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With the new round of technological revolution and industrial change, industrial robots have an important role to play in the fght
against climate change and in achieving the goal of “carbon peaking and carbon neutrality.” Based on the panel data of the
application level of industrial robots in Shanghai and Shenzhen A-share listed companies from 2011 to 2019, this study examines
the impact of industrial robots on carbon emission performance and discusses specifc ways industrial robots can afect carbon
emission performance. Te results show that industrial robots can signifcantly improve carbon emission performance.
Mechanism analysis shows that industrial robots can improve carbon emission performance through productivity and com-
petition efects. Heterogeneity analysis shows that the application efect of industrial robots varies based on enterprise nature,
regional location, and carbon emission intensity. Te study can make potential contributions. First, this study systematically
analyzes the impact of artifcial intelligence technology on carbon emissions from the perspective of carbon emission perfor-
mance, which can supplement the research on carbon emission performance. Second, this study calculates application levels of
artifcial intelligence technology at the enterprise level and uses panel and linear intermediary efect models to analyze the
transmission mechanism between the application of artifcial intelligence technology and carbon emission performance. Tird,
the heterogeneity analysis results can provide empirical support for formulating diferentiated artifcial intelligence carbon
reduction strategies and be used as a reference to further promote the green development of artifcial intelligence technology.

1. Introduction

With the rapid development of the global economy, the
greenhouse efect is becoming increasingly severe and poses
a serious threat to human development. Terefore, the
ecological environment has become a global issue. How to
efectively control carbon dioxide and other greenhouse gas
emissions and slow down the global warming process has
attracted great attention from countries worldwide. Presi-
dent Xi Jinping noted at the 75th Session of the United
Nations General Assembly that China would adopt stronger
policies and measures to reach its peak total carbon emis-
sions by 2030 and achieve carbon neutrality by 2060. China’s
economic success in the past decades has been attributed to
the dividends of industrialization; however, the crude and

energy-consuming industrial development model has placed
enormous pressure on the ecological environment and
posed major challenges to achieving the “double carbon”
target.

To this end, the 20th National Congress of the Com-
munist Party of China proposed accelerating the green
transformation of development and promoting green, low-
carbon economic, and social development. In the digital
economy era, AI technology innovation and major tech-
nological breakthroughs have given developing countries
a diferent development path and connotation in the in-
dustrialization process. Moreover, China’s 14th Five-Year
Plan and outline of the 2035 Vision proposed to “promote
the clean, low-carbon and safe, and efcient use of energy
and deeply promote the low-carbon transformation in
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industry, construction, and transportation,” while simulta-
neously requesting to “take the digital transformation as
a whole to drive the production methods, the development
of the economy, and the development of the society. Digital
transformation as a whole drives changes in production,
lifestyle, and governance.” Tis indicates how to accelerate
the deep integration of the digital and real economies,
thereby promoting green and low-carbon industrial devel-
opment. Terefore, in the context of achieving the “double
carbon” goal and promoting high-quality economic devel-
opment, exploring the impact mechanism of industrial in-
telligent robots on carbon emission performance is helpful
for not only exploring an efective path for improving carbon
emission performance from the perspective of AI technology
innovation but also eliminating inefcient resource use and
heavy environmental pollution in developing countries. Tis
would also have great theoretical signifcance and practical
value for accelerating the green transformation and
upgrading of industrial structure; building a green, low-
carbon, and cyclic economic system; and achieving the
“double carbon” goal.

Achieving green, low-carbon transformational devel-
opment through digital technology applications has become
an inevitable choice for China to build new development
patterns and adapt to new developmental stages. Te carbon
emission reduction efect of digital technology applications
is not only highly valued by the state but has also received
increasing attention from academia. Extant literature refects
two main representative views on the impact of digital
technology applications on carbon emissions. One view is
that digital technology applications have a positive impact
on carbon emission reduction, and both traditional theo-
retical and empirical studies emphasize that technological
progress is an important driving factor for enhancing carbon
emission efciency. In addition, the innovation spillover
efect of digital technology applications will optimize in-
dustrial structure, promote the transformation of labor- and
resource-intensive industries into technology-intensive in-
dustries, promote the leap of industrial structure, and realize
an advanced industrial structure. An advanced industrial
structure will also promote production factor reallocation
among sectors, leading to the fow of production factors
from low-productivity to high-productivity sectors and
resulting in an advanced industrial structure and “structural
dividend,” thereby optimizing the energy consumption
structure, improving the efciency of factors and resources,
and ultimately improving carbon emission efciency.

Li et al. [1] used spatial panel data from Chinese
provinces and cities and found that increasing the degree of
digitization plays a positive role in reducing carbon emis-
sions. Another view is that technological advances not only
improve energy efciency and save energy but also reduce
the cost and price of unit products, promote economic
growth, stimulate product market demand, and bring more
energy consumption [2]. When the energy savings generated
by applying digital technology exceed energy demand, an
“energy rebound efect” with occur, resulting in increased
energy consumption and reduced carbon emission ef-
ciency. Gu et al. [3] found three mechanisms of

technological progress in carbon emissions: the direct, re-
bound, and technological efects. Although technological
progress is regarded as an important power source for
solving the profound internal contradiction between eco-
nomic growth and carbon emission reduction, it has been
agreed by academic circles [4]. However, previous research
has usually deconstructed the role of technological progress
in carbon emissions from the perspective of nonembodied
technological progress, such as green innovation and green
total factor productivity, while in reality, technological
progress is often manifested as embodied technological
progress. Nonembodied technological progress cannot
suitably refect the actual efects of technological progress on
carbon emissions. Capital-embodied technological progress
combines capital accumulation with technological progress
and changes the original factor structure, which is regarded
as the key driving force for improving energy efciency and
reducing carbon emissions [5]. Terefore, whether digital
technology can improve enterprises’ carbon emission per-
formance is an ambiguous issue in theory that requires more
detailed and comprehensive empirical testing.

In practice, issues related to digital technology and
carbon emissions are particularly signifcant. As a de-
veloping country, China has gained latecomer advantages in
the digital technology feld. If digital technology can improve
enterprises’ carbon emission performance and promote the
“double carbon” goal, then China is expected to embark on
a new development path diferent from that of developed
countries through digital technology, and this valuable ex-
perience will become an important part of the “governance
of China,” spread to more developing countries, and sig-
nifcantly contribute to global green development.

Terefore, this study examines the impact of digital
technology on corporate carbon emission performance at
the frm level. Using data on Chinese A-share listed com-
panies from 2011 to 2019, we compile industrial robot usage
data at the enterprise level and adopt econometric methods
to draw the following conclusions. First, improving the level
of robot use will signifcantly promote manufacturing en-
terprises’ carbon emission performance, thereby accelerat-
ing the manufacturing enterprises’ low-carbon
transformation. Tese fndings are further strengthened by
the results of a series of robustness tests based on the method
of tool variables. Second, a mechanism analysis shows that
the application of industrial intelligent robots has pro-
ductivity and competition efects, which will encourage
manufacturing enterprises to improve their carbon emission
performance through equipment upgrades. Tird, a het-
erogeneity analysis shows that improving robot use will
promote manufacturing enterprises’ carbon emission per-
formance in the two types of regions through productivity
and competition efects. Improving robot use levels plays
a signifcant role in promoting the carbon emission per-
formance of state-owned enterprises, but the efect is not
signifcant in nonstate-owned enterprises. Te productivity
and competition efects of robot use are more signifcant in
state-owned enterprises and form the mechanism through
which state-owned enterprises improve their carbon emis-
sion performance. Compared with low-carbon emission
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industries, the promotion efect of improved robot use levels
onmanufacturing enterprises’ carbon emission performance
and the productivity efect of robot use are more signifcant
in high-carbon emission industries.Te competition efect is
signifcant for both types of enterprises.

