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Tis paper considers a repairable M/M/1 retrial queueing model with setup times. Once the system is empty, the server will be
closed down to reduce operating costs. And the system will be activated only when a new customer arrives. Te customer who
activates the server will enter the retrial orbit waiting to reapply for service. Te server may break down during the busy period.
First, the steady-state probability of the model is obtained by using the probability generating function method. And we derive
performance measures of the system such as the queue length of the orbit, the numerical examples are given to show the sensitivity
of the performance measures. Second, the cost function is established to fnd the minimum cost of the system, and we study the
efects of some parameters on the cost by numerical examples. Finally, from the perspective of the customer and social planner, we
construct the individual utility function and the social welfare function in the almost and fully unobservable cases, and then the
optimal strategy of the customers is analyzed.

1. Introduction

When customers arrive and fnd the server busy, they will
join the retrial orbit and wait to reapply for service, which is
the feature of the retrial queueing systems. Tese queueing
models are often used in computer systems and telecom-
munication networks. General models, methods, results,
examples, and applications of retrial queues can be found in
Artalejo and Gómez-Corral [1], Tian et al. [2]. In recent
years, Phung-Duc [3] used retrial queues to model cloud
computing systems and gave the steady-state probabilities of
the systems.

Based on consideration of the reality, the server cannot
work immediately after turning on and needs a period for
bufering, which is called the setup time. Levy and Kleinrock
[4] frst introduced setup times to the M/M/1 queueing
system. Te server will be closed down when there are no
customers in the system. When a new customer arrives, the
server will be activated and cannot serve the customer
during the setup period, so the customer has to wait in line.
Due to the importance and relevance of introducing setup
times, many scholars have focused on this area, see Bischof

[5], Gandhi et al. [6]. Recently, Phung-Duc [7] combined
setup times with retrial queues by assuming that both the
service time and setup times are distributed with a general
distribution function; they got the stationary distribution of
the queue length. Chang andWang [8] studied an unreliable
M/M/1/1 retrial queue with setup times. Two models were
considered according to whether the server can be perfectly
repaired or not. In both models, they got the queue length of
the system. Burnetas and Economou [9] frst analyzed the
queueing system with setup times from an economic per-
spective; they obtained equilibrium strategies of the cus-
tomers in the observable and unobservable cases. Sun et al.
[10] studied the Markovian queueing systems with three
types of setup/closedown policies in the unobservable case.
Tey derived the equilibrium and socially optimal strategies
of customers as well as the maximal social welfare. Ten,
they made pricing controls to encourage customers to take
the optimal strategy and maximize the profts of the server.
Zhang andWang [11] discussed anM/G/1 retrial queue with
reserved idle time and setup times. Te optimal pricing
strategy was considered from the perspective of the social
planner and the server, respectively, where both the queue
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length and the state of the server are unknown. Recent
results on the queueing systems with setup times can be
found in Yutaka et al. [12]. Wang et al. [13] studied anM/M/
1 retrial queue with setup times and considered the social
optimization problem from the perspective of service pro-
viders and social managers. Zhou et al. [14] analyzed the
customers’ strategy behavior and social optimization
problems in a retrial queue with setup time and N-policy.

In real life, the server may not work normally due to
some reasons during the process of system operation.
Towsley and Tripathi [15] analyzed queueing system with
breakdown and repairs. Li et al. [16] considered the equi-
librium strategies of customers in queueing system with
partial breakdowns and repairs in the observable and un-
observable cases. Falin [17] studied the M/G/1 retrial queue
with an unreliable server assuming that the repair time
follows a general distribution, and derived performance
measures for this queueing system. Kalita and Choudhury
[18] considered a repairable M/G/1 queueing model with
setup times and N-policy. Te steady-state queue length of
the model was obtained by using the supplementary vari-
ables method. Wang and Zhang [19] studied the Markovian
queue with breakdowns and delayed repairs. Tey consid-
ered the equilibrium balking strategies of the customers in
the fully observable and partially observable cases. Zhang
andWang [20] studied the unreliable retrial queue which the
server may break down at diferent rates in the busy and idle
states. Tey compared and analyzed the benefts of the
service provider and social welfare in the observable and
unobservable cases. Zhang et al. [21] studied the retrial
queue with breakdowns and repairs in which arriving
customers that fnd the server broken will not enter the
system. Tey considered the equilibrium strategy and social
benefts of customers in the partially observable and fully
observable cases.

Based on the abovementioned literature, we have some
new ideas about queueing models. Inspired by literature
[13, 21], we consider both setup times and an unreliable
server in the retrial queueing system. Diferent from liter-
ature [21], in the proposed paper, even if a server failure is
found, the arriving customer may still enter the system.
Terefore, we need to consider the customer’s joining
probability under the condition of server failure of almost
unobservable and fully unobservable cases. According to this
situation, we consider a repairable retrial queueing model
with setup times, the performance measures of the system
are obtained by using the generating function method. Next,
the efect of the system parameters on the cost function is
analyzed by constructing the cost function. Finally, we
consider the customers’ equilibrium strategy and the social
optimization problem. Te repairable retrial queueing
model with setup times can be applied to wireless com-
munication networks. Te data packets in the network can
be regarded as customers in the queueing system, and the
wireless network node can be considered as a server, which is
responsible for the transmission of the arriving data streams.
When a packet arrives and fnds that the node cannot deliver
for it, it enters a retrial orbit to wait to reapply for delivery
again. When a packet is during the process of transmission,

the channel may be damaged and unusable due to some
factors, such as signal interruption and line damage. We
assume that the breakdown only occurs when the node is
working. In information and communication systems, en-
ergy saving is a very important issue because the devices
consume excessive energy when they are turned on. If there
are no packets to be transmitted in the system, the network
node will close down to reduce energy consumption. In the
of state, only the arrival of new packets can activate the
network node to turn on. According to the signaling pro-
tocol in ATM networks, the queueing system on the
transformed virtual channel (SVC) often has a setup period,
which is equivalent to the time used to establish a new SVC
by relying on the signaling protocol. Terefore, the queueing
model considered in this paper is closer to the complex
wireless networks in real life, and it is of great importance to
study this queueing model.

Te remainder of the paper is organized as follows. We
frst describe the queueing system in Section 2. In Section 3,
the steady-state performance analysis of the system was
obtained. In Section 4, numerical experiments are explored
to illustrate the efects of system parameters on performance
measures and cost function. In Section 5, we consider in-
dividual equilibrium strategies and social benefts in the
almost and fully unobservable cases. Finally, conclusions are
given in Section 6.

2. Model Descriptions

Te customers arrive according to the Poisson process with rate
λ. Customers entering the system receive the service imme-
diately when they fnd the server idle; otherwise, they enter the
retrial orbit and wait for retrying. Te retrial time is expo-
nentially distributed with rate θ.Te service time of the server is
exponentially distributed with rate μ. When there are no
customers in the system, the server will be closed andwill not be
restarted until a new customer arrives. Te closed server needs
a setup time to turn on, where the time is exponentially dis-
tributed with rate α. Te customer who activates the server will
immediately enter the retrial orbit and wait to apply for the
service. Te server is not completely reliable and may break
down during normal operation. When the server breaks down,
the server is repaired immediately. Te process of server
breakdown is a Poisson process with rate ξ, and the repair time
is exponentially distributed with rate η. Finally, the interarrival
times, setup times, service times, breakdown times, repair times,
and retrial times are assumed to be mutually independent.

Let N(t) be the number of customers in the retrial orbit
at the time t and I(t) represents the state of the server at the
time t as defned in the following:

I(t) �

0, if   the  server  is  idle,
1, if   the  server  is busy,

2, if   the  server  is  in  setup  times,

3, if   the  server  is under  repair.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

It is easy to know that X(t) � (N(t), I(t)); t≥ 0{ } forms
a Markov chain with the state space.
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S � (n, i); n≥ 0, i � 0, 1, 2, 3{ }. (2)

In this paper, we assume that the customersmust join the
system during the idle period. While in the other state
i(i � 1, 2, 3), the customers join the system with probability
qi(i � 1, 2, 3). Ten the efective arrival rate of customers is
λi � λqi(i � 1, 2, 3) when the system is in state i(i � 1, 2, 3),
which indicates that λi ≤ λ. Te transition rate diagram of the
model is shown in Figure 1.

3. Steady-State Performance Analysis

3.1. Steady-State Probability. Assuming that the system is
stable, let pni be the steady-state probability that the system is
in state (n, i).

pni � lim
t⟶∞

P N(t) � n, I(t) � i{ }, (n, i) ∈ S. (3)

Te following balance equations are obtained

λp00 � μp01, (4)

(λ + θ)pn0 � αpn2 + μpn1, n≥ 1, (5)

λ1 + μ + ξ( 􏼁p01 � θp10 + ηp03, (6)

λ1 + μ + ξ( 􏼁pn1 � λpn0 + λ1pn− 1,1 + θpn+1,0 + ηpn3, n≥ 1,

(7)

λ2 + α( 􏼁p12 � λp00, (8)

λ2 + α( 􏼁pn2 � λ2pn− 1,2, n≥ 2, (9)

λ3 + η( 􏼁p03 � ξp01, (10)

λ3 + η( 􏼁pn3 � ξpn1 + λ3pn− 1,3, n≥ 1. (11)

Te generating function method is used to solve the bal-
ance equation. Defne the partial generating function as follows:

P0(z) � 􏽘
∞

n�0
pn0z

n
,

P1(z) � 􏽘
∞

n�0
pn1z

n
,

P2(z) � 􏽘
∞

n�1
pn2z

n
,

P3(z) � 􏽘
∞

n�0
pn3z

n
.

(12)

Theorem 1. In the repairable M/M/1 retrial queueing system
with setup times, the probabilities that the server is in diferent
states are as follows:

Te probability that the server is idle

p0 � P0(1) �
(λ + θ) − α λ1η + λ3ξ( 􏼁 + λ2μη + αμη􏼂 􏼃 − λ2μθη

α − (λ + θ) λ1η + λ3ξ( 􏼁 + μθη􏼂 􏼃
p00.

(13)

Te probability that the server is busy

p1 � P1(1) �
λη(λ + θ) λ2 + α( 􏼁

α − (λ + θ) λ1η + λ3ξ( 􏼁 + μθη􏼂 􏼃
p00. (14)

Te probability that the server is in setup times

p2 � P2(1) �
λ
α

p00. (15)

Te probability that the server is under repair

p3 � P3(1) �
λξ(λ + θ) λ2 + α( 􏼁

α − (λ + θ) λ1η + λ3ξ( 􏼁 + μθη􏼂 􏼃
p00, (16)

where

p00 �
α − (λ + θ) λ1η + λ3ξ( 􏼁 + μθη􏼂 􏼃

(λ + θ) − λ1η + λ3ξ( 􏼁(λ + α) + λ λ2 + α( 􏼁(η + ξ) + αμη􏼂 􏼃 + λμη λ2 + θ( 􏼁
. (17)

Proof. Multiplying (4) and (5) by zn respectively, and
summing up over all n, we get the following equation:

(λ + θ)P0(z) � αP2(z) + μP1(z) + θp00. (18)

Taking (6)–(11) in the same way as above, we obtain

λ1(1 − z) + μ + ξ􏼂 􏼃P1(z) � λ +
θ
z

􏼠 􏼡 P0(z) − p00􏼂 􏼃 + ηP3(z),

(19)

λ2(1 − z) + α􏼂 􏼃P2(z) � λp00z, (20)

λ3(1 − z) + α􏼂 􏼃P3(z) � ξP1(z). (21)

Trough a series of algebraic operations, we use p00 to
express Pi(z)(i � 0, 1, 2, 3).

P0(z) �
αP2(z)

(λ + θ) − μF2(z)/F1(z)􏼂 􏼃
+

θ − μF2(z)/F1(z)􏼂 􏼃

(λ + θ) − μF2(z)/F1(z)􏼂 􏼃
p00,

(22)

P1(z) �
F2(z) P0(z) − p00􏼂 􏼃

F1(z)
, (23)

P2(z) �
λp00z

λ2(1 − z) + α􏼂 􏼃
, (24)
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P3(z) �
ξP1(z)

λ3(1 − z) + α􏼂 􏼃
, (25)

where

F1(z) � λ1(1 − z) + μ + ξ −
ξη

λ3(1 − z) + η
, (26)

F2(z) � λ +
θ
z

. (27)

Taking (22) into (25) yields

P0(z) �
λαzF1(z) + θ λ2(1 − z) + α􏼂 􏼃F1(z) − μF2(z) λ2(1 − z) + α􏼂 􏼃

λ2(1 − z) + α􏼂 􏼃 (λ + θ)F1(z) − μF2(z)􏼂 􏼃
. (28)

Taking in z � 1, we can obtain P2(1). Notice that when z

tends to 1, P0(z), P1(z), and P3(z) are all indeterminate
forms whose numerators and denominators converge to 0,
so we use L’Hospital rule to solve them and we have
(13)–(16). Taking them into the normalization condition,
P0(1) + P1(1) + P2(1) + P3(1) � 1, we derive p00 as given
by (17).

From (17), we can obtain that the system is stable if
((λ + θ)(λ1η + λ3ξ))/(μθη) < 1. □

3.2. Performance Measures. Based on the above analysis, we
can get some performance measures of the system.

(1) Te mean queue length of the orbit in a busy period
is given by

P1
′
(1) �

− λθ λ2 + α( 􏼁

αm
p00 −

λ(λ + θ) λ2 + α( 􏼁

α2m2 × − 2λ2m − α λ3
2ξ(λ + θ)/η2 + μθ􏽨 􏽩􏽮 􏽯p00, (29)

where

m � [− α(λ + θ) + μθ]. (30)

(2) Te mean queue length of the orbit in an idle period
is expressed as

P0
′
(1) �

λ λ2 + α( 􏼁

α(λ + θ)
p00 +

(λ + θ)

μ
P1
′
(1). (31)

(3) Te mean queue length of the orbit in a setup period
is determined as

P2
′
(1) �

λ λ2 + α( 􏼁

α2
p00. (32)

(4) Te mean queue length of the orbit in a breakdown
period is shown as

P3
′
(1) �

ξ
η

P1
′
(1) +

λ3ξ
η2

P1(1). (33)

(5) Te mean queue length of the orbit is derived as
E(N) � P0

′
(1) + P1

′
(1) + P2

′
(1) + P3

′
(1). (34)

(6) Te mean number of customers in the system equals
to the mean queue length of the orbit plus the
probability that there is a customer being served. So

1,2 2,2

1,0

1,1

1,3

2,0

2,1

2,3

0,0

0,1

0,3

...

...

...
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n,0

n,1

n,3

...

...

...

...

...

λ

λ2 λ2 λ2 λ2

λ1 λ1 λ1 λ1 λ1

λ3 λ3 λ3 λ3 λ3

λ λ λμμ μ μ

α α α

θ θ θ θ

ξ ξ ξ ξη η η η

Figure 1: Te transition rate diagram of the model.
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the mean number of customers in the system can be
written as

E(L) � P0
′
(1) + P1

′
(1) + P2

′
(1) + P3

′
(1) + P1(1) + P3(1) � E(N) + p1 + p3. (35)

(7) Te expected waiting time in the orbit is obtained as

E(W) �
E(N)

λret

, (36)

where λret is the total arrival rate in the retrial orbit,
and

λret � λ1p1 + λ2p2 + λ3p3. (37)

(8) Te steady-state availability of the system is com-
puted by

A � P0(1) + P1(1) + P2(1)

�
(λ + θ) − α λ1η + λ3ξ( 􏼁 + λ2μη + αμη􏼂 􏼃

α − (λ + θ) λ1η + λ3ξ( 􏼁 + μθη􏼂 􏼃
p00 +

λη(λ + θ) λ2 + α( 􏼁 − λ2μθη
α − (λ + θ) λ1η + λ3ξ( 􏼁 + μθη􏼂 􏼃

p00 +
λ
α

p00.

(38)

(9) Te balking rate of the customers is calculated as

B � λ − λ1( 􏼁P1(1) + λ − λ2( 􏼁P2(1) + λ − λ3( 􏼁P3(1).

(39)

4. Numerical Analysis

In this section, we give some numerical results to illustrate
graphically the efects of diferent parameters on the per-
formance measures and cost function of the system. In all
numerical discussions, the system parameter values are
chosen to satisfy the stability conditions.

4.1. Numerical Analysis of Performance Measures. From
Figure 2, we can see the relationship between the probabilities of
the server in diferent states and the arrival rate λ. As expected,
when λ increases, the server gets busier and breakdown only
occurs during the busy period. So the probabilities of idle period
and setup period decrease, and the probabilities of busy period
and breakdown period increase.

Figure 3 shows that the balking rate of the customers’
decreases as α increases, and increases as ξ increases. Te
shortened setup time makes the server get into a working state
quickly which attracts more customers to join the system.With
the increase of ξ, it is intuitive that the congestion in

a breakdown state reduces the willingness of customers to enter
the system.

Te changing trend of the mean number of customers in
the system with respect to λ and θ is displayed in Figure 4. As
λ increases, many customers arrive in the system, which
leads to an increase in E(L). Te decrease of E(L) is evident
with the increase of the retrial rate θ, the reason is that
customers in the retrial orbit can apply for service fast
resulting in a small queue length of the system.

From Figure 5, the mean queue length of the orbit
decreases as μ increases, and increases as α decreases.
Customers in the system are served as quickly as possible,
which leads to a reduction in the queue length of the orbit.
Decreasing α leads to an increase in setup times, and cus-
tomers pile up in the system so that the queue length of the
orbit increases.

Figure 6 depicts that the expected waiting time decreases
with respect to η and increases with respect to ξ. Tis is due to
the fact that the server can be repaired in a short time and
therefore the server returns to work quickly. Te availability of
the server decreases as ξ increases, hence, customers need to
wait a long time to receive service.

4.2. Cost Analysis. In this subsection, we seek the minimum
cost by establishing the operating cost function. Te cost
parameters are as follows.

c1 � Holding  cost per unit  time per  customer present  in  the  retrial orbit,
c2 � Cost per unit  time of  providing a  service  rate μ,

c3 � Cost per unit  time of  providing a  retrial  rate θ,

c4 � Cost per unit  time of  providing a  setup  rate α,

c5 � Cost per unit  time of  providing a  repair  rate η.

(40)
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Terefore, the operating cost function is given by

F � c1E(N) + c2μ + c3θ + c4α + c5η. (41)

We observe that the operating cost increases with ξ in
Figure 7. It is very intuitive that the cost of the server in-
creases due to more frequent breakdowns. Te cost shows
a decreasing and then increasing trend with respect to μ. It
can be calculated that the cost has a minimum at μ � 5.3.

From Figure 8, we notice that when the setup rate α in-
creases, the cost function frst decreases and then increases.
Te server sets up quickly which reduces the waiting cost of
the customers and increases the setup cost. Initially, the
reduction of the waiting cost is more than the increase of
setup cost which leads to the decline of the system cost.
However, when α increases to a certain value, the increase of
setup cost are dominant, hence, the system cost increases. In
this case, the minimum cost is obtained at μ � 5.2, α � 1.6.

5. Individual Equilibrium and
Social Optimization

In this section, we analyze individual equilibrium strategy
and socially optimal strategy by establishing individual
utility function and social welfare function. We assume that
a customer receives a reward of R units for completing
service. Tere is a waiting cost of C units per time unit that
the customer remains in the system. To ensure that arriving
customer who fnds the system idle always choose to enter,
we assume that R> ((η + ξ)C)/(μη). Next, we discuss the
almost and fully unobservable cases separately.

5.1. Almost Unobservable Case. In this subsection, we ana-
lyze equilibrium strategic behavior of customers in diferent
states and use numerical examples to illustrate the efect of
system parameters on the joining probabilities of customers.

We denote Ti(j), i � 0, 1, 2, 3 as the mean waiting times
of the marked customer, given that upon arrival he becomes
the jth customer in the orbit and the server is at state
i(i � 0, 1, 2, 3). Ten, we obtain Ti(j) in the following
analysis.

Theorem  . In the repairable M/M/1 retrial queueing system
with setup times, the mean waiting times of the jth customer
in the orbit at diferent states are respectively given by

T0(j) � j
1
θ

+
λ + θ
μθ

+
(λ + θ)ξ
μθη

􏼠 􏼡, (42)

T1(j) � j
1
θ

+
λ + θ
μθ

+
(λ + θ)ξ
μθη

􏼠 􏼡 +
η + ξ
μη

, (43)

T2(j) � j
1
θ

+
λ + θ
μθ

+
(λ + θ)ξ
μθη

􏼠 􏼡 +
1
α

, (44)

T3(j) � j
1
θ

+
λ + θ
μθ

+
(λ + θ)ξ
μθη

􏼠 􏼡 +
η + ξ
μη

+
1
η

. (45)

Proof. By analyzing the queueing model, we can obtain the
following equation.
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T1(0) �
η + ξ
μη

, (46)

T0(j) �
1

λ + θ
+

λ
λ + θ

T1(j) +
θ

λ + θ
T1(j − 1), j≥ 1, (47)

T1(j) �
1

λ1 + μ + ξ
+

λ1
λ1 + μ + ξ

T1(j) +
μ

λ1 + μ + ξ
T0(j) +

ξ
λ1 + μ + ξ

T3(j), j≥ 1, (48)

T2(j) �
1

λ2 + α
+

λ2
λ2 + α

T2(j) +
α

λ2 + α
T0(j), j≥ 1, (49)

T3(j) �
1

λ3 + η
+

λ3
λ3 + η

T3(j) +
η

λ3 + η
T1(j), j≥ 0. (50)
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From (50), we obtain that

T3(j) � T1(j) +
1
η

. (51)

From (48) and (50), we can get

T1(j) � T1(j − 1) +
1
θ

+
λ + θ
μθ

+
(λ + θ)ξ
μθη

, j≥ 1, (52)

T1(j) � T1(0) + j
1
θ

+
λ + θ
μθ

+
(λ + θ)ξ
μθη

􏼠 􏼡, j≥ 0. (53)

From (46) and (53), we get (43). From (47), (52), and
(43), we get (42). From, (42) and (49), (44) is obtained. From
(43) and (51), (45) is obtained.

Te situation is diferent for a nonmarked new arriving
customer, but we can obtain the mean waiting times by
Teorem 2. Denote Wi(q1, q2, q3), i � 0, 1, 2, 3 as the mean
waiting times of a new arriving customer who fnds
I(t) � 0, 1, 2, 3. We come to the following conclusion. □

Theorem 3. In the repairable M/M/1 retrial queueing system
with setup times, the mean waiting times when a new cus-
tomer fnds the server in diferent states are as follows:

W0 q1, q2, q3( 􏼁 �
η + ξ
μη

, (54)

W1 q1, q2, q3( 􏼁 � a
λ2
α

+
λ

λ + θ
+

μθη2 +(λ + θ)λ23ξ
μθη2 − (λ + θ) λ1η

2
+ λ3ξη􏼐 􏼑

⎛⎝ ⎞⎠ +
(a + 1)(η + ξ)

μη
, (55)

W2 q1, q2, q3( 􏼁 �
a λ2 + α( 􏼁 + 1

α
+ a, (56)

W3 q1, q2, q3( 􏼁 � a
λ2
α

+
λ

λ + θ
+

μθη2 +(λ + θ)λ23ξ
μθη2 − (λ + θ) λ1η

2
+ λ3ξη􏼐 􏼑

+
λ3
η

⎛⎝ ⎞⎠ +
(a + 1)(η + ξ) + μ

μη
, (57)

where

a �
1
θ

+
λ + θ
μθ

+
(λ + θ)ξ
μθη

. (58)

Proof. First, the arriving customer who fnds the server idle
will directly accept the service. Tere are two possible cases,

i.e., whether the server breaks down during the working
period. At this time W0(q1, q2, q3) � (1/μ)+ (1/μ) × (ξ/η) �

(η + ξ)/(μη). By using PASTA property, the probability that
there are k customers in the system when the server is busy is
p(k | 1) � (p(k, 1)/􏽐∞k�1p(k, 1)) � (p(k, 1)/p1), according
to the total probability formula, we derive that

W1 q1, q2, q3( 􏼁 � 􏽘
∞

k�0
T1(k + 1)p(k, 1) �

􏽐
∞
k�0T1(k + 1)p(k, 1)

p1

�
􏽐
∞
k�0kap(k, 1)

p1
+

􏽐
∞
k�0(a +(η + ξ/μη))p(k, 1)

p1

�
aP
′
(1)

p1
+ a +

η + ξ
μη

.

(59)

Ten, we can get (55). Following the same way we can
obtain (56) and (57).

Next, we discuss individual equilibrium strategies for the
arriving customer who fnds the server in diferent states.
Te individual utility functions in diferent states are as
follows:

Si q1, q2, q3( 􏼁 � R − CWi q1, q2, q3( 􏼁, i � 1, 2, 3. (60)
□

Theorem 4. In the repairable M/M/1 retrial queueing system
with setup times, Wi(q1, q2, q3) increases with qi(i � 1, 2, 3),
qi ∈ [0, 1].
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Proof. Te derivative of the waiting time Wi(q1, q2, q3) with
respect to qi(i � 1, 2, 3) are as follows:

zW1 q1, q2, q3( 􏼁

zq1
�

μθη2 +(λ + θ)λ23ξ􏼐 􏼑(λ + θ)λη2a

μθη2 − (λ + θ) λ1η
2

+ λ3ξη􏼐 􏼑􏼐 􏼑
2 > 0,

zW1 q1, q2, q3( 􏼁

zq2
�
λa

α
> 0,

zW1 q1, q2, q3( 􏼁

zq3
�
2λ2q3ξ(λ + θ) μθη2 − (λ + θ) λ1η

2
+ λ3ξη􏼐 􏼑􏼐 􏼑a + μθη2 +(λ + θ)λ23ξ􏼐 􏼑(λ + θ)λξηa

μθη2 − (λ + θ) λ1η
2

+ λ3ξη􏼐 􏼑􏼐 􏼑
2 > 0.

(61)

It can be concluded that W1(q1, q2, q3) is strictly in-
creasing for qi. Similarly, the monotonicity of W2(q1, q2, q3)

and W3(q1, q2, q3) can be proved. □

Theorem 5. In the repairable M/M/1 retrial queueing system
with setup times, the individual equilibrium strategy
(qe

1, qe
2, qe

3) of the customer is shown in the following:

(1) (R/C)≤ 2a + (1/α)

q
e
1, q

e
2, q

e
3( 􏼁 �

(0, 0, 0),
R

C
≤

λa

λ + θ
+ a +

η + ξ
μη

,

q
∗
1 , 0, 0( 􏼁,

λa

λ + θ
+ a +

η + ξ
μη
<

R

C
<

μθa

μθ − λ(λ + θ)
+ b,

(1, 0, 0),
μθa

μθ − λ(λ + θ)
+ b≤

R

C
<

μθa

μθ − λ(λ + θ)
+ b +

1
η

,

1, 0, q
∗
3( 􏼁,

μθa

μθ − λ(λ + θ)
+ b +

1
η
≤

R

C
<

μθη2a +(λ + θ)λ2ξa

μθη2 − (λ + θ) λη2 + λξη􏼐 􏼑
+ b +

λa + 1
η

,

(1, 0, 1),
R

C
≥

μθη2a +(λ + θ)λ2ξa

μθη2 − (λ + θ) λη2 + λξη􏼐 􏼑
+ b +

λa + 1
η

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)

(2) 2a + (1/α)< (R/C)< a + (a(λ + α) + 1/α)

q
e
1, q

e
2, q

e
3( 􏼁 �

0, q
∗
2 , 0( 􏼁,

R

C
≤

λa

λ + θ
+
λac

α
+ a +

η + ξ
μη

,

q
∗∗
1 , q
∗
2 , 0( 􏼁,

λa

λ + θ
+
λac

α
+ a +

η + ξ
μη
<

R

C
<

μθa

μθ − λ(λ + θ)
+
λac

α
+ b,

1, q
∗
2 , 0( 􏼁,

μθa

μθ − λ(λ + θ)
+
λac

α
+ b<

R

C
<

μθa

μθ − λ(λ + θ)
+
λac

α
+ b +

1
η

,

1, q
∗
2 , q
∗∗
3( 􏼁,

μθa

μθ − λ(λ + θ)
+
λac

α
+ b +

1
η
<

R

C
<

μθη2a +(λ + θ)λ2ξa

μθη2 − (λ + θ) λη2 + λξη􏼐 􏼑
+
λac

α
+ b +

λa + 1
η

,

1, q
∗
2 , 1( 􏼁,

R

C
≥

μθη2a +(λ + θ)λ2ξa

μθη2 − (λ + θ) λη2 + λξη􏼐 􏼑
+
λac

α
+ b +

λa + 1
η

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(63)
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(3) (R/C)≥ a + (a(λ + α) + 1/α)

q
e
1, q

e
2, q

e
3( 􏼁 �

(0, 1, 0),
R

C
≤

λa

λ + θ
+
λa

α
+ a +

η + ξ
μη

,

q
∗∗∗
1 , 1, 0( 􏼁,

λa

λ + θ
+
λa

α
+ a +

η + ξ
μη
<

R

C
<

μθa

μθ − λ(λ + θ)
+
λa

α
+ b,

(1, 1, 0),
μθa

μθ − λ(λ + θ)
+
λa

α
+ b<

R

C
<

μθa

μθ − λ(λ + θ)
+
λa

α
+ b +

1
η

,

1, 1, q
∗∗∗
3( 􏼁,

μθa

μθ − λ(λ + θ)
+
λa

α
+ b +

1
η
<

R

C
<

μθη2a +(λ + θ)λ2ξa

μθη2 − (λ + θ) λη2 + λξη􏼐 􏼑
+
λa

α
+ b +

λa + 1
η

,

(1, 1, 1),
R

C
≥

μθη2a +(λ + θ)λ2ξa

μθη2 − (λ + θ) λη2 + λξη􏼐 􏼑
+
λa

α
+ b +

λa + 1
η

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(64)

where

b � a +
n + ξ
μη

−
θa

λ + θ
, c � q

∗
2 �

Rα − 2aαC − C

λaC
, M �

R

Ca
− 1 −

n + ξ
μηa

+
a

λ + θ
, (65)

M1 � M −
1
ηa

M2 � M −
λ
α

M3 � M1 −
λ
α

M4 � M −
λc

α

M5 � M1 −
λc

α

, (66)

q
∗
1 �

μθ(M − 1)

λM(λ + θ)
,

q
∗
3 �

μθηM1 − (λ + θ)λη3M1 − μθη3

λμθ +(λ + θ) ξM1 − λ( 􏼁λη2
,

q
∗∗
1 �

μθ M4 − 1( 􏼁

λM4(λ + θ)
,

(67)
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q
∗∗
3 �

μθηM5 − (λ + θ)λη3M5 − μθη3

λμθ +(λ + θ) ξM5 − λ( 􏼁λη2
,

q
∗∗∗
1 �

μθ M2 − 1( 􏼁

λM2(λ + θ)
,

q
∗∗∗
3 �

μθηM3 − (λ + θ)λη3M3 − μθη3

λμθ +(λ + θ) ξM3 − λ( 􏼁λη2
.

(68)

Proof. FromTeorem 4, we can see that S2(q1, q2, q3) is only
related to q2 and monotonically decreases with q2.

(1) If (R/C)≤ 2a + (1/α), then S2(q1, 0, q3)≤ 0. Arriving
customers fnd that the server is in the setup period,
the individual utility function is always negative and
no one will choose to enter the system. Ten, there
exists a unique equilibrium strategy, i.e., qe

2 � 0.

(a) If (R/C)≤ (λa)/(λ + θ) + a + (η + ξ)/(μη), then
S1(0, 0, 0)< 0 and S3(0, 0, 0) � S1(0, 0, 0)− (C/η)

< 0. From Teorem 4, S1(q1, 0, q3)≤ S1(0, 0, 0)

− (C/η)< 0. Te customer sufers a negative
beneft. Hence, the customer’s best choice would
be to balk if he observes the server at state 1.
Moreover, S3(0, 0, q3)≤ S3(0, 0, 0)< 0, the best
choice is balking if he fnds the server at state 3.
In a word, the equilibrium strategy is
(qe

1, qe
2, qe

3) � (0, 0, 0).
(b) If (μθa)/(μθ − λ(λ + θ))+ b≤ (R/C)< (μθa)/

(μθ − λ(λ + θ)) + b + (1/η), then S1(0, 0, 0)> 0
and S3(1, 0, 0)< 0. From Teorem 4, we can
conclude that S1(q1, 0, 0)> S1(1, 0, 0)> 0. Te
customer sufers a positive beneft. Hence, the
customer’s best choice would be to enter if he
observes the server at state 1. Moreover,
S3(1, 0, q3)≤ S3(1, 0, 0)< 0, the best choice is
balking if he fnds the server at state 3. In a word,
the equilibrium strategy is (qe

1, qe
2, qe

3) � (1, 0, 0).
(c) If (R/C)≥ (μθη2a + (λ + θ)λ2ξa)/ (μθη2−

(λ + θ)(λη2 + λξη))+ b + (λa + 1/η), then S3
(1, 0, 1)> 0 and S1(1, 0, 1) � S3(1, 0, 1) + (C/η)

> 0. From Teorem 4, S1(q1, 0, 1)

> S1(1, 0, 1)> 0. Te customer’s benefts are al-
ways positive, the customer’s best choice would
be to enter if he observes the server at state 1.
Moreover, S3(1, 0, q3)> S3(1, 0, 1)> 0, Tere
exists a unique equilibrium strategy when the
server is at 3. In a word, the equilibrium strategy
is (qe

1, qe
2, qe

3) � (1, 0, 1).
(d) If (λa)/(λ + θ) + a + (η + ξ)/

(μη)< (R/C)< (μθa)/(μθ − λ(λ + θ)) + b, then

(qe
1, qe

2, qe
3) � (q∗1 , 0, 0), from case (a), we have

(qe
1, qe

2, qe
3) � (0, 0, 0); from case (c), we have

(qe
1, qe

2, qe
3) � (1, 0, 0). From Case (a) and Case

(c), we fnd S1(1, 0, 0)< 0< S1(0, 0, 0), By the
zero theorem, there exists a unique q∗1 such that
S1(q∗1 , 0, 0) � 0. Terefore, in this case, we have
(qe

1, qe
2, qe

3) � (q∗1 , 0, 0).
(e) If (R/C)≥ (μθη2a + (λ + θ)λ2ξa)/(μθη2 − (λ+

θ) (λη2 + λξη)) + b + (λa + 1/η), then (qe
1, qe

2,

qe
3) � (q∗1 , 0, 0), from case (c), we have (qe

1, qe
2, qe

3)

� (1, 0, 0); from case (e), we have (qe
1, qe

2,

qe
3) � (1, 0, 1). From Case (a) and Case (e), we
fnd S3(1, 0, 1)< 0< S3(1, 0, 0), By the zero the-
orem, there exists a unique q∗3 such that
S3(1, 0, q∗3 ) � 0. Terefore, in this case, we have
(qe

1, qe
2, qe

3) � (1, 0, q∗3 ).

(2) If 2a + (1/α)< (R/C)< a + (a(λ + α) + 1/α), then
S2(q1, 1, q3)< 0< S2(q1, 0, q3). Since S2(q1, q2, q3)

decreases monotonically with q2, there exists
a unique equilibrium strategy qe

2 such that equation
S2(q1, q2, q3) � 0. We solve for
qe
2 � q∗2 � (Rα − 2aαC − C)/(λaC). Te proof
method of the subcases is similar to case (1).

(3) If (R/C)≥ a + (a(λ + α) + 1/α), then
S2(q1, 1, q3)> 0. Arriving customers fnd that the
server is in the setup period, the individual utility
function is always positive and customers will choose
to enter the system, there exists a unique equilibrium
strategy, i.e., qe

2 � 1. Te proof method of the sub-
cases is similar to case (1). □

Remark 1. We considered a special case. Taking ξ⟶ 0, in
our results, we get the M/M/1 retrial queue with setup times.
Te results of individual equilibrium strategies are consistent
with the literature [13].

Next, we fnd the maximum social beneft by using the
social welfare function.Te social welfare function is defned
as

S q1, q2, q3( 􏼁 � λ R −
(η + ξ)C

μη
􏼠 􏼡p0 + λq1 R − CW1( 􏼁p1 + λq2 R − CW1( 􏼁p2 + λq3 R − CW1( 􏼁p3. (69)
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Te purpose of social planners is to maximize S(q1, q2, q3)

by searching for the optimal joining probability of customers qs
1,

qs
2 and qs

3. Te expression of S(q1, q2, q3) is too complex to
obtain its analytical solution. We can use the particle swarm
algorithm (PSO algorithm) to search for the numerical solution
of this problem. Te most signifcant advantage of the particle
swarm algorithm is that it does not require toomuch analyticity
of the objective function.Te algorithm is based on the theory of
collective intelligence. In each iteration of the search process, the
particