture, but chaotic
dynamics appears to be absent. Regarding the last case
(delayed iteroparity), we have not detected anything else
than a stable fxed point, F<FF, or a stable 2-cycle, F>FF

(FF is a large number).
Next, we shall focus on the dynamical properties of map

(2), and in part of the analysis, we may use results obtained
in [27]. Te nontrivial fxed point of (2) is

x
∗
1 , x
∗
2( 􏼁 �

1 − μ2
μ1p

x
∗
2 , x
∗
2􏼠 􏼡, (27)

where

x
∗
2 � ln

μ1pF

1 − μ2( 􏼁 1 − μ1(1 − p)( 􏼁
􏼠 􏼡 � lnR0, (28)

and we recognize that R0 here is the same as R0 in map (1).
Moreover, R0 ≤ 1 implies that the origin is stable, and R0 > 1
guarantees both that (0, 0) is a repeller, (x∗1 , x∗2 ) is feasible,
and that map (2) is permanent.

From the linearization of (2) and the Jury criteria, it
follows that (x∗1 , x∗2 ) is a stable fxed point provided

x
∗
2 <

2 μ1(1 − p) + μ2( 􏼁

1 − μ2( 􏼁 1 − μ1(1 − p)( 􏼁
� x2C. (29)

Criterion (29), x∗2 <x2C clearly holds in case of small
values of R0, but when R0 is increased (as a result of in-
creasing F), lnR0 becomes equal to x2C which is equivalent
to say
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Figure 4: Lyapunov exponent L calculated frommap (1). Parameter values (μ1, μ2, p) � (1, 0.1, 0.9): (a) initial points (x1,0, x2,0) are close to
(x∗1 , x∗2 ) and (b)(x1,0, x2,0) � (1, 1).

0

2

4

6

8

10

x 2
,0

2 4 6 8 100
x1,0

Figure 5:Model (1) trapping region (μ1, μ2, p, F) � (1, 0.1, 0.9, 50).
Shaded part is the 6-cyclic attractor, while the fxed point is white.

Discrete Dynamics in Nature and Society 7



F � FC �
1 − μ2( 􏼁 1 − μ1(1 − p)( 􏼁

μ1p
e
2− μ1(1− p)+μ2( )/ 1−μ2( ) 1−μ1(1−p)( ).

(30)

Tis happens as a pair of complex valued eigenvalues
cross the unit circle. Hence, in contrast to fxed point (3),
fxed point (28) undergoes a Neimark-Sacker bifurcation at
instability threshold (30). Regarding the nature of bi-
furcation (supercritical or subcritical), we have the following
result: □

Theorem 3. Te fxed point (28) of map (2) undergoes
a supercritical Neimark-Sacker bifurcation at threshold (30).

Proof. Following the procedure outlined in [26], it is pos-
sible to rewrite (2) at bifurcation threshold as

u

v
􏼠 􏼡↦

Reλ −Imλ

Imλ Reλ
􏼠 􏼡

u

v
􏼠 􏼡 +

0

g(u)
􏼠 􏼡, (31)

where

Reλ �
μ1(1 − p) + μ2

2
,

Imλ �

�����������������

4 − μ1(1 − p) + μ2( 􏼁
2

􏽱

2
�

b

2
,

(32)

g(u) � −
1
b

Mu
2

−
1
3b

Nu
3
,

M � μ1(1 − p) + μ2 − 2μ1(1 − p)μ2,
N � 1 − 2μ1(1 − p) − 2μ2 + 3μ1(1 − p)μ2.

(33)

By use of Teorem 3.5.2 in [26], it now follows that the
stability coefcient a may be expressed as

a � −
1
16

M

b
􏼒 􏼓

2
μ1(1 − p) + μ2 + 6( 􏼁 + N􏼠 􏼡. (34)

Clearly, a< 0 and since

d

dF
|λ| �

1
2
μ1pe

− 2− μ1(1− p)+μ2( )/ 1−μ2( ) 1−μ1(1−p)( ), (35)

(evaluated at threshold) means that the eigenvalues leave the
unit circle, and we conclude that the Neimark-Sacker bi-
furcation is supercritical.

Tus, in contrast to our fndings from map (1), when
equilibrium point (27) fails to be stable, an attracting in-
variant curve is established for F>FC and |F − FC| small.

