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In this study, we examine a discrete predator-prey system from the following two perspectives: (i) the functional response is of the
Ivlev type and (ii) the prey growth rate is of the Gompertz type. We defne the stability requirement for feasible fxed points. We
demonstrate algebraically that if the bifurcation (control) parameter rises over its threshold value, the system encounters fip and
Neimark–Sacker (NS) bifurcations in the vicinity of the interior fxed point.We explicitly establish the existence requirements and
direction of bifurcations via the center manifold theory. Analytical fndings are validated by numerical simulations, which are used
to highlight the occurrence of instability and chaotic dynamics in the system. In order to regulate the chaotic trajectories that exist
in the system, we adopt a feedback control approach.

1. Introduction

In population dynamics, the central goal is to understand
and analyze the interaction between predator and prey
species due to their universal existence and importance.
Several models have been developed to describe the dynamic
relationship between predators and their prey using diferent
ecological conditions. Prey growth rate and prey loss rate
owing to predation are both included in the mathematical
structure of predator-prey systems, which has been pro-
gressively studied through feld and laboratory studies. Prey
loss rate as a result of predation is defned as the functional
response of a predator, which is the change in the prey
density attached per unit time per predator as the prey

density fuctuates. A traditional Gauss-type predator-prey
system is represented by the following equation:

_x � xG(x, K) − f(x)y,

_y � (βf(x) − d)y,
(1)

where x is the prey (victim) density and y is the predator
density, respectively? in the absence of a predator, G(x, K)

stands for a specifc rate of prey growth; Te positive
constants K, β, d represent the prey’s carrying capacity, the
rate at which a prey is converted into a predator, and the rate
at which a predator dies, respectively. Te rate at which prey
are captured per predator, or the predator’s functional re-
action, is f(x). Te majority of examples in the literature
assume that

H: f x( ) ∈ C1
[0,∞), f(0) � 0, f

′
x( )> 0 for all x> 0 and lim

x⟶∞
f x( ) � m<∞. (2)

In the ecological literature, the most frequently inves-
tigated mathematical model of predator-prey interaction is

system (1) with conventional logistic type prey growth rate
G(x, K) � r(1 − x/K), r> 0 stands for prey intrinsic growth
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rate and Holling type II predator functional response f(x) �

(x/a + x), a> 0 is the half-saturation constant [1]. For
various ecological models, various functional responses have
been employed. But according to research, nonmonotonic
responses take place when microbial dynamics are inhibited
and population dynamics are defended by groups. For
several other categories of functional reactions, we refer to
[1–3].

Gompertz [4] created an alternate equation for the prey’s
growth that is comparable in efect to logistic growth,
g(x, K) � rx ln (K/x), to study the dynamics of a com-
munity made up of populations of several interacting spe-
cies. On the other hand, Ivlev [5] proposed a diferent
functional response based on empirical evidence, known as
the Ivlev functional response: p(x) � α(1 − e− ax), where α
and a are positive constants and stand for the maximum rate
of predation and the predator’s efectiveness in capturing
prey, respectively. Additionally, it supports hypothesis H.
Figure 1 demonstrates the comparison: growth curves and
functional responses. We fnd that the Gompertz curve
grows faster than the logistic curve. Also, the Gompertz
curve achieves carrying capacity a little bit earlier than the
logistic curve, and its point of infection happens sooner
than that of the logistic curve. Moreover, the predation rate
achieves its peak substantially sooner in the Ivlev-type
functional response than in the Holling-type II functional
response. In terms of biology, this implies that the predation
rate saturates to a constant α when the prey population is
large and is proportionate to the prey population when the
prey population is low. Wide-ranging applications of Ivlev-
type predator-prey interactions may be found in ecology.
Examples include dynamics in the predator-prey system
[6–13], host-parasitoid systems [14, 15], and animal coat
patterns [16]. Te authors investigated the presence and
uniqueness of limit cycles as well as the numerical com-
putation of phase portraits in these empirical works.

Although there are numerous and comprehensive results
on the dynamics of continuous predator-prey systems de-
scribing the interactions between populations with gener-
ations overlapping life cycles, many explanatory research
works have suggested that discrete-time models based on
diference equations [17] are better suited to characterize the
living situations where the birth occurs during a regular
mating season in populations with nonoverlapping gener-
ations, such as insects, birds, fsh, the phyto-
plankton–zooplankton reproduction cycle, and plants
herbivores. Te analysis demonstrates that the discrete-time
model has distinct features and a diferent structure from the
continuous one. Te discretized system exhibits richer and
more complex dynamics including periodicity, quasiperi-
odicity, and chaos with respect to diferent parameters.
Additionally, we point out that the algorithm for the nu-
merical simulations is automatically provided by the discrete
version of the continuous system. Terefore, the discrete
form is a logical link between the simulations and the real
model. On the other hand, mathematical models are fre-
quently dependent on biological and chemical facts, which
are frequently seen and gathered at discrete times [18]. In
addition, the low-dimensional diferential equation models

(1.1) do not capture the dynamics of predators and prey,
such as chaos. In reality, chaos does exist in nature, not just
in mathematics. Examples include ecosystems and chemical
reactions [19–21]. More signifcantly, discrete-time models
are comparably simpler and less computationally intensive
[22]. Because of this, compared to continuous forms, dis-
crete-time model formulation and simulation are typically
more straightforward, practical, and accurate. In recent
years, the predator-prey relationship expressed in discrete-
time form has attracted much attention [23–34]. Tese
studies examined both monotonic and nonmonotonic
functional responses as well as the conventional logistic-type
of prey growth rate. In these research eforts, the possibilities
of bifurcations, periodic orbits, and chaotic sets, all of which
had been computed numerically or by means of center
manifold theory, were all investigated.

Taking into consideration the above research works, we
express our interest in looking at system (1) with the Ivlev-
type functional response of the predator and Gompertz
growth on the prey population [6].

_x � rx ln
K

x
􏼒 􏼓 − α 1 − e

− ax
( 􏼁y,

_y � β 1 − e
− ax

( 􏼁y − dy,

(3)

where x and y stand densities of prey and predator, re-
spectively; r, K, a, d are all positive constants. Te prey’s
intrinsic growth rate is represented by parameter r, while its
carrying capacity is represented by parameter K. Applying
the forward Euler scheme, the discrete form of (3) is as
follows:

x

y

⎛⎝ ⎞⎠↦
x + δ rx ln

K

x
􏼒 􏼓 − α 1 − e

− ax
( 􏼁y􏼔 􏼕

y + δ β 1 − e
− ax

( 􏼁y − dy􏼂 􏼃

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4)

where δ is the integral step size. From a biological stand-
point, assume that the system is defned in the region R2

+ �

(x, y): x≥ 0, y≥ 0􏼈 􏼉 in the (x, y)-plane. A recent study in
the literature [35, 36] looked at a discrete Ivlev-type pred-
ator-prey system. For instance, in [35, 36], the authors
examined the predator-prey system using the traditional
logistic type of prey individual growth, whereas in [37],
Gompertz growth of prey individuals with Michae-
lis–Menten functional response was taken into account.
Trough the use of the center manifold theory, all of these
works focused on determining the stability conditions of fip
and NS bifurcations. Te task is to identify how parameters
infuence the dynamics of system (4). We specifcally use
center manifold theory [38] to systematically examine the
criterion for the existence and direction of bifurcations,
namely, fip and NS bifurcations in R2

+. Flip bifurcation and
NS bifurcation are both signifcant mechanisms for the
formation of complex dynamics in the discrete system, and
both bifurcations open a path to chaos through periodic as
well as quasiperiodic orbits.

Te structure of this study is as follows: Section 2
provides the stability analysis for feasible fxed points of
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system (4) in the interior of R2
+. In Section 3, we identify the

stability conditions for the bifurcation of system (4) under
specifc parametric spaces. By altering the values of the
control parameters, the system dynamics are numerically
displayed in Section 4. A feedback control method has been
employed in Section 5 to stabilize unstable trajectories.
Section 6 provides a succinct conclusion.

2. Analysis of the Stability and Existence
Criteria for Fixed Points

2.1. Study of Fixed Points. According to a straightforward
algebraic calculation, system (4) has the following two fxed
points for all possible parameter values:

(1) E1(K, 0), the predator-free fxed point
(2) E2(x∗, y∗), the singular fxed point if d< (1 − e− aK)β

where x∗ � − 1/a ln (1 − d/β) and y∗ � (βr/αd)x∗ ln
(K/x∗)

Biologically, E1(K, 0) interprets that whenever no
predators in the system, the prey population reaches its
carrying capacity whereas E2(x∗, y∗) stands for the coex-
istence of both populations.

2.2. Dynamical Behavior: Stability Analysis. When exam-
ining the stability of system (4) at fxed points E(x, y), it is
essential to bear in mind that the absolute value of the ei-
genvalues of the Jacobian matrix derived at the point in-
fuences the local stability of that fxed point. Given at
E(x, y), the Jacobian matrix of system (4) takes the form

J(x, y) �
j11 j12

j21 j22
􏼠 􏼡, (5)

where

j11 � 1 + δ − r − ae
− ax

yα + r ln
K

x
􏼒 􏼓􏼒 􏼓,

j12 � α − 1 + ae
− ax

( 􏼁δ,

j21 � aβe
− ax

yδ,

j22 � 1 + − d + 1 − e
− ax

( 􏼁β( 􏼁δ.