Recently, scholars have increased their focus on the
impact of digital technology automation on carbon emis-
sions. Felipe [6] creatively divided technological progress
into capital manifestation and nonembodiment, and com-
bined the role of technology and its proportion in great-leap-
forward development to propose an interpretation frame-
work of capital-based technological progress, providing an
analytical benchmark for examining the impact of artifcial
intelligence technology on carbon emissions. Along this
framework, some scholars have discussed the impact of
digital technology on industrial transformation and
upgrading and low-carbon development [5, 7–10].

Compared with the existing literature, the contributions
of this study are mainly refected in three aspects.

First, from the perspective of carbon emission perfor-
mance, this study systematically analyzes the impact of
artifcial intelligence technology on carbon emissions. Te
existing literature mostly focuses on the relationship be-
tween digital technology and carbon emissions, and artifcial
intelligence is the core of digital technology. Te analysis of
artifcial intelligence and carbon emission performance, as
represented by industrial intelligent robots, is still in its
infancy. Tus, this study can provide a useful supplement to
the existing literature. Second, by calculating the application
level of artifcial intelligence technology at the enterprise
level and using panel semiparametric and linear in-
termediary efect models to analyze the transmission
mechanism between artifcial intelligence technology ap-
plication and carbon emission performance, this study re-
veals the indirect mechanism through which artifcial
intelligence technology can promote improved carbon
emission performance. Tird, based on the impact of arti-
fcial intelligence technology on carbon emission perfor-
mance, this study analyzes the heterogeneity from the
aspects of geographical location, ownership structure, and
industry carbon emission degree, and the conclusions can
provide empirical support in formulating diferentiated
artifcial intelligence carbon emission reduction strategies.

Te remainder of this paper is arranged as follows: the
second part is theoretical analysis and hypothesis formu-
lation, the third part describes the data sources and research
design, the fourth part presents the benchmark empirical
results and robustness test, the ffth part is impact mecha-
nism identifcation and heterogeneity analysis, and the sixth
part provides discussion, theoretical and practical implica-
tions and limitations for research, the seventh part provides
the research conclusions.

2. Theoretical Analysis and
Hypothesis Formulation

2.1. Analysis of the Factors Infuencing Carbon Emission
Performance. Ang [11] noted that efectively promoting
clean technology innovation and improving carbon

emission performance are particularly crucial for Chinese
industries to achieve low-carbon development to better
fulfll their carbon emission reduction responsibilities.
Trough a review of the relevant literature, we fnd that
previous research has mainly explored the factors infu-
encing carbon emissions from fve perspectives: economic
development, industrial policy, population, external shocks,
and technological innovation.

In terms of economic development, researchers have
thoroughly explored the relationship between carbon
emissions and economic development factors, such as
economic growth [12, 13], fnancial development [14], in-
ternational trade [15–17], and fxed-asset investment [18]. In
terms of economic growth, Nasir et al. [14] found a signif-
icant long-term relationship between fnancial and eco-
nomic development and environmental degradation.
However, two competing perspectives exist on FDI and
trade: the pollution refuge and pollution halo hypotheses.
Te argument in favor of the pollution refuge hypothesis is
that FDI leads to environmental degradation because of the
host country’s desire to attract FDI by relaxing environ-
mental regulations. However, studies supporting the pol-
lution halo hypothesis argue that FDI and trade bring about
advanced technology and good management practices that
help reduce carbon emissions. Much academic research has
been conducted along these two lines; however, no con-
sistent fndings have been obtained. Although the shift in the
energy mix from nonrenewable to renewable energy and the
reduction of solid fuels have contributed to reduced air
pollution [19–21], increases in total energy use have led to
higher emissions [22] and energy intensity has played
a similar role [23, 24]. Regarding infrastructure investment,
Wang et al. [18] showed that it leads to increased air pol-
lution. Wang et al. [25] found the digital fnancial inclusion
positively impacts CO2 emissions of local cities, but nega-
tively impacts neighboring cities, and breadth of coverage
and depth of use signifcantly correlates with CO2 emissions.

Regarding industrial policies, Chien et al. [19] found
that environmental taxes play a positive role in reducing
carbon emissions. Neves et al. [26] and Khan et al. [27]
found that environmental regulations are efective in re-
ducing carbon dioxide emissions. Based on an analysis of
the spatial aggregation characteristics of regional carbon
emission intensity, Liu et al. [28] found that the infuence
channel of environmental regulations on carbon emission
reduction is nonlinear under the infuence of spatial
spillover efects, and this nonlinearity is insignifcant or
even negative in the immediate period, but signifcantly
positive in the long term. Wang et al. [25] found that
diverse environmental regulations are needed to promote
sustainable green development and to further expand the
theoretical and practical exploration of political connec-
tions on frm pollution. In another paper, Wang et al. [29]
found that frm political connections have a promoting
efect on carbon emissions of industrial enterprises. Te
moderating mechanism analysis demonstrates that the
mitigation efect is better in the command-and-control
environmental regulation (CCI) than that in the market-
based environmental regulation (MBI).
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Among population studies, Cole and Neumayer [30]
found an inverted U-shaped relationship between pop-
ulation growth and pollutant emissions, with no signifcant
efects of urbanization and housing area per capita on
carbon emissions. Tey also found that the relationship
between population agglomeration and per capita carbon
emissions has an inverted N-shaped curve; per capita carbon
emissions, population agglomeration, and economic de-
velopment have spatial spillover efects; and an increase in
per capita carbon emissions in neighboring provinces will
aggravate increases in local emissions. Te spatial difusion
efect of population concentration and economic develop-
ment is conducive to improving development efciency and
promoting global emission reduction.

Regarding external shocks, researchers have mainly
examined the dimensions of fnancial crises and public
health emergencies (e.g., novel coronavirus outbreak). Liu
and Song [31] compared the diferences in frms’ carbon
emission intensity before and after the fnancial crisis,
reporting an overall increase in carbon emissions after the
crisis, and then compared the efects of diferent epidemic
prevention policies in China, the U.S., India, and the EU in
response to the novel coronavirus epidemic on national
carbon emissions. Han et al. [32] studied the impact of the
novel coronavirus epidemic on carbon intensity reduction in
China based on a dynamic economic-energy-environmental
CGE model. Te results indicated that the larger the epi-
demic shock is in the short term, the less favorable it is to
carbon intensity reduction. Te impact of the epidemic on
the marginal abatement cost of carbon was more signifcant
in the short term when achieving a set carbon intensity
reduction target; however, the marginal abatement cost of
carbon was found to converge across scenarios in the long
term. Tus, the epidemic did not signifcantly afect the
carbon peak time point in China but will signifcantly reduce
the carbon peak. Cheng et al. [33] indicated that local
government and energy users to mitigate the negative im-
pacts from the expected or unexpected fuctuations in the oil
and the neighboring natural gas markets, which will enact
appropriate state-level price discovery and energy policy and
investment decision makings.

In terms of technological innovation, Ehrlich and
Holdren [34] and Grossman and Krueger [35] were among
the frst to develop a theoretical framework to analyze the
relationship between technological progress and carbon
emissions, arguing that technological progress is a solution
to the problem of environmental pollution caused by
population growth. Afonso et al. [36] noted that techno-
logical development is a sufcient condition for reducing
carbon emissions; however, Vinuesa et al. [2] argued that
technological development cannot completely solve the
carbon emission problem. Researchers cannot reach a con-
sensus on the relationship between technological progress
and carbon emissions for two reasons. First, they cannot
clearly identify the mechanism underlying the efect of
technological progress on carbon emissions, and second, the
efect of technological progress on carbon emissions is
infuenced by other factors. By analyzing macro-level data,
such as data from provinces and cities, Chinese scholars have

found that technological progress can signifcantly reduce
enterprises’ carbon emissions and contribute to trans-
forming and upgrading industrial structure as well as the
green transformation of national economic development
[37–40]. Sun et al. [41] found that the development of in-
formation and communication technology could alleviate
carbon emissions on a global scale.

In summary, previous researchers have conducted sev-
eral theoretical and practical explorations of the infuencing
factors of carbon emissions and obtained research results,
providing a reference for accurately understanding the re-
lationship between artifcial intelligence and carbon emis-
sions. However, it cannot be ignored that previous studies
have mostly focused on the relationship between technology
and carbon emissions, and the analysis of industrial robots
and carbon emissions performance from a microlevel is still
in its infancy. Compared with existing research, this study
can expand the current literature on three points.

First, artifcial intelligence, as represented by industrial
intelligent robots, is a relatively new concept. Currently,
research on the relationship between artifcial intelligence
and carbon emissions has mainly focused on regions and
industries at the meso level. Few scholars have determined
the application level of industrial intelligent robots at the
microlevel and analyzed the impact on carbon emission
performance. Second, although industrial intelligent robots
can afect corporate carbon emission performance through
various channels, no researchers have yet conducted a sys-
tematic analysis of the impact mechanism of industrial
robots on carbon emission performance. Based on an
analysis of existing literature, we identify the two potential
mechanisms of productivity and competition efects and
tested them using a mesomeric efect model. Tird, most
studies have not efectively addressed the issue of mutual
causality. Based on the efective control of endogeneity
problems caused by mutual causality through a propensity
score matching (PSM)-triple diference (DDD) model, this
study verifes the impact of industrial robot application on
corporate carbon emissions.

2.2. Robot Application and Carbon Emission Performance.
Industrial robots are a key enabling technology for Industry
4.0 and the artifcial intelligence revolution, particularly in
terms of the smart, low-carbon transformation of traditional
industries. Scientifc and technological progress is the key to
energy conservation and emission reduction [42], core
driver of long-term stable economic growth, and funda-
mental way to promote the transformation of the economic
growth mode [43]. Energy consumption has long shown an
upward trend, which has placed substantial pressure on
environmental protection and carbon emission control [44].
Although energy use efciency has increased substantially in
recent years, it remains at a relatively backward level, and the
gap is obvious compared with developed countries. Te
direct result of low energy usage is reduced efciency, which
is hindered by energy cleaning and high pollution emissions
[45, 46]. China’s natural resource reserves are characterized
as “rich in coal, poor in oil, and low in gas,” and the pollution
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from coal combustion is the most serious among all re-
sources. Although China has recently adopted fscal policies
to guide enterprises’ production and residents’ lifestyles
toward clean energy consumption (e.g., wind, nuclear, and
solar), transforming new energy sources into convenient
energy for production and living generally requires spe-
cialized technologies.

Te large-scale application of robots can improve in-
dustrial technology levels. Te application of robots will lead
to a shift toward “cleaner production,” and the increased
automation will reduce the factor input per unit of output
and decrease the optimal carbon emission intensity of en-
terprises, thereby reducing the total level of carbon emis-
sions and improving enterprises’ carbon emission
performance. Furthermore, according to the Porter hy-
pothesis, technological progress can stimulate the “in-
novation compensation” efect, and production technology
progress can increase economic output while maintaining
carbon emissions or reduce carbon emissions without
changing economic output, thereby achieving carbon
emission efciency. In this study, this mechanism channel is
referred to as the “productivity efect.”

In addition, the green transformation of enterprises is
itself a process of reallocating resources in the direction of
“greening,” and the market mechanism plays an important
role in guiding enterprises to actively engage in green and
low-carbon transformation. Te market mechanism of
elimination of the fttest can not only force inefcient en-
terprises out of the market but also attract high-efciency
and new enterprises to enter the market, efectively guiding
the fow of green production resources from low-
environmental efciency enterprises to high-
environmental efciency enterprises, achieving optimal re-
source allocation among enterprises by accelerating their
turnover to improve social production efciency [42]. Using
industrial intelligent robots can signifcantly reduce enter-
prises’ labor costs, and enterprises can compete in the
market through cost leadership strategy, squeezing out
enterprises with low productivity and green competitive-
ness, thus promoting improved carbon emission perfor-
mance. In this study, this mechanism channel is referred to
as the “competition efect.” Based on the above analysis, the
following hypothesis is proposed:

H1: Te application of robots will signifcantly improve
the carbon emission efciency of enterprises in the
manufacturing industry.

3. Data Sources and Study Design

3.1. Data Sources and Sample Selection. Drawing from
existing research practices, this study uses two main data
sources. Te frst is the Global Robot Database, published by
the International Federation of Robotics (IFR), which
provides data on robots in 17 broad categories of industries
in more than 70 countries and regions worldwide, and is
currently the most authoritative database on robot appli-
cation that has been widely used in related research [47].Te
second is the China Energy Statistical Yearbook, published
by the National Bureau of Statistics, which reports the

annual consumption of diferent types of fossil fuels, such as
coal, oil, and diesel, in each province of China and provides
a database for estimating the carbon performance of Chinese
industries and enterprises. Additionally, data on control
variables, return on net assets, frm size, and frm nature
were obtained from the CSMAR database. Tis study’s
sample includes 9,244 observations of Chinese
manufacturing companies listed on Shanghai and Shenzhen
A-shares, from 2011 to 2019, used to estimate and test the
econometric model.

3.2.MeasurementModel Setting. Most researchers have used
panel models to explore the economic consequences of
industrial robots [1, 47]. For the core question of this study,
examining the direct efects of industrial robot use on carbon
emission performance and the productivity, and competi-
tion efects, we construct an econometric model as follows:

carboni,t � α0 + α1exposurei,t + α2Xi,t + λi,t + φi,t + ϵ,
(1)

where i represents the frm and t represents the year. Te
explanatory variable carbon denotes a frm’s carbon per-
formance and the explanatory variable exposure denotes the
level of robot application in manufacturing frms. To avoid
bias from omitting explanatory variable, a set of frm-level
control variables is included in X. To avoid the problem of
missing explanatory variables caused by unobservable fac-
tors, this study also controls for industry and year fxed
efects; ξ is a random disturbance term.Te main concern of
this study is the estimated coefcient of the core explanatory
variable exposure α2; if the estimated value of α2 is signif-
icantly positive, it indicates that robot application in
manufacturing frms helps improve frms’ carbon
performance.

Furthermore, the mediation efect analysis of Baron and
Kenny [48] is used to test whether the productivity and
competition efects are the mediation mechanism of robot
application promoting carbon emission performance. To
verify this mediation mechanism, we construct the following
models:

Mi,t � α0 + α1exposurei,t + α2Xi,t

+ λi,t + φi,t + ϵ,
(2)

carboni,t � α0 + α1exposurei,t + α2Mi,t + α3Xi,t

+ λi,t + φi,t + ϵ.
(3)

3.3. Variable Setting

3.3.1. Manufacturing Carbon Performance. Te existing
literature on carbon performance is relatively scattered.
Mielnik et al. [49] frst proposed using carbon emissions per
unit of energy consumption as an evaluation criterion to
measure climate change. Clarkson et al. [50] used the inverse
of total carbon emissions per million dollars of net sales as
a proxy variable for carbon performance. Domestic and
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international studies on carbon emissions are more often
conducted at the macro level, such as national, industrial,
and regional studies, and less research has been conducted at
the microlevel. Considering the availability of microlevel
data, this study draws on Busch et al. [51] who used revenue
per unit of carbon emissions as an indicator of corporate

carbon performance, with larger values indicating better
carbon performance. Because the carbon emission data in
the China Energy Statistical Yearbook are at the industry
level, we estimate enterprises’ carbon emissions by industry
carbon emissions with the help of enterprise operating costs.
Tus, carbon performance is estimated as follows:

carbon emission performance �
enterprise operating income

(industry carbon emissions/industry main business costs + 1) × enterprise operating costs
.

(4)

3.3.2. Robot Application Levels in Enterprises. Identifying
and measuring frm-level robot application is difcult. Tis
study draws on industry-level robot data in China and
microdata of Chinese listed manufacturing companies to
construct a robot application based on the “Bartik in-
strumental variable” [47, 52, 53]. A robot application was
constructed at the enterprise level in China to measure the
enterprises’ actual artifcial intelligence technology appli-
cation levels.

Industrial robot import information is obtained from
enterprise product trade data provided by the China Cus-
toms Trade Database of General Administration of Customs
of China. Tis database contains product-level information
for each trading enterprise, including trade prices, quanti-
ties, and amounts. Moreover, this database provides HS
eight-digit code information for products, which provides
the conditions for identifying enterprises’ imports of in-
dustrial robots. Te enterprise-level data are mainly ob-
tained from the Chinese National Bureau of Statistics’
Database of Chinese Industrial Enterprises. Tis database
covers all state-owned enterprises and some nonstate-owned
enterprises (with a main business revenue of 5 million and
above). Te survey process of this database has a problem
with distorted sample information caused by errors in some
enterprises’ reports; therefore, this study draws on existing
research practices to screen the initial sample using the
following process. First, fnancial and insurance frms are
removed, due to diferent regulatory environments. Second,
enterprises with less than eight employees are excluded.
Tird, given that the national industry classifcation stan-
dard used in the database was changed in 2002 and 2011, in
this study, the industry classifcation code is unifed to the
2002 national industry classifcation standard for all years.
Fourth, based on the existing international GAAP, enter-
prises with current assets larger than total assets, fxed assets
larger than total assets, net fxed assets larger than total
assets, missing enterprise codes, and unreasonable estab-
lishment times are deleted from the sample.

Ten, this study adopts the “two-step method” to match
variables such as robot imports calculated from the China
Industrial Enterprise Database and China Customs Trade
Database, referring to Yu [54]. Specifcally, enterprise name
and year are frst matched one-to-one, and then, using the
enterprise location postal code and last seven digits of the
phone number, the samples that were not successfully

merged according to enterprise name are merged again. To
ensure accurate merging, the second merging is fltered
according to the following conditions: (1) missing postal
code or phone number, (2) unreasonable postal code, and
(3) unreasonable phone number. Finally, a comprehensive
database containing enterprises’ basic information, fnancial
operation information, and import/export trade in-
formation is obtained.

3.3.3. Control Variables. Tis study refers to Acemoglu and
Restrepo [47], Li et al. [1], and Shao et al. [4] to select control
variables at the frm microlevel. Tese variables include two
positions in one (separation, whether frms’ chairperson and
general manager are the same individual); the shareholding
ratio of the frst largest shareholder (large, the number of
shares held by the frst largest shareholder divided by the
number of outstanding shares); Tobin’s q (to measure frm
growth), book-to-market ratio (MB, the book value of the
frm divided by the market value); net cash fow from op-
erating activities (Pc, divided by the number of outstanding
shares); net cash fow from operating activities (Pcf, the cash
fow from operating activities divided by the total assets of
the frm); frm size (size, the natural logarithm of the frms’
total assets); frm nature (state-owned versus nonstate-
owned enterprises); and analysts (Anaattention, the natu-
ral logarithm of the number of analysts following the
company).

4. Baseline Empirical Results and
Robustness Tests

4.1. Baseline Regression Results. According to the setting of
econometric (1), this study estimates the impact of robot
application on carbon performance in the manufacturing
industry, by using regressions without and with control
variables included. Meanwhile, to avoid possible omitted
variables, heteroscedasticity, and serial correlation problems
in the estimation, year and industry fxed efects are included
in the estimation process, and robust standard deviations are
used to ensure the robustness of the estimation. Te specifc
estimation results are shown in Table 1. Te results in
column (1) of Table 1, which only includes robot application
without controlling for year and industry fxed efects, show
that the impact of robot application onmanufacturing frms’
carbon performance is signifcantly positive at the 1% level,
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which is consistent with the research hypothesis. Te results
show that the application of robots signifcantly promotes
carbon performance; thus, H1 is supported. In Table 1, the
estimates in column (2) remain robust after including in-
dustry and year fxed efects, column (3) after including
control variables and not controlling for year and industry
fxed efects, and column (4) after including control variables
and controlling for both year and industry fxed efects.

From the perspective of economic signifcance, for every
standard deviation increase in the application level of in-
dustrial intelligent robots, enterprises’ carbon emission
performance increases by 0.147 percentage points, equiva-
lent to 2.73% of the average carbon emission performance.
Tis supports the hypothesis that the application of in-
dustrial intelligent robots signifcantly improves enterprises’
carbon emission performance. Notably, some foreign lit-
erature at the national and industrial levels posits that the
application of industrial intelligent robots will reduce carbon
emission performance. Tis study provides diferent evi-
dence based on conclusions at the enterprise level, which
may refect the phased laws of China’s artifcial intelligence
technology development and the particularity of enterprise
carbon emission performance.

Regarding the control variables, a signifcant positive
relationship is observed between the net cash fow from
operating activities (Pcf) and carbon emission performance.
In China, manufacturing enterprises face a large fnancing
constraint dilemma, and the net cash fow from operating
activities refects the proftability and capital adequacy of
enterprises from the side. Te procurement of industrial
robots requires high costs, and enterprises without sufcient
capital will not invest in technology; thus, the more abun-
dant their capital, the more likely enterprises are to upgrade
their equipment by introducing new technologiesTerefore,
more capital-rich enterprises are likely to upgrade their
equipment by introducing new technologies, which will
promote industrial upgrading and transformation, and
generally help improve the carbon performance of enter-
prises and related industries. Te larger the size of an en-
terprise, the higher the likelihood it will use more robotic
equipment when it upgrades its technology for low-carbon
transformation, and the scale efect of the application of
robots will improve the efciency of enterprise resource
utilization, thereby reducing enterprises’ carbon
performance.

4.2. Robustness Test

4.2.1. Controlling Endogeneity Problems. Efective control of
potential endogeneity problems is key to accurately iden-
tifying the causal relationship between robot application and
manufacturing frms’ carbon emission performance. Bi-
directional causality is the most important cause of the
endogeneity problem in identifying the causal relationship
between robot application and carbon performance. As the
level of environmental regulation in China increases, regions
with more carbon emissions from manufacturing industries
will face stronger pressure to reduce carbon emissions,

prompting local governments to use fnancial subsidies and
tax incentives to encourage enterprises to introduce robot
equipment to save energy and reduce emissions in
manufacturing production processes. Terefore, the level of
carbon emissions from regional manufacturing industries
will also afect the local level of robot application, resulting in
a reverse causal relationship between robot application and
carbon emission performance. Based on this, and drawing
on Du and Lin [55], this study uses the density of robot
installation in the Czech Republic, which is most similar to
the density of robot installation in the manufacturing in-
dustry in China during the same period, as an instrumental
variable for regression analysis.

As Table 2 shows, the F-test values of the frst-stage
regression equations are all greater than 10 and pass the 1%
signifcance test, indicating that the instrumental variables
satisfy the correlation requirements. However, the efect of
the instrumental variables on the carbon emission perfor-
mance of the manufacturing industry is not signifcant,
indicating that the instrumental variables do not directly
frms’ carbon emission performance. Tus, the exogeneity
requirement of the instrumental variables is satisfed. Fur-
thermore, the LM test results also imply that the in-
strumental variable is not underidentifed and is reasonably
valid. Te regression coefcient of artifcial intelligence
penetration remains signifcantly negative after adopting
this instrumental variable to efectively control for the
endogeneity problem, indicating that the promotional efect
of an increase in robot application level on carbon emission
performance in manufacturing enterprises is robust.

In addition, considering that changes in any economic
factor are inherently consistent and the results of the pre-
vious period usually have an impact on the results of the later
period [1], there may be a lagged efect on the changes in
manufacturing frms’ carbon emission performance after the
application of robots. Terefore, this study uses the gen-
eralized method of moments to estimate a dynamic panel
data model for robustness analysis of potential endogeneity
issues. Te regression results in column (1) of Table 3 in-
dicate that this study’s fndings remain robust.

4.2.2. Replace Key Metrics. To further verify the reliability of
the model and avoid one-sidedness in the research fndings
due to over-reliance on a single metric, this study uses the
total carbon emission data from the high-resolution global
carbon dioxide emission database released by the team of
academician Tao Shu of Peking University in the process of
measuring carbon emission performance, resubstitutes it
into the formula for calculating carbon emission perfor-
mance, and records it as carbon_new1. Te results are shown
in column (1) of Table 4. Te direction and signifcance of
each coefcient are consistent with the benchmark re-
gression results; therefore, the model is shown to be robust.
Drawing on the practice of Li et al. [1] who used the ratio of
total factor productivity growth to GDP growth in each city
per calendar year as a proxy indicator for the degree of
regional low-carbon transition development, we rerun the
regression analysis of the ratio of total factor productivity
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growth to main business income growth (carbon_new2) of
manufacturing enterprises as a proxy indicator for enter-
prises’ carbon emission performance. Te results are shown
in column (2) of Table 4 and again indicate that the ap-
plication of robots will promote manufacturing enterprises’
carbon emission performance.

4.2.3. PSM-DDD Analysis. To mitigate the problem of
missing variables and reverse causality, we use regional
digitization policy shocks as a natural experiment for
PSM-DDD estimation. To promote digital transformation,
in December 2015, the Ministry of Industry and Information
Technology identifed 25 National Smart Development
Model Cities that should accelerate information in-
frastructure upgrades and technological innovation, pro-
mote the transformation and upgrading of the information
industry, and increase the level of public service networking.

Table 1: Regression results of robots application and carbon performance.

Variables (1) (2) (3) (4)
Carbon Carbon Carbon Carbon

Exposure 0.005∗∗∗ (0.000) 0.004∗∗∗ (0.000) 0.003∗∗∗ (0.000) 0.002∗∗∗ (0.000)
Separation −0.004∗ (0.002) −0.002 (0.002)
Large −0.006∗∗∗ (0.001) −0.006∗∗∗ (0.001)
TobinQ −0.015 (0.014) −0.014 (0.014)
MB −0.102 (0.078) 0.065 (0.078)
SOE −0.397∗∗∗ (0.058) −0.254∗∗∗ (0.089)
Pcf 0.288∗ (0.152) 0.469∗∗∗ (0.151)
Size 0.250∗∗∗ (0.017) 0.364∗∗∗ (0.019)
Anaattention 0.001 (0.001) 0.000 (0.001)
Constant 4.911∗∗∗ (0.035) 4.927∗∗∗ (0.009) −0.161 (0.378) −2.815∗∗∗ (0.437)
Ind/year No Yes No Yes
Observations 9,244 9,244 9,244 9,244
R-squared 0.081 0.070 0.124 0.137
Number of stkcd 1,122 1,122 1,095 1,095
∗∗∗, ∗∗, and ∗ denote rejection of the test at 1%, 5%, and 10% level, respectively.

Table 2: Robust tests for the benchmark regression.

Dependent variable Carbon
Independent variable (1) (2)
IV 0.017 (0.024)
Exposure 0.346∗∗∗ (0.117)
Sample size 8523 8523

Underidentifcation test
LM test value — 17.223
(p) — p≤ 0.001

Weak instrumental variable test
First stage F-test value — 17.341
(p) — p≤ 0.001
Note. ∗∗∗ , ∗∗, and ∗ denote rejection of the test at 1%, 5%, and 10% level,
respectively; robustness tests were performed controlling for relevant
control variables, time fxed efects, and industry fxed efects.

Table 3: Te results of SYS-GMM analysis.

Variables
(1)

Sys-gmm
Carbon

Exposure 0.002∗∗∗(0.000)
L. carbon 0.784∗∗∗ (0.008)
Separation −0.003∗∗ (0.001)
Large −0.001 (0.001)
Tobinq −0.033∗∗ (0.015)
MB −0.633∗∗∗ (0.083)
SOE −0.071∗∗∗ (0.024)
Pcf −0.192 (0.166)
Size 0.065∗∗∗ (0.012)
Anaattention −0.003∗∗ (0.001)
Constant 0.183 (0.258)
Ind/year Yes
R-squared 0.1126
Observations 8,870
Number of stkcd 1,095
∗∗∗, ∗∗, and ∗ denote rejection of the test at 1%, 5%, and 10% level,
respectively.

Table 4: Robustness checks of baseline regression.

Variables (1) (2)
Carbon_new1 Carbon_new2

Exposure 0.0001∗∗ (0.000) 0.001∗∗∗ (0.000)
Separation 0.000 (0.002) −0.001∗∗ (0.000)
Large −0.001 (0.001) −0.001∗∗∗ (0.000)
Tobinq 0.021 (0.014) −0.004 (0.003)
MB 0.046 (0.078) −0.043∗∗ (0.018)
SOE 0.263∗∗∗ (0.060) −0.074∗∗∗ (0.012)
Pcf 0.073 (0.151) 0.044 (0.036)
Size 0.040∗∗ (0.017) 0.040∗∗∗ (0.004)
Anaattention −0.000 (0.001) 0.000 (0.000)
Constant 6.976∗∗∗ (0.381) 0.965∗∗∗ (0.083)
Ind/year Yes Yes
R-squared 0.2313 0.1982
Observations 6,997 6,997
Number of stkcd 1,095 1,095
∗∗∗, ∗∗, and ∗ denote rejection of the test at 1%, 5%, and 10% level,
respectively.
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We believe this policy can promote the application of ar-
tifcial intelligence technology in local enterprises.Terefore,
we use these cities as a treatment group and the other cities
as a control group.

First, to overcome the bias caused by diferences in the
initial conditions of enterprises in the treatment and control
group cities, we use PSM to perform one-to-one intracaliper
nearest neighbor matching for enterprises in the treatment
and control group cities. All matched covariates are control
variables in the baseline regression. Ten, from the per-
spective of building smart demonstration cities to promote
digital transformation, which may improve enterprises’
carbon emission performance, we constructed a DDDmodel
containing the three dimensions of city, industry, and year to
identify the causal relationship between digital trans-
formation and corporate labor income share. Specifcally,
based on a comparison of the dual diferences between the
treatment and control group cities before and after the
policy, a third diference is added by introducing industry
attributes. Te method of introducing industry factors into
the third diference has been widely applied in recent re-
search. Compared to the double diference method, which
can only control for the fxed efects of two dimensions
(enterprise and year), the DDDmethod can control for cities
× fxed year efect, industry× the fxed efect of the year,
excluding the infuence of omitted variables that change over
time at the city and industry levels. Tis helps to eliminate
the interference of other policy shocks implemented for
cities or industries [40]. Te model is set as follows:

Carbonijpt � β1Treatcityp ∗ Post∗Digij + cXipjt

+ εi + εjt + εpt + δipjt,
(5)

where the subscript i represents the enterprise, j represents
the industry, p represents the city, and t represents the year.
Te explained variables Carbonijpt represent the carbon
emission performance at the enterprise level. Te key ex-
planatory variable is Treatcityp ∗ Post∗Digij; among them,
Treatcityp is the smart city dummy variable, which takes
a value of 1 when the enterprise is in a smart city, and
0 otherwise; Post is the policy year dummy variable, which
takes a value of 1 when the current year is after 2015, and
0 otherwise; and Digi is the digital industry dummy variable,
which takes the value of 1 when the enterprise is in an
industry for which the average digitization degree exceeds
the average of all industries, and 0 otherwise. Te coefcient
β1 is a DDD estimator, indicating the impact of smart city
demonstration construction on the carbon emission per-
formance of the digital industry.Te regression also controls
for interaction Treatcityp with Digij, city× year fxed efect
εpt, and industry × year fxed efect εjt. Under the cross-
fxation efect, the individual terms of Treatcityp, Digij, and
Post, and the interaction terms Treatcityp and Digij with
Post will be absorbed by the fxed efect and do not need to be
controlled. In addition, the robust standard error of clus-
tering at the urban level is used in the regression.

Table 5 reports the regression results of the PSM-DDD
estimation. Column (1) shows the basic regression results,
and the DDD estimation coefcient is signifcantly positive

at the 1% level, indicating that the construction of smart
demonstration cities improved the carbon emission per-
formance of the digital industry. Tis indicates the role of
digital construction in improving carbon emission perfor-
mance. Column (2) lists the results of robustness tests, in
which we removed the sample in the pilot city list but not in
the fnal established demonstration city, and the estimation
result remained stable.

5. Influence Mechanism Identification and
Heterogeneity Analysis

5.1. Impact Mechanism Identifcation. Tis section discusses
the mechanisms through which industrial intelligent robots
improve enterprise production methods and enhance car-
bon emissions performance. We conduct an in-depth
analysis from two aspects: productivity and competition
efects.

To further verify the possible mediation mechanism of
robot application afecting carbon emission performance,
according to equations (2) and (3), the efect of M as an
intermediary channel is tested using a three-step method.
We use the change in the productivity of green frms as
a proxy for the productivity efect (ppe) and the Her-
fndahl index as a proxy for the degree of competition in
the market (HHI), and regress them as explanatory var-
iables. Te Herfndahl index is an inverse indicator; the
larger its value, the higher the degree of monopoly in the
market, and conversely, the higher the degree of com-
petition in the market with a larger number of frms of
comparable size. Te regression results in Table 6 show
that the infuence of M is an intermediary mechanism for
robot application in promoting carbon emission
performance.

First, robot application in column (1) is signifcantly
positive at the 10% level, and ppe in column (2) is also
signifcant at the 10% level, indicating that the productivity
efect is a potential path through which robot application
can afect carbon performance. Second, robot application
in column (3) is signifcantly positive at the 1% level, and
HHI in column (4) is signifcant at the 10% level, indicating
that the competition efect is another potential path
through which robot application can afect carbon
performance.

Table 5: Te results of PSM-DDD model.

(1) (2)
Carbon Carbon

Treatcity ∗ post∗ digital industry 1.635∗∗∗ (0.774) 2.064∗∗∗
(0.759)

Treatcity ∗ industry Yes Yes
Firm-level fxed efect Yes Yes
Treatcity ∗ year Yes Yes
Year∗ industry Yes Yes
Exclude the previous pilot cities No Yes
Observations 9147 7532
Adj-R2 0.057 0.054
∗∗∗, ∗∗, and ∗ denote rejection of the test at 1%, 5%, and 10% level,
respectively.
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5.2. Heterogeneity Analysis. Diferences in geographic lo-
cation, ownership structure, and degree of industrial carbon
emissions may lead the corresponding regions to choose
diferent paths and approaches to promote low-carbon
transformation according to their own development [1],
which in turn may lead to diferent degrees of heterogeneity
in the efects of robot application on the carbon emission
performance of diferent types of manufacturing enterprises.
Tis study examines these heterogeneous efects and their
mechanisms from the perspectives of location, ownership
structure, and industry dimension diferences.

5.2.1. Location Diferences. In this study, according to the
registered location of the listed companies, we frst divide the
sample of manufacturing enterprises into eastern, central,
and western regions for regression analysis. Te corre-
sponding parameter estimation results are shown in col-
umns (1) and (2) of Table 7. Te results show that robot
application makes a higher contribution to the carbon
emission performance of manufacturing enterprises in the
eastern region compared with those in the central and
western regions. To further investigate the reasons behind
the regional diferences in the impact of robot application on
frms’ carbon performance, this study tests the two potential
mechanism channels proposed in the previous study in
groups based on diferent regional samples. Te results are
shown in columns (3)–(10) of Table 7. For both the eastern
and the central and western regions, robot application will
promote carbon emission performance of manufacturing
enterprises in both types of regions through the two
channels of the productivity efect and competition efect,
thereby accelerating the low-carbon transformation of
enterprises.

5.2.2. Ownership Structure Diferences. Considering the
diferences in the corporate nature of the sample, this study
divides the sample into two subsample groups for separate

regression analyzes: state-owned enterprises and nonstate-
owned enterprises. Columns (1) and (2) of Table 8 show the
corresponding parameter estimation results. Robot appli-
cation contributes signifcantly to carbon emission perfor-
mance in the sample of state-owned enterprises; however,
this efect is not signifcant for nonstate-owned enterprises.
Tis indicates that the productivity and competition efects
from robot application are more signifcant in state-owned
enterprises, compared with nonstate-owned enterprises. A
possible reason for this is that local governments tend to
maintain and strengthen the market position of state-owned
enterprises through biased policies, such as tax incentives,
government subsidies, and enhanced market monopolies,
which provide a “breeding ground” for state-owned enter-
prises to introduce and use robots in production, while also
providing a mechanism for most manufacturing industries
with state-owned enterprises to induce productivity and
competition efects. Tis provides the basis for the pro-
ductivity and competition efects of most state-owned en-
terprises.Terefore, the productivity and competition efects
of robot application are more pronounced in state-owned
rather than nonstate-owned enterprises.

5.2.3. Industry Dimensional Diferences. According to data
from the 2018 World Robot Report: Industrial Robots re-
leased by the IFR, robots are mainly used in the following six
felds: agriculture, forestry, and fshing; mining and quar-
rying; manufacturing; electricity, gas, and water supply;
construction; and education research and development. Te
application intensity of robots varies across felds, raising the
question of whether the impact on carbon emission per-
formance shows any signifcant diferences [1]. Tis study
examines the diferences in the efects of robot application
on enterprises’ carbon emission performance by classifying
the metal smelting, plastic chemical, and nonmetallic
mineral industries as high-carbon emission industries and
the remaining industries as low-carbon emission industries.
Columns (1) and (2) of Table 9 show that the promotion

Table 6: Te results of the mechanism test.

(1) (2) (3) (4)
Ppe Carbon Hhi Carbon

Exposure −0.0001∗ (−1.75) 0.003∗∗∗ (12.24) −0.0001∗∗∗ (−2.90) 0.003∗∗∗ (14.41)
Separation −0.001∗∗ (−2.25) −0.004 (−1.51) 0.000∗∗∗ (4.48) −0.004∗ (−1.77)
Large −0.000∗ (−1.65) −0.006∗∗∗ (−4.35) 0.000∗∗∗ (6.84) −0.005∗∗∗ (−4.13)
Tobinq −0.011∗∗ (−2.46) −0.003 (−0.18) −0.001 (−1.53) −0.015 (−1.06)
MB −0.085∗∗∗ (−3.28) −0.174∗∗ (−1.98) 0.008∗∗ (2.22) −0.104 (−1.32)
SOE −0.055∗∗∗ (−5.72) −0.430∗∗∗ (−6.83) 0.008∗∗∗ (2.65) −0.393∗∗∗ (−6.80)
Pcf 0.030 (0.57) 0.454∗∗ (2.53) −0.001 (−0.08) 0.280∗ (1.83)
Size 0.013∗∗∗ (3.01) 0.319∗∗∗ (15.73) −0.014∗∗∗ (−16.94) 0.241∗∗∗ (14.07)
Anaattention 0.004∗∗∗ (9.67) −0.003∗∗ (−2.07) 0.000∗ (1.64) 0.001 (0.59)
Ppe −0.028∗ (−1.68)
Hhi −0.471∗ (−1.95)
_cons −0.125 (−1.35) −1.623∗∗∗ (−3.60) 0.374∗∗∗ (20.22) 0.084 (0.22)
Ind/year Yes Yes Yes Yes
N 5870 5870 6997 6997
Adj. R2 0.16 0.19 0.23 0.17
∗∗∗, ∗∗, and ∗ denote rejection of the test at 1%, 5%, and 10% level, respectively.
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efect of robot application on manufacturing frms’ carbon
emission performance is more signifcant in the high-carbon
emission industries than in the low-carbon emission in-
dustries. Similarly, this study tests the two potential
mechanism channels proposed in the previous paper in
groups based on the two subsample groupsmentioned above
to explore whether diferences exist in the impact mecha-
nisms between the two sample types. Te corresponding
parameter estimation results are reported in columns
(3)–(10) of Table 8.Tis study fnds that the productivity and
competition efects arising from robot application are sig-
nifcant in both sample types.

6. Discussion

Tis study empirically investigates the relationship between
industrial robot application and carbon emission efciency.
Te fndings extend the economic literature on both artifcial
intelligence and carbon emissions and contribute to several
theoretical implications. First, the fndings provide scholars
with new insights by identifying frm-level industrial robot
application levels and their efects on carbon emission ef-
fciency. Categorizing the mechanism into two areas (pro-
duction and competition efects) can provide
a comprehensive understanding of how artifcial intelligence
infuences carbon emissions. Moreover, Felipe [6] divided
technological progress into capital manifestation and non-
embodiment, and prior research has mainly focused on
capital nonembodiment. However, artifcial intelligence is
a type of capital manifestation of technological progress, and
our fndings can improve the current understanding in these
two nascent research areas.

Te purpose of this paper was to examine the direct
efects of robot application on carbon emission perfor-
mance.Temediating efect of productivity and competition
on the application of industrial robots/carbon emission
performance link were also studied. Furthermore, China is
a vast country with unbalanced development among regions
and large diferences in industrial structure, which will bring
regional heterogeneity to the application of artifcial in-
telligence and regional carbon reduction and emission re-
duction (Li et al., 2019) [56]. We also conducted
heterogeneity analysis from the three dimensions of own-
ership type, region, and industry.

Te fndings of this study are in line with the extant
literature exploring robots. For example, our result for AI
reinforces the importance and contribution of robots to
carbon emission performances (Ehrlich and Holdren [34]
andGrossman and Krueger [35]). In this regard, similar to Li
and Lin [5], Wamba [57], and Zhang et al. [58], our fndings
show that capital-embodied technological progress com-
bines capital accumulation with technological progress and
changes the original factor structure, which is regarded as
the key driving force for improving energy efciency and
reducing carbon emissions. And also, the fndings dem-
onstrate the Porter efect of technological progress, con-
sistent with the predictions of Afonso et al. [36].

Furthermore, our results regarding the mediation
analysis corroborate fndings from previous robot literature.

We found that GTFP and HHI are mediating the re-
lationship between robot application and carbon emission
performance. Tis is consistent with previous literature
highlighting the infuence of technology and pressure on
relationship between AI and frm performance [24, 59].

6.1. Teoretical Implications. Tis research has several the-
oretical implications for the emerging literature on in-
dustrial robots. Tis study extends the carbon reduction
literature by providing a nomological network that links the
application of industrial robots to carbon emission per-
formance. For instance, it features among the frst studies to
draw on the capital-embodied technological progress view to
assess the impact of robots application on carbon emission
performance as well as the mediation efects of green total
factor productivity and HHI on this relationship; this is
a notable contribution to the emerging literature on robots,
with empirical evidence on the importance of robots for
improving frm performance. Future studies could build on
our fndings to integrate some critical external factors (e.g.,
Confucian culture) to account for the dynamic nature of the
external environment (Fu et al., 2022).

Tis study also contributes to the research stream fo-
cusing on the capital-embodied technological progress view
while enriching the emerging literature on the application of
industrial robot. Tis goal is achieved through the identi-
fcation of two important mediators of the relationships
between robot and frm carbon emission performance.
Another contribution is that it responds to the recent call by
many scholars [1, 29, 60] to assess the actual impacts of
industrial robots. In addition, this study drives important
implications for the literature on robots and related tech-
nologies. Te application of industrial robots represents
a distinct and valuable capability that needs constant ex-
ploration by the emerging literature on carbon emissions
[2, 56], especially for the digital transformation of the
organizations.

6.2. Practical Implications. Tis study has several practical
implications. First, governments should strengthen top-level
designs and make overall plans for the industry layout of
robotic inputs, thus fully releasing robots’ energy-saving and
emission-reducing potential. Te study demonstrates the
heterogeneity in the application of robots to improve the
carbon performance of manufacturing enterprises in dif-
ferent geographical locations and with diferent ownership
structures and industry dimensions. Tus, in promoting
enterprises’ low-carbon transformation, development
strategies and policy ideas should be implemented to replace
the surface with a point and focus, and accelerate the in-
troduction of robots in China’s central and western regions
and nonstate-owned enterprises. Furthermore, the low de-
gree of automation in high-carbon emission industries, such
as plastics, chemicals, and nonmetallic minerals, should be
considered. Te root cause is that the production processes
and procedures of such high-carbon emission industries are
not fully compatible with the core uses of existing robots in
China. Terefore, government departments should

14 Discrete Dynamics in Nature and Society



encourage and guide low-automation industries to optimize
their own production processes and procedures, strengthen
matching and integration with robot application in high-
energy-consumption and high-pollution production links,
enhance the end-governance efectiveness of industrial in-
telligent robots in energy conservation and emission re-
duction, and maximize the productivity and multiplier
efects of industrial intelligent robots.

Second, we recommend making full use of the pro-
motional role of government fscal and monetary policies
and the pulling role of fnancial intermediaries to actively
build and improve the national green fnancial system and
penetrate the channel of green fnancial services for low-
carbon transformation development. Te government
should expand direct fnancial expenditures to support the
development of green industries, such as establishing special
fnancial projects, including “energy-saving and emission
reduction incentive funds” and “renewable energy special
development funds.” Te government should also introduce
relevant tax incentive and guidance policies for energy
conservation and emission reduction to create a good in-
stitutional environment for the low-carbon transformation
of manufacturing enterprises. However, we also recommend
further strengthening the role of green credit in the allo-
cation of fnancial resources, continuously promoting the
optimization of the credit structure of banks and other f-
nancial intermediaries, raising the “green” threshold for
loans to manufacturing enterprises, gradually increasing the
proportion of green credit in the total amount of bank loans,
and curbing the blind expansion of high-energy-consuming
and high-polluting enterprises.

Tird, consumers should be guided toward establishing
a consumption concept and preferences for green and low-
carbon products, while forcing the construction and im-
provement of market-oriented green technological in-
novation systems, and efectively bringing into play the
positive role of technological innovation and market com-
petition mechanisms on the low-carbon transformation of
enterprises.Te government can provide necessary technical
support for China’s manufacturing enterprises to engage in
energy conservation and emission reduction by setting up
special research institutions and increasing support for low-
carbon, zero-carbon, negative-carbon, and other cutting-
edge technologies. In particular, state-owned enterprises
should play a leading role in actively introducing new
technologies and taking the initiative in carbon emission
reduction tasks, to drive the transformation of industrial
economic development to a green, low-carbon model. Te
government should also make scientifc and reasonable use
of environmental regulations and other policy instruments
to exert external pressure for low-carbon transformation
through the use of carbon emission rights and other market-
oriented operation mechanisms, to enhance enterprises’
carbon emission performance.

6.3. Limitations and Future Research. As with any other
research, this study has some limitations that should be
acknowledged. First, this study mainly explores the impact

of industrial intelligent robots on carbon emission perfor-
mance based on econometric methods, which may not be
able identify touch other potential impact mechanisms that
cannot be quantifed. In future research, we can evaluate the
impact of industrial intelligent robots on carbon emissions
based on exploratory case study and dynamic CGE models,
and compare the fndings with those of this study. Second,
because of limited data availability, this study does not
classify industrial intelligent robots; therefore, the conclu-
sions may not be sufciently accurate. With improved data
availability, we can further compare and analyze the impact
of diferent types of industrial intelligent robots and other
digital technologies on carbon emission performance to
provide empirical evidence for the government to apply
when using digital technology to improve carbon emission
performance.

7. Conclusions

As the economy with the highest CO2 emissions worldwide,
China plays a crucial role in the global carbon emission
reduction and climate governance process, while also ac-
tively undertakes emission reduction obligations. Te Chi-
nese government has clearly stated that high-quality
development is the primary task for building a modern
socialist country in all aspects, and that the high-end, smart,
and green development of the manufacturing industry
should be vigorously promoted. However, academia has not
provided the necessary attention to the link between robot
application and manufacturing companies’ carbon emission
performance, and consistent insights have not been pro-
vided on the potential impact channels involved. While
recognizing the impact of artifcial intelligence technology
application on the labor market, it is important to further
understand the environmental impact of robot application
to promote manufacturing enterprises’ low-carbon trans-
formation and thus contribute to high-quality economic
development. In this context, this study uses the input-
output model to measure the microlevel carbon emission
performance of manufacturing enterprises based on the data
of Chinese industrial enterprises, Chinese import and export
data, and the “Bartik instrumental variable method,” to
efectively measure the level of robot application in
manufacturing enterprises. Tis study aims to identify the
mechanism of the environmental impact of the application
of robots and provide a basis for decision-making to ac-
celerate the achievement of the “double carbon” goal in
China’s manufacturing industry. Te study led to the fol-
lowing conclusions:

(1) Increases in the level of robot application are found
to signifcantly contribute to manufacturing frms’
carbon emission performance, thereby accelerating
their low-carbon transformational development, and
the results of several robustness tests based on the
instrumental variables approach further strengthen
this conclusion.

(2) Te mechanism analysis results show productivity
and competition efects on the application of
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industrial intelligent robots, which encourage
manufacturing enterprises to promote carbon
emission performance through equipment upgrades.

(3) Heterogeneity analysis results show that an increase
in the level of robot use promotes carbon emission
performance of manufacturing enterprises in two
types of regions through both productivity and
competition efects. An increase in the level of robot
use signifcantly promotes the carbon emission
performance of state-owned enterprises; however,
this efect is not signifcant for nonstate-owned
enterprises. Te productivity and competition ef-
fects generated by robot application are more sig-
nifcant for state-owned enterprises, as are the
mechanism channels for these enterprises to im-
prove their carbon emission performance. Te
promotion and productivity efects of robot appli-
cation on manufacturing frms’ carbon emission
performance are more signifcant in high-carbon
emission industries than in low-carbon emission
industries; however, the competition efect is sig-
nifcantly present in all industries.
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