Our next goal is to scrutinize the dynamics in somewhat
more detail. In order to compare with the fndings frommap
(1), we concentrate on the (μ1, μ2, p) � (1, 0.1, 0.9) case
(precocious semelparity). Figure 6(a) shows the bifurcation
diagram generated by map (2) in the F range 5<F< 50, and
in Figure 6(b), we show computations of the Lyapunov
exponent L. Te fxed point is stable for F values less than
8.305 (confer (30)). In the interval 8.305<F< 15.5, we fnd
the invariant curve, see Figure 7(a), which is followed by
a short interval where the dynamics becomes chaotic (L> 0).
If we continue to increase F, the dynamics turns periodic,
frst 8-periodic, then 4-periodic, see Figure 7(b), before it
again becomes chaotic. Note that the points in the 8-cycles
are clustered in such a way that one from an observational
point of view probably will classify the dynamics as almost 4-
periodic, and the same argument also applies in the “chaotic”
situation displayed in 7(c). Hence, we conclude that there
exists a large parameter interval where the dynamics has
a great resemblance of 4-cycles, either exact or approximate.

Finally, consider species with diferent life histories
(delayed semelparous, precocious iteroparous, or delayed
iteroparous). In all these cases, the dynamics beyond in-
stability threshold is quite similar. Indeed, except for tiny
parameter windows where we fnd periodic orbits of long
period, the dynamics is nonperiodic and restricted to
attracting invariant curves. Tere is no sign of chaotic be-
haviour. Te main diference is the value of F at threshold
which is much larger in the delayed cases compared to the
precocious cases which also implies that x∗ � x∗1 + x∗2 is
signifcantly larger. Hence, the results obtained above
confrm fndings in [13] or [25], namely that species with
delayed semelparous or iteroparous life histories have better
stability properties than species with precocious semelpar-
ous or iteroparous life histories. □

3. Predation

We shall now turn to the impact of predation, and the
analysis will be confned to four diferent cases. In two of the
cases (cases I and III), it will be assumed that only the
immature part of the prey population is exposed to pre-
dation, while cases II and IV treat the situation where the
mature part of the prey population is the target. Te models
we shall apply are as follows:

Case I: x1, x2, y( 􏼁↦ μ1(1 − p)x1 + Fe
−x2x2( 􏼁e

−ay
, μ1px1 + μ2x2, c μ1(1 − p)x1 + Fe

−x2x2( 􏼁 1 − e
−ay

( 􏼁( 􏼁, (36)

Case II: x1, x2, y( 􏼁↦ μ1(1 − p)x1 + Fe
−x2x2, μ1px1 + μ2x2( 􏼁e

−ay
, c μ1px1 + μ2x2( 􏼁 1 − e

−ay
( 􏼁( 􏼁, (37)

Case III: x1, x2, y( 􏼁↦ μ1(1 − p)x1 + Fe
−x

x2( 􏼁e
−ay

, μ1px1 + μ2x2, c μ1(1 − p)x1 + Fe
−x

x2( 􏼁 1 − e
−ay

( 􏼁( 􏼁, (38)

Case IV: x1, x2, y( 􏼁↦ μ1(1 − p)x1 + Fe
−x

x2, μ1px1 + μ2x2( 􏼁e
−ay

, c μ1px1 + μ2( 􏼁 1 − e
−ay

( 􏼁( 􏼁. (39)
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Figure 7: Dynamics generated by map (2). Parameter values (μ1, μ2, p) � (1, 0.1, 0.9): (a) F � 10, (b) F � 35, and (c) F � 49.
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Figure 6: (a) Bifurcation diagram generated by map (2), (μ1, μ2, p) � (1, 0.1, 0.9) and (b) Lyapunov exponent values L calculated frommap
(2), (μ1, μ2, p) � (1, 0.1, 0.9).

Discrete Dynamics in Nature and Society 9



In (36)–(39), x1, x2, μ1, μ2, p, and F have the same
meaning as in map (1) and map (2). y denotes the size of the
predator population and predation is accounted for by the
term e− ay. Parameter a, a≥ 0, measures the skill of pre-
dation. Te constant c, 0< c≤ 1, may be interpreted as
a conversion of prey into predator, or a clutch parameter the
following year, confer [27] or [28]. Note that when a⟶ 0
(poor predation skill), the predator will die, and maps
(36)–(39) will degenerate to map (1) or map (2). Biologically,
models I and III may apply to interacting fsh populations
where small individuals of one species are exposed to
cannibalism from mature relatives as well as predation from
another species. Models II and IV deal with situations where
mature members of a species migrate to other habitats in
order to spawn and subsequently become vulnerable to
predation.

Evidently, (36)–(39) share several common features. All
maps possess two fxed points, the trivial one (􏽢x1, 􏽢x2, 􏽢y) �

(0, 0, 0) and the nontrivial one (x∗1 , x∗2 , y∗). Te latter may
be on the form (x∗1 , x∗2 , 0) if the skill parameter a falls below
a certain threshold aC, or if the clutch parameter c becomes
too small. Stability properties are found from the

linearizations of (36)–(39). All associated eigenvalue equa-
tions are on the form

λ3 + a1λ
2

+ a2λ + a3 � 0. (40)

Te various fxed points will be stable if all eigenvalues of
(40) are located within the unit circle which is ensured
whenever the Jury criteria

1 + a1 + a2 + a3 > 0, (41a)

1 − a1 + a2 − a3 > 0, (41b)

1 − a3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0, (41c)

1 − a
2
3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − a2 − a3a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0, (41d)

hold. We start by considering Case I, map (36), i.e., the case
where only the mature part x2 of the prey population
contributes to density efects and only the immature part x1
is exposed to predation. Te nontrivial fxed point may be
expressed as

x
∗
1 , x
∗
2 , y
∗

( 􏼁 �
1 − μ2
μ1p

ln
μ1pF

1 − μ2( 􏼁 e
ay∗

− μ1(1 − p)􏼐 􏼑
⎛⎝ ⎞⎠, ln

μ1pF

1 − μ2( 􏼁 e
ay∗

− μ1(1 − p)􏼐 􏼑
⎛⎝ ⎞⎠, y

∗⎛⎝ ⎞⎠, (42)

where y∗ must be found by means of numerical methods
from

y
∗

� c e
ay∗

− 1􏼐 􏼑
1 − μ2
μ1p

ln
μ1pF

1 − μ2( 􏼁 e
ay∗

− μ1(1 − p)􏼐 􏼑
⎛⎝ ⎞⎠.

(43)

When the skill parameter a is less than aC, there is no
value y∗ > 0. Hence, (x∗1 , x∗2 , y∗)⟶ (x∗1 , x∗2 , 0) where the
values of x∗1 , x∗2 are found from (27). However, when a> aC

and |a − aC| are small, one detects signifcant changes. We
observe an abrupt reduction of x∗1 , x∗2 values while the value

of y∗ grows. Tese scenarios are displayed in Figure 8 where
it is assumed that the prey population possesses a precocious
semelparous life history. In Figure 8(a), F � 5 which implies
that (x∗1 , x∗2 ) is stable in the absence of predation. Referring
to Figure 8(b), F � 15 which means that (x∗1 , x∗2 ) is unstable.

Te analysis above does not address the question of
dynamical behaviour, but as we have seen, an increase of the
skill parameter plays a crucial role; hence, it is natural to
suspect profound dynamical consequences as well. In order
to capture these, we must turn to the linearization of map
(36) and the corresponding Jury criteria (41a)–(41d) which
may be cast in the form

J1(a) � 1 − μ2( 􏼁 1 − acx
∗
1( 􏼁 + acx

∗
1 − e

−ay∗
􏼐 􏼑 · μ1pB1 + μ1(1 − p) 1 − μ2( 􏼁( 􏼁> 0, (44a)

J2(a) � 1 + μ2( 􏼁 1 + acx
∗
1( 􏼁 + acx

∗
1 + e

−ay∗
􏼐 􏼑 · μ1(1 − p) 1 + μ2( 􏼁 − μ1pB1( 􏼁> 0, (44b)

J3(a) � 1 − acx
∗
1 μ1pB1 − μ1(1 − p)μ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 0, (44c)

J4(a) � 1 − acx
∗
1( 􏼁

2 μ1pB1 − μ1(1 − p)μ2( 􏼁
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − acx
∗
1 μ1(1 − p) + μ2( 􏼁 + μ1pB1 − μ1(1 − p)μ2( 􏼁

􏼌􏼌􏼌􏼌

· acx
∗
1( 􏼁

2
+ acx

∗
1 μ1(1 − p)e

−ay∗
+ μ2􏼐 􏼑 − e

−ay∗
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌> 0,
(44d)
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where

B1 � Fe
− x∗2 1 − x

∗
2( 􏼁. (45)