(6)

Te characteristic equation of a matrix J is as follows:

λ2 − trJ(x, y)λ + detJ(x, y) � 0. (7)

Now, using Jury’s criteria [39], the topological catego-
rization of stability around fxed points is represented as
follows:

Proposition 1. For the predator-free fxed point E1(K, 0), the
topological categorization listed below is accurate as follows:

(i) If d − (1 − e− aK)β> 0 then E1 is a

(1) Sink if 0< δ < min (2/r), (2/d − (1 − e− aK)β)􏼈 􏼉

(2) Source if δ > max (2/r), (2/d − (1 − e− aK)β)􏼈 􏼉

(3) Nonhyperbolic if δ � (2/r)or(2/d − (1− e− aK)β)

(ii) If d − (1 − e− aK)β< 0 then E1 is a

(1) Source if δ > (2/r)

(2) Saddle if δ < (2/r)

(3) Nonhyperbolic if δ � (2/r)

(iii) If d − (1 − e− aK)β � 0 then E1 is always
nonhyperbolic.

It is obvious that when δ � (2/r)or(2/d − (1 − e− aK)β),
then one eigenvalue of J(E1) is − 1 and the other is not equal
to ± 1. Tus, system (4) experiences a fip bifurcation if
parameters change in a small vicinity of FB1

E1
or FB2

E1
.
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Figure 1: Comparison: growth curves and functional responses: (a) growth curves; (b) functional responses for r � 0.5, K � 1.65,

a � 1.2, α � 0.5, β � 0.65, d � 0.45, P0 � 0.05.
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FB
1
E1

� (r, K, a, d, α, β, δ) ∈ R2
+: δ �

2
r
, δ ≠

2
d − 1 − e

− aK
􏼐 􏼑β

, d − 1 − e
− aK

􏼐 􏼑β> 0
⎧⎨

⎩

⎫⎬

⎭. (8)

or

FB
2
E1

� (r, K, a, d, α, β, δ) ∈ R2
+: δ �

2
d − 1 − e

− aK
􏼐 􏼑β

, δ ≠
2
r
, d − 1 − e

− aK
􏼐 􏼑β> 0

⎧⎨

⎩

⎫⎬

⎭. (9)

At E2(x∗, y∗), we write (7) as

F(λ) ≔ � λ2 − (2 + Mδ)λ + 1 + Mδ + Nδ2􏼐 􏼑 � 0, (10)

where

M � − d − r − ae
− ax∗

y
∗α + 1 − e

− ax∗
􏼐 􏼑β + r ln

K

x
∗􏼒 􏼓,

N � − ae
− ax∗

− 1 + e
− ax∗

􏼐 􏼑y
∗αβ + − d + 1 − e

− ax∗
􏼐 􏼑β􏼐 􏼑 − r − ae

− ax∗
y
∗α + r ln

K

x
∗􏼒 􏼓􏼒 􏼓.

(11)

Terefore, F(1) � Nδ2 > 0 and F(− 1) � 4 + 2Mδ + Nδ2.
Let L � M2 − 4N. For the topological classifcation of E2, we
state the following Proposition.

Proposition 2. Suppose that d − (1 − e− aK)β< 0. Ten, a
fxed point E2(x∗, y∗) of system (4) exists and the topological
categorization listed as follows is accurate:

(i) If any of the following applies, E2 is a sink

(1) L≥ 0 and δ < (− M −
��
L

√
/N)

(2) L< 0 and δ < − (M/N)

(ii) If any of the following applies, E2 is a source

(1) L≥ 0 and δ > (− M −
��
L

√
/N)

(2) L< 0 and δ > − (M/N)

(iii) If any of the following applies, E2 is a nonhyperbolic

(1)
L≥ 0 and δ � (− M −

��
L

√
/N);δ ≠ − (2/M), − (4/M)

(2) L< 0 and δ � − (M/N)

(iv) If otherwise, E2 is a saddle

Te eigenvalues of J(E2) are λ1 � − 1 and λ2 ≠ ± 1 if
condition (iii.1) of Proposition 2 is valid and if (iii.2) is true,
two eigenvalues λ1,2 are complex having magnitude one.

Let

FB
1
E2

� (r, K, a, d, α, β, δ) ∈ R2
+: δ � (− M −

��
L

√
/N), L≥ 0, δ ≠ − (2/M), − (4/M)􏽮 􏽯, (12)

or

FB
2
E2

� (r, K, a, d, α, β, δ) ∈ R2
+: δ � (− M −

��
L

√
/N), L≥ 0, δ ≠ − (2/M), − (4/M)􏽮 􏽯. (13)

Ten, system (4) undergoes a fip bifurcation at E2 if
parameters (r, K, a, d, α, β, δ) ∈ FB1

E2
or FB2

E2
.

Also, let

NSBE2
� (r, K, a, d, α, β, δ) ∈ R2

+: δ � − (M/N), L< 0􏽮 􏽯. (14)
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Terefore, an NS bifurcation occurs at E2 in system (4) if
the parameters (r, K, a, d, α, β, δ) ∈ NSBE2

.

3. Analysis of Bifurcations: Direction
and Stability

Tis part will focus to recapitulate the conditions for the
stability and direction of fip and NS bifurcations of system
(4) around E2 by application of the bifurcation theory [38].
We take δ as a bifurcation parameter, otherwise stated.

3.1. Flip Bifurcation: Stability and Direction. Choose pa-
rameters (r, K, a, d, α, β, δ) ∈ FB1

E2
for system (4) around

E2(x∗, y∗). One can choose parameters in FB2
E2

to do the

analysis. Let δ � δF � (− M −
��
L

√
/N), then J(E2) returns

two eigenvalues λ1(δF) � − 1 and λ2(δF) � 3 + MδF. Te
condition |λ2(δF)|≠ 1 leads to the following equation:

δF ≠ −
2

M
, −

4
M

. (15)

We set 􏽥x � x − x∗, 􏽥y � y − y∗. Ten, system (4) reduces
to

􏽥x

􏽥y
􏼠 􏼡⟶ A(δ)

􏽥x

􏽥y
􏼠 􏼡 +

F1(􏽥x, 􏽥y, δ)

F2(􏽥x, 􏽥y, δ)
􏼠 􏼡, (16)

where A(δ) � J(x∗, y∗) and

F1(􏽥x, 􏽥y, δ) � −
1
6
a
2
e

− ax∗
􏽥x
2βδ − 3􏽥y + a􏽥xy

∗
( 􏼁 +

r􏽥x
3δ

6x
∗2 −

r􏽥x
2δ

2x
∗ +

1
2

ae
− ax∗

􏽥xβδ − 2􏽥y + a􏽥xy
∗

( 􏼁 + O ‖X‖
4

􏼐 􏼑,

F2(􏽥x, 􏽥y, δ) �
1
6
a
2
e

− ax∗
􏽥x
2βδ − 3􏽥y + a􏽥xy

∗
( 􏼁 −

1
2

ae
− ax∗

􏽥xβδ − 2􏽥y + a􏽥xy
∗

( 􏼁 + O ‖X‖
4

􏼐 􏼑.

(17)

It is possible to express system (16) as follows:

Xn+1 � AXn +
1
2

B Xn, Xn( 􏼁 +
1
6

C Xn, Xn, Xn( 􏼁 + O Xn

����
����
4

􏼒 􏼓, X � (􏽥x, 􏽥y)
T
, (18)

where B(x, y) �
B1(x, y)

B2(x, y)
􏼠 􏼡 and

(x, y, u) �
C1(x, y, u)

C2(x, y, u)
􏼠 􏼡 are symmetric multilinear vector

functions of x, y, u ∈ R2 and defned as follows:

B1(x, y) � 􏽘
2

j,k�1

δ2F1(ξ, δ)

δξjδξk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ξ�0
xjyk � −

rx1y1δ
x
∗ + ae

− ax∗αδ − x2y1 − x1y2 + ax1y1y
∗

( 􏼁,

B2(x, y) � 􏽘
2

j,k�1

δ2F2(ξ, δ)

δξjδξk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ξ�0
xjyk � − ae

− ax∗αδ − x2y1 − x1y2 + ax1y1y
∗

( 􏼁,

C1(x, y, u) � 􏽘

2

j,k,l�1

δ2F1(ξ, δ)

δξjδξkδξl

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ξ�0
xjykul � − a

2
e

− ax∗αδ − u2x1y1 − u1 x2y1 + x1 y2 − ay1y
∗

( 􏼁( 􏼁( 􏼁 +
ru1x1y1δ

x
∗2 ,

C2(x, y, u) � 􏽘
2

j,k,l�1

δ2F2(ξ, δ)

δξjδξkδξl

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ξ�0
xjykul � a

2
e

− ax∗δ − u2x1y1 − u1 x2y1 + x1 y2 − ay1y
∗

( 􏼁( 􏼁( 􏼁,

(19)
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and δ � δF.
Te direct calculation yields the following two eigen-

vectors p, q ∈ R2 of A for eigenvalue λ1(δF) � − 1 satisfying
A(δF)q � − q and AT(δF)p � − p.

q ∼ 2 − dδF + β 1 − e
− ax∗

􏼐 􏼑δF, − ae
− ax∗βδFy

∗
􏼐 􏼑

T
,

p ∼ 2 − dδF + β 1 − e
− ax∗

􏼐 􏼑δF, 1 − e
− ax∗

􏼐 􏼑αδF􏼐 􏼑
T

.

(20)

In R2, we employ the conventional scalar product de-
fned by 〈p, q〉 � p1q1 + p2q2, to normalize p, q such that
〈p, q〉 � 1. To do this, we set
p � cF(2 − dδF + β(1 − e− ax∗)δF, (1 − e− ax∗)αδF)T, where

cF �
1

2 − dδF + β 1 − e
− ax∗

􏼐 􏼑δF􏼐 􏼑
2

− ae
− ax∗αβδ2Fy

∗ 1 − e
− ax∗

􏼐 􏼑
. (21)

Ten, the coefcient of the normal form is

l1 δF( 􏼁 �
1
6

〈p, C(q, q, q)〉 −
1
2
〈p, B(q, A( ) − I)

− 1
B q( 􏼁, q( 􏼁􏼑〉. (22)

According to the study above, we present the following
conclusion regarding the stability and direction of the fip
bifurcation:

Theorem 1. Assume that (15) is true for the fxed point
E2(x∗, y∗).Ten, system (4) encounters a fip bifurcation at E2
if l1(δF)≠ 0 and δ fuctuate its value in a limited proximity of
FB1

E2 . Moreover, stable (resp., unstable) period-2 orbits split
of from E2 if l1(δF) is positive (resp., negative).

3.2. NS Bifurcation: Stability and Direction. Next, we take
into account system (4) at E2(x∗, y∗) with
(r, K, a, d, α, β, δ) ∈ NSBE2

. From equation (7), the complex
roots (eigenvalues) are provided by the following equation:

λ, λ � 1 +
Mδ
2
±

iδ
2

��������
4N − M

2
􏽰

. (23)

Let

δ � δNS � −
M

N
. (24)

Terefore, it follows that |λ| �
������������
1 + Mδ + Nδ2

􏽰
with

(1 + Mδ + Nδ2)|δ�δNS
� 1.Te condition of the transversality

condition yields

d|λ(δ)|

dδ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌δ�δNS

� −
M

2
≠ 0. (25)

Moreover, the nondegenerate condition p(δNS)≠ 0, 1,
obviously satisfes

M
2

N
≠ 2, 3, (26)

and we have

λk δNS( 􏼁≠ 1 for k � 1, 2, 3, 4. (27)

By direct calculation, we obtain the following two ei-
genvectors q, p ∈ C2 of A(δNS) and AT(δNS) for eigenvalues
λ(δNS) and λ(δNS) such that
A(δNS)q � λ(δNS)q, AT(δNS)p � λ(δNS)p.

q ∼ 1 − dδNS + β 1 − e
− ax∗

􏼐 􏼑δNS − λ, − ae
− ax∗βδNSy

∗
􏼐 􏼑

T
, p ∼ 1 − dδNS + β 1 − e

− ax∗
􏼐 􏼑δNS − λ, 1 − e

− ax∗
􏼐 􏼑αδNS􏼐 􏼑

T
. (28)

For 〈p, q〉 � 1, we set p � cNS(1 − dδNS+

β(1 − e− ax∗)δNS− λ, (1 − e− ax∗)αδNS)T, where cNS � 1/(1−

dδNS + β(1 − e− ax∗)δNS − λ)2 − ae− ax∗αβδ2NSy∗(1 − e− ax∗).
Now, decomposing the vector X ∈ R2 as X � wq + w q,

for δ close to δNS and w ∈ C. Obviously, w � <p, X>. As a
result, for |δ| near δNS, we derive the transformed form of
system (16) as follows:

w↦ λ(δ)w + g(w, w, δ), (29)

where λ(δ) � (1 + ϕ(δ))eiθ(δ) with ϕ(δNS) � 0 and
g(w, w, δ) is a smooth complex-valued function. Ten, we
obtain

g(w, w, δ) � 􏽘
k+l≥ 2

1
k!l!

gkl(δ)w
k
w

l
,withgkl ∈ C, k, l � 0, 1, (30)
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Te coefcients gkl are determined via multilinear
symmetric vector functions.

g20 δNS( 􏼁 � <p, B(q, q)> , g11 δNS( 􏼁 � <p, B(q, q)> , g02 δNS( 􏼁 � <p, B(q, q)> , g21 δNS( 􏼁 � <p, C(q, q, q)>. (31)

Te coefcient of the critical normal form is as follows:

l2 δNS( 􏼁 � Re
e

− iθ δNS( )g21

2
⎛⎝ ⎞⎠ − Re

1 − 2e
iθ δNS( )􏼒 􏼓e

− 2iθ δNS( )

2 1 − e
iθ δNS( )􏼒 􏼓

g20g11
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ −
1
2

g11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

−
1
4

g02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
, (32)

where eiθ(δNS) � λ(δNS). As a conclusion to the aforemen-
tioned study, we provide the following theorem on the
stability and direction of the NS bifurcation.

Theorem 2. Assume that (26) is valid and l2(δNS ≠ 0. System
(4) encounters a Neimark–Sacker bifurcation at E2(x∗, y∗) if
δ fuctuates its value in a limited vicinity of NSBE2. Moreover,
a singular invariant closed curve bifurcates from E2 that is
attracting (resp., repelling) if l2(δNS) is negative (resp., pos-
itive), and the NS bifurcation is supercritical (resp.,
subcritical).

4. Numerical Simulations

In order to verify the validity of our theoretical fndings, the
dynamics of system (4) around the fxed point E2 are in-
vestigated numerically. We consider several sets of the
parameter values listed in Table 1 for the bifurcation
analysis.

Example 1. Te numerical simulation for fip bifurcation
with respect to parameter δ.

Taking parameter values as given in case (i) with
(x0, y0) � (0.915, 5.53), system (4) experiences a fip bi-
furcation (see Figures 2(a) and 2(b)) around
E2(0.928774, 5.56516) when δ crosses its threshold value
δF ∼ 0.918401. Also, the eigenvalues are
λ1 � − 1, λ2 � 0.961275, l1(δF) � 4.22783 and
(r, K, a, d, α, β, δ) ∈ FB1

E2
. Tis validates the results in Te-

orem 1. Figure 2 reveals that there exists a period-doubling
phenomenon of periods 2, 4, 8, and 16 orbits at
δ ∼ 0.925, 1.05, 1.078, and 1.082 in the range
δ ∈ [0.75, 1.084] trigger chaotic set for δ ∈ [1.084, 1.135] and
the period 6 orbit at δ ∼ 1.113 which is in chaotic range. Te
MLEs and FD associated with Figures 2(a) and 2(b) are
plotted in Figures 2(c) and 2(d), which justify the periodic
and chaotic states that exist in system (4). Te phase portrait
diagrams are displayed in Figure 3.

Example 2. Te numerical simulation for NS bifurcation
with respect to parameter δ

By taking parameters as given in case (ii) with (x0, y0) �

(0.253, 0.683) and after calculation, we observe that system
(4) encounters a NS bifurcation at E2(0.256229, 0.689312)

when δ crosses its threshold value through δNS ∼ 0.257801.
Te eigenvalues are λ, λ � 0.992705 ± 0.120567i,
d|λ(δ)|/dδ|δ�δNS

� 0.0282961, and M2/N � 0.0145895. Also,
we have g20 � − 0.00317817 − 0.0334566i, g11 � 0.0352861 +

0.00423371i, g02 � − 0.0599838 + 0.0318261i, g21 �

− 0.0140495 + 0.011453i, l2(δNS) � − 0.00305513< 0 and
(r, K, a, d, α, β, δ) ∈ NSBE2

. Te correctness of Teorem 2 is
ascertained. Te bifurcation diagrams are depicted in
Figures 4(a) and 4(b), which illustrate that there exists an
attracting invariant closed cycle for δ > δNS and as δ in-
creases, the disappearance of the closed curve occurs sud-
denly through periods 27, 80, 53, 26, and 52 orbits leading to
chaos in system (4). Te MLEs and FD connected to
Figures 4(a) and 4(b) are disposed of in Figures 4(c) and
4(d), which illustrates the presence of periodic orbits and
chaos as parameter δ rises. Te phase portraits of system (4)
associated with Figures 4(a) and 4(b) are plotted in Figure 5
illustrating the act of the smooth invariant curve and how it
bifurcates from the stable fxed point and increases its radius.
System (4) possesses a sub-NS bifurcation and a fip bi-
furcation with a rise in the δ value.

Example 3. Te numerical simulation for the NS bifurcation
of system (4) with varying parameter β

Fixing δ � 0.785 with parameters as given in case (ii) and
considering β as the bifurcation parameter, we discover that
system (4) experiences a NS bifurcation at
E2(0.491437, 0.664528) when β crosses its threshold value
through βNS ∼ 0.502393. Figure 6 depicts the bifurcation
diagrams, MLEs, and FD, respectively, which illustrate that
an attracting invariant closed cycle appears for β> βNS and
on the route to chaos, period 26 and period 52 orbits (at
β ∼ 0.618and0.644) exist (see Figure 7).

Example 4. Dynamics of system (4) with respect to two
control parameters

When two additional parameters go over their critical
thresholds, the dynamics of system (4) might become more
complex. Te plots of the 2D projection of 3D MLEs for two
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parameters are shown in Figure 8. Tis graphic serves as a
tool to see how the system dynamics alter qualitatively as
parameter values rise. Finding control parameter values for
which system (4) dynamics are nonchaotic, periodic, or
chaotic is straightforward. We vary two parameters in a
certain range and fx the rest parameters as in case (ii).
Terefore, we frst plot (Figure 8(a)) the 2D projection of 3D
MLEs for (δ, β) ∈ [0.2, 0.785] × [0.45, 0.65]. Figure 8(b) is
the plot in (δ, a) plane with (δ, a) ∈ [0.2, 0.785] × [3.0, 4.8].
Figure 8(c) is the plot in (β, a) plane with
(β, a) ∈ [0.45, 0.65] × [4.0, 4.8]. From these graphics, bi-
furcation parameter values may now be easily identifed to
observe how does the dynamics of system (4) switch from
static to periodic or chaotic and we observe the following:

(i) Te dynamics of system (4) changes from being
nonperiodic to having an attractive fxed point or
stable periodic cycle when the control parameters δ
and β values grow

(ii) As control parameter values δ and a rise, the dy-
namics of system (4) shift from nonchaotic to
chaotic states

(iii) Te system dynamics remarkably shift from static to
chaotic when the values of the control parameters β
and a grow

For example, the nonchaotic dynamics exist for
δ � 0.22, a � 4.6 and the chaotic dynamics exist for
δ � 0.785, a � 4.6 (see Figure 5), which are both consistent
with the signs of the MLEs shown in Figure 8(c).

4.1. Fractal Dimension of System (4). Strange attractors in a
system are characterized by their fractal dimension mea-
surement. Te fractal dimension (FD) [40], as described by
utilizing Lyapunov exponents, is given by the following
equation:

Table 1: Parameter values.

Cases Varying parameter Fixed parameters Dynamics of system (4)
(i) 0.75≤ δ ≤ 1.135 r � 2.5, K � 1.5, a � 0.55, α � 0.45, β � 0.25, d � 0.1 Flip bifurcation
(ii) 0.1≤ δ ≤ 0.785 r � 0.5, K � 1.65, a � 4.6, α � 0.5, β � 0.65, d � 0.45 NS bifurcation
(iii) 0.45≤ β≤ 0.65 r � 0.5, K � 1.65, a � 4.6, α � 0.5, d � 0.45, δ � 0.785 NS bifurcation
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Figure 2: Flip bifurcation diagrams of system (4) for δ: (a) in prey, (b) in predator, (c) MLEs, and (d) FD.
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Figure 3: Phase portraits (in xy-plane) for diferent values of δ associated with Figures 2(a) and 2(b).
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dL � j +
􏽐

j

i�1 hi

hj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (33)

where Lyapunov exponents h1, h2, . . . , hn satisfy 􏽐
j

i�1 hi ≥ 0
and 􏽐

j+1
i�1 hi < 0.

For system (4), the FD takes the form

dL � 1 +
h1

h2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, h1 > 0> h2, h1 + h2 < 0. (34)

Te FDs of system (4) are computed numerically with
parameter values as in Table 1 and are plotted in Figures 2, 4,
and 6. Te strange attractors of system (4) (see Figure 5) and

its associated FD (see Figure 4(d)) demonstrate that the rise
in parameter δ values results in chaotic dynamics for the
predator-prey system (4).

4.2. Power Spectral Density (PSD) and Recurrence Plot (RP) of
the System (4). To quantify the irregular behavior of system
(4), the numerical diagnostics, power spectral density, and
recurrence plot [41] are also generated. PSD, which depicts
how a signal’s strength varies with frequency. A recurrence
plot (RP) in chaos theory is a graph that displays the iter-
ations during which phase space trajectories reach nearly the
same region of the phase space for a given instant in time.
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Figure 4: NS bifurcation diagrams of system (4) for δ: (a) in prey, (b) local amplifcation in prey, (c) MLEs, and (d) FD.
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Figure 5: Phase portraits (in xy-plane) for diferent values of δ connected to Figures 4(a) and 4(b).
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Example 5. PSD and RP of system (4)
For the values of the parameter in case (ii), the PSD and

RP of the prey population are displayed in Figure 9. Tis
fgure’s irregular wide peaks are an indication of chaos and

randomness. Te chaotic character of the system is dem-
onstrated by the random points on the time plane, which
guarantee that the almost identical iterative values occur
without any rhythm.
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Figure 6: NS bifurcation diagrams of system (4) for β: (a) in prey, (b) local amplifcation in prey, (c) MLEs, and (d) FD (x0, y0) �

(0.2462, 0.6793).
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5. Controlling Chaos

In order to regulate the chaos that exists in system (4), the
technique of state feedback control [39] is applied. System
(4) may be made into a controlled version by introducing a
controlled force un.

xn+1 � xn + δ rxn ln
K

xn

􏼠 􏼡 − α 1 − e
− axn( 􏼁yn􏼢 􏼣 + un

yn+1 � yn + δ β 1 − e
− axn( 􏼁yn − dyn􏼂 􏼃,

un � − k1 xn − x
∗

( 􏼁 − k2 yn − y
∗

( 􏼁,

(35)

where k1 and k2 stand for the feedback gains and (x∗, y∗)

stands the fxed point of system (4). Te controlled sys-
tem’s Jacobian matrix Jc is provided by the following
equation:

Jc x
∗
, y
∗

( 􏼁 �
j11 − k1 j12 − k2

j21 j22
􏼠 􏼡, (36)

where jpq, p, q � 1, 2 given in (6), are evaluated at (x∗, y∗).
Te characteristic equation of (36) is

λ2 − trJc( 􏼁λ + detJc � 0, (37)

where trJc � j11 + j22 − k1 and detJc � j22(j11−

k1) − j21(j12 − k2). Let λ1 and λ2 be the solutions of (37).
Ten,

λ1 + λ2 � j11 + j22 − k1, (38)

and

λ1λ2 � j22 j11 − k1( 􏼁 − j21 j12 − k2( 􏼁. (39)

Solving the equations λ1 � ± 1 and λ1λ2 � 1 yields the
marginal stability lines. Tese circumstances demonstrate
that |λ1,2|< 1. If we assume that λ1λ2 � 1, then from (39) we
obtain

l1: j22k1 − j21k2 � j11j22 − j12j21 − 1. (40)

Assume that λ1 � 1, then from (38) and (39) we get

l2: 1 − j22( 􏼁k1 + j21k2 � j11 + j22 − 1 − j11j22 + j12a21. (41)

Next, for λ1 � − 1, equations (38) and (39) yield
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l3: 1 + j22( 􏼁k1 − j21k2 � j11 + j22 + 1 + j11j22 − j12j21.

(42)

Terefore, the triangular area enclosed by the lines
l1, l2, and l3 (see Figure 10(a)) in the (k1, k2)-plane main-
tains eigenvalues satisfy |λ1,2|< 1.

We fx parameter δ � 0.785 and rest as in Example 2 and
let (x0, y0) � (0.2462, 0.6793). We choose the feedback
gains as k1 � 1.0andk2 � 1.7 from the stable region (trian-
gular area) in (k1, k2)-plane plotted in Figure 10(a). Te
chaotic trajectory is then demonstrated statistically to be
stabilized at the fxed point (0.2562, 0.6893), see
Figure 10(b).

6. Discussion

By using a functional response of the Ivlev-type and a prey
growth rate of the Gompertz type, we analyze the dynamics
of a discrete predator-prey system.With the aid of the center
manifold theory, we deduce the existence conditions and
directions of fip and Neimark–Sacker bifurcations close to
the interior fxed point of system (4) when the bifurcation
parameter exceeds a certain threshold value. By presenting
numerical simulations that demonstrate unpredictable be-
haviors of the system via periodic orbits with periods of 2, 4,
8, and 16 through fip bifurcation and periodic orbits with
periods of 26, 27, 52, 53, and 80 through NS bifurcations, as
well as quasiperiodic and trigger routes to chaos, we cor-
roborate our analytical conclusions. Tese show that when
the dynamics of the prey are chaotic, the system is unstable
and the predator either becomes dies out or reaches a stable
fxed point. Te existence of instability in the system is
further supported by numerical estimations of the maximal
Lyapunov exponents and the fractal dimension. Addition-
ally, 2D parametric basins of attraction are shown to
demonstrate how system dynamics change qualitatively as
parameter values increase. Finally, the feedback control
approach has been used to govern the system’s chaotic
trajectory. Te system’s many parameter bifurcations

remain a difcult challenge to solve, nevertheless. As we
predict, more studies on this subject should produce more
analytical fndings.
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