Alternatively by use of

x
∗
1 �

y
∗

c e
ay∗

− 1􏼐 􏼑
,

x
∗
2 �

μ1p
1 − μ2

x
∗
1 ,

Fe
− x∗2 �

1 − μ2
μ1p

e
ay∗

− μ1(1 − p)􏼐 􏼑,

(46)

one may express (44a)–(44d) in terms of y∗ only.
If all four inequalities hold, (x∗1 , x∗2 , y∗) is stable. When

(44a) or (44b) fail to be positive, this corresponds to the case
where the dominant eigenvalue of (40) leaves the unit circle
through 1 or −1, respectively, while (44c) and (44d) fail as
a pair of complex valued eigenvalues leave the unit circle.

Now, considering prey species who possess semelparous
life histories (precocious or delayed), the impact of predation
on the immature subpopulation is as follows: whenever F is
small enough for (x∗1 , x∗2 ) to be stable in absence of pre-
dation, we always fnd a skill parameter interval aC < a< am

where (x∗1 , x∗2 , y∗) is stable. Te interval becomes smaller as
F is increased. Te transfer from stability to instability

occurs when J4(a) becomes zero at a � am. Tis is displayed
in Figure 9(a) by use of the same parameters as in
Figure 8(a). If (x∗1 , x∗2 ) is unstable in lack of predators (larger
F values), confer Figure 9(b), there exists an additional
interval aC < a< aC1

where the dynamics is quasiperiodic
and restricted to an invariant curve. Trough further in-
crease of a, it follows an interval aC1

< a< am where
(x∗1 , x∗2 , y∗) is stable. Beyond threshold am (both in case of
small and larger F values), there are quasiperiodic orbits
whenever |a − am| is small. For larger values of a, the dy-
namics alternates between chaotic and periodic dynamics of
long period. Te larger the F, the larger the chaotic region.
Tese scenarios are visualized in the Lyapunov exponent
diagrams, Figures 10(a) and 10(b). Turning to species who
possess an iteroparous life history, the impact of predation
on dynamics appears to be quite similar.Temain diference
really is that the skill parameter interval where the fxed
point (x∗1 , x∗2 , y∗) is stable is larger than in the precocious
semelparous case, and the same applies in the delayed cases.
Moreover, for fxed values of F and small values of a, the
subpopulations x∗1 , x∗2 as well as y∗ are in general larger in
the iteroparous cases.

Next, let us comment on Case II, map (37), i.e., the case
where the mature part of the prey population is exposed to
harvest. Te fxed point of map (37) may be expressed as

x
∗
1 , x
∗
2 , y
∗

( 􏼁 �
e

ay∗
− μ2

μ1p
ln

μ1pF

1 − μ1(1 − p)( 􏼁 e
ay∗

− μ2􏼐 􏼑
⎛⎝ ⎞⎠, ln

μ1pF

1 − μ1(1 − p)( 􏼁 e
ay∗

− μ2􏼐 􏼑
⎛⎝ ⎞⎠, y

∗⎛⎝ ⎞⎠, (47)

where y∗ must be obtained from
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Figure 8: Values of x∗1 , x∗2 and y∗ as functions of skill parameter a. Parameter values: (μ1, μ2, p, c) � (1, 0.1, 0.8, 0.5): (a) F � 5 and
(b) F � 15.
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y
∗

� c e
ay∗

− 1􏼐 􏼑 ln
μ1pF

1 − μ1(1 − p)( 􏼁 e
ay∗

− μ2􏼐 􏼑
⎛⎝ ⎞⎠. (48)

Stability and dynamic behaviours are scrutinized in the
same manner as in Case I. Terefore, we skip calculation
formulae in the text and go directly to the results. In
Figures 11(a) and 11(b), we show the graphs of x∗1 , x∗2 , y∗

and the Jury criteria J1, . . . , J4 as functions of a, respectively.
Referring to Figure 11(a), we fnd, in contrast to Case I, that
when a> aC and |a − aC| is small, an enlargement of a results
in a larger subpopulation x∗1 . Te rationale behind this is as
follows: when the predator is capable of catching grown up
individuals, the size of x∗2 drops which in turn implies that
the strength of negative efects on recruitment at equilibrium
(cannibalism, crowdening efects, etc.) becomes smaller.
Tus, the term e− x∗2 will be larger than it would be in the

absence of predation. Terefore, as long as x∗2 does not drop
too much, the term Fe− x∗2 x∗2 will increase, and the larger the
F, the larger is the efect.When parameter a exceeds a certain
threshold, x∗1 becomes smaller too but we emphasize that the
values of x∗1 in general are much larger than in Case
I. Referring to Figure 11(b), we also here fnd an interval
aC < a< am where fxed point (47) is stable, and just as in
Case I, (x∗1 , x∗2 , y∗) loses its hyperbolicity when J4(a) be-
comes zero. Hence, at threshold, (x∗1 , x∗2 , y∗) undergoes
a Neimark-Sacker bifurcation. Independent of life history,
when > am, it is possible to obtain quasiperiodic behaviour,
periodic orbits of long periods as well as chaotic dynamics.
However, we have revealed one diference between the
dynamics of species who possess semelparous and iter-
oparous life histories. Suppose that F is so large that (x∗1 , x∗2 )

is unstable in the absence of predation. Ten, in the
semelparous cases, there exists a values less than aC such that
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Figure 9: Jury criteria J1(a), . . . , J4(a) as functions of a: (a) F � 5 and aC � 1.0369 and (b) F � 15 and aC � 0.61357. (Te horizontal lines to
the left of aC represent the Jury criteria, and we fnd from the pure prey map (27)).
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Figure 10: Lyapunov exponent values L calculated from map (36). Parameter values (a) (μ1, μ2, p, F, c) � (1, 0.1, 0.8, 5, 0.5) and
(b) (μ1, μ2, p, F, c) � (1, 0.1, 0.8, 15, 0.5).
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the dynamics occurs on an invariant curve where y � 0. On
the other hand, in the iteroparous case, the y values on such
a curve is larger than zero confer Figures 12(a) and 12(b).

Let us now focus on the remaining cases III and IV
(maps (38) and (39)), the cases where the whole prey
population contributes to density efects, not the mature

subpopulation only. Moreover, recall that when a⟶ 0,
maps (38) and (39) degenerate to map (1), and at bifurcation
threshold (5), the value of F is much larger than in the
corresponding map (2) which is the underlying prey model
of maps (36) and (37). Regarding case III, map (38) where
the immature part of the prey is exposed to predation we fnd

x
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where y∗ must be found by means of numerical methods
from

y
∗

� c
1 − μ2

1 + μ1p − μ2
e

ay∗
− 1􏼐 􏼑 ln

Fμ1p
1 − μ2( 􏼁 e

ay∗
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When skill parameter a becomes larger than aC, we
observe an abrupt reduction of x∗1 , x∗2 values while the value
of y∗ grows fast, i.e., qualitatively the same scenario as

shown in Figure 8 in case of map (36). However, considering
the dynamical behaviour, there are diferences. Te Jury
criteria may be expressed as

J1(a) � 1 − μ2( 􏼁 1 − acx
∗
1( 􏼁 + acx

∗
1 − e

−ay∗
􏼐 􏼑 · B2 + μ1pB3 − μ2B2( 􏼁( 􏼁> 0, (51a)
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∗
1 + e

−ay∗
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J3(a) � 1 − acx
∗
1 μ1pB3 − μ2B2
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􏼌􏼌􏼌􏼌> 0, (51c)
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Figure 11: (a) Values of x∗1 , x∗2 and y∗ as functions of skill parameter a, map (37). (b) Jury criteria, J1(a), . . . , J4(a), map (37). Parameter
values (μ1, μ2, p, F, c) � (1, 0.1, 0.8, 5, 0.5).
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where

B2 � μ1(1 − p) − Fe
− x∗

x
∗
2 ,

B3 � Fe
− x∗ 1 − x

∗
2( 􏼁,

(52)

from which we obtain the following: given that F is suf-
ciently small and that the prey possesses a precocious
semelparous life history, and there exists an interval
aC < a< am where the fxed point is stable, but when a � am,
we fnd in contrast to previously discussed cases that
(x∗1 , x∗2 , y∗) fails to be hyperbolic as J2(am) becomes zero.
When a> am, we fnd stable period 2-orbits as shown in
Figure 13(a) which is followed by chaotic oscillations when a

exceeds 7.439, see Figure 13(b).Tere are no cycles of period
2k, k> 1. Moreover, when the fecundity F is increased, the
interval [aC, am] shrinks towards zero, and, as expected, the
dynamics is 2-periodic in case of small values of a, and
chaotic when a becomes larger.

If the prey population possesses a delayed semelparous
life history, the impact of predation is somewhat diferent.
For small values of F, there exists an interval where
(x∗1 , x∗2 , y∗) is stable, but nonstationary dynamics is in-
troduced as J4(a) fails to be positive. Hence, when a> am

and |a − am| are small, there is quasistationary dynamics
which turns chaotic when a becomes large. However, if F

becomes large, the fxed point undergoes a fip bifurcation at
threshold, and the dynamics shows great resemblance to the
fndings in the precocious semelparous case.

Assuming that the prey exhibits a precocious iteroparous
life history, the impact of predation is quite similar to the
previous discussed case whenever F is sufciently small.
Here, we also fnd an interval aC < a< am where (x∗1 , x∗2 , y∗)

is stable, and stability is lost as the fxed point undergoes
a Neimark-Sacker bifurcation at threshold a � am where
J4(am) � 0. Consequently, quasistationary orbits are the
outcome when a> am, and we have not detected periodic or
chaotic dynamics. When F becomes larger, the dynamics
changes. Tere is no skill parameter interval where
(x∗1 , x∗2 , y∗) is stable, and when a> aC and |a − aC| is small,
the dynamics is 2-periodic. Trough further enlargement of
a, we reach a threshold where the second iterate of map (39)
undergoes a Neimark-Sacker bifurcation, which means that
the dynamics is restricted to two invariant curves as shown
in Figure 14. For higher values of a, the curves disappear,
and the dynamics is restricted to one invariant curve only.

Finally, turning to the impact of predation on prey
species who possess delayed iteroparous life histories, we
fnd that the interval aC < a< am where the fxed point is
stable is larger; here, compared to all other cases, we have
discussed. Instability is introduced as J4(am) becomes zero,
and in case of a> am, we have only recorded quasistationary
dynamics.

Let us turn to case IV, map (39), where only the mature
part of the prey population is exposed to harvest. Te
treatment will be performed in the same way as we did in the
case of map (38). Te fxed point may be written as
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Figure 12: Invariant curves generated by map (37). (a) (μ1, μ2, p, F, c, a) � (1, 0.1, 0.8, 15, 0.5, 0.7). (b) (μ1, μ2, p, F, c, a) �

(1, 0.5, 0.8, 15, 0.5, 0.61).
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and y∗ must be found by means of numerical methods from
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Stability properties are found in the usual matter by use
of the Jury criteria J1(a), . . . , J4(a). Assuming that the prey

possesses a precocious semelparous life history, our frst
fnding is that the interval [aC, am] where fxed point (53)
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maintains its stability is signifcantly larger here than in the
corresponding Case III. Beyond threshold am, the dynamics
follows the same pattern as in Case III. Tere is one more
discrepancy. When a> aC and |a − am| is small, an en-
largement of the skill parameter results in a larger sub-
population x∗1 , confer Case II.

Now, consider prey species who possess delayed
semelparous life histories. Assuming that F is small, we fnd
the following diferences compared to the precocious
semelparous case: (i) the increase of x∗1 when a> aC and |a −

ac| small is absent, (ii) the skill parameter interval
aC < a< am where (x∗1 , x∗2 , y∗) is stable is much larger, (iii) at
instability threshold, J4(a) fails to be positive which means
that the fxed point undergoes a Neimark-Sacker bifurcation
at threshold. We observe nothing but quasiperiodic orbits
when a> am except for small parameter windows where the
dynamics is periodic (long periods!). However, when F

becomes larger, the transfer from stability to instability goes
through a fip bifurcation, and there exists a skill parameter
interval where the only dynamical outcomes are stable 2-
cycles. As the skill parameter is increased, the second iterate
of map (39) undergoes a Neimark-Sacker bifurcation, and
the dynamics is restricted to two invariant curves which are
visited once every second iteration.

Assuming that the prey possesses a precocious iter-
oparous life history the impact of predation leads to the
following results, in case of F small, we fnd that the interval
[aC, am] where the fxed point is stable is smaller than in the
corresponding delayed semelparous case but larger than in
the precocious semelparous case. (x∗1 , x∗2 , y∗) loses its
hyperbolicity when J4(a) becomes zero and when a> am,
map (39) generates nonstationary dynamics. For larger
values of F, the interval [aC, am] shrinks, and instability is
introduced when J2(a) becomes zero. When > am, we
observe 2-periodic dynamics, and depending on F, chaotic
dynamics, see Figures 15(a) and 15(b), or quasistationary
dynamics similar to the delayed semelparous case.

Finally, consider the impact of predation on prey species
who possess delayed iteroparous life histories. Te overall
conclusion is that this is where we fnd the largest skill
parameter interval [aC, am] where (x∗1 , x∗2 , y∗) may be
stable. Moreover, by the use of the same fecundity values F as
we have applied in our previous discussions, J4(a) � 0 at
bifurcation threshold a � am. Beyond am, we have only
detected invariant curves, and there is no sign of periodical
dynamics nor chaotic behaviour.

4. Summary

In this paper, we have analyzed two one-population (prey)
models, maps (1) and (2), together with four prey-predator
models, maps (36)–(39). Te diference between the prey
maps (1) and (2) is that in the former, the whole population
contributes to density efects, while only the mature sub-
population contributes in the latter. As proved, both maps
are permanent, and parameter intervals exist where fxed
points (3) as well as (40) are stable. Te interval where (3) is
stable is in general much larger than the other. Hence,
a natural conclusion to draw is that whenever x � x1 + x2

contributes to density efects, and stability properties are
better compared to the case where only x2 contributes.
Considering life histories, we fnd from both models that
species who possess a delayed semelparous or iteroparous
life history appear to bemore stable than species who possess
precocious semelparous or iteroparous life histories. Tus,
our results both confrm and extend the fndings obtained in
[13]. Moreover, both maps (1) and (2) undergo supercritical
bifurcations at their respective instability thresholds.
However, while (1) undergoes a fip bifurcation, map (2)
undergoes a Neimark-Sacker bifurcation which has crucial
impacts on the nonstationary dynamics. Regarding map (1),
there are 2-cycles beyond threshold and, depending on life
history, chaotic dynamics as well. We have also detected
parameter regions where multiple attractors exist which may
possess large trapping regions. Considering map (2), we fnd
in the precocious semelparous case both quasistationary
orbits restricted to invariant curves, dynamics with great
resemblance of 4-cycles as well as chaotic dynamics.
Whenever the population possesses other life histories,
nonperiodic orbits and periodic orbits of long period are the
only dynamical outcomes.

Let us now turn to the impact of predation. Assuming
that F is so small that fxed points (3) and (40) are stable in
absence of predators, we fnd that there exists a skill pa-
rameter interval [aC, am] where the various fxed points
(x∗1 , x∗2 , y∗) are stable. Te smallest interval occurs when the
prey possesses a precocious semelparous life history, where
only the mature part of the populations x2 contributes to
density efects and the immature part x1 is the target of
predation. On the other hand, we fnd the largest interval
when the life history is of the delayed iteroparous kind, x �

x1 + x2 is responsible for density efects, and x2 only is
exposed to predation. In many respects, the fndings above
refect the results from the analyses of maps (1) and (2).
Larger values of F imply that the lengths of [aC, am] shrink.
When F exceeds a certain threshold, depending on life
history, (x∗1 , x∗2 , y∗) will never be stable. A fnal comment
regarding fxed points is that whenever the prey possesses
a precocious semelparous life history, and x2 only is exposed
to predation, and a small increase of parameter a actually
lead to a larger immature equilibrium population x∗1 . In all
other cases, the sizes of x∗1 , x∗2 are reduced when a is
increased.

When a> aC and |a − aC| are small, an increase of a acts
in a stabilizing way. However, when a approaches am, it
becomes destabilizing, and at threshold am, the various fxed
points (x∗1 , x∗2 , y∗) lose their hyperbolicity. In most cases,
this occurs when J4(am) � 0, i.e., through a Neimark-Sacker
bifurcation. Terefore, beyond instability threshold, we fnd
quasiperiodic orbits, and depending on life histories, maps
(36)–(39) may generate periodic dynamics of long period as
well as chaotic dynamics through further increase of a.
Chaotic dynamics appears to be rare events in the delayed
cases. In contrast to the fndings above, if the prey possesses
a precocious semelparous life history, the whole population
is responsible for density efects, and x1 only is exposed to
predation, and J2(am) becomes zero prior to J4(am). Tus,
the dynamics beyond threshold is 2-periodic or chaotic if the
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skill parameter becomes sufciently large (perhaps some-
what unexpected, we do not observe periodic orbits of
period 2k, k> 1). We have also detected the dynamics re-
ported above when F is large in the delayed
semelparous case.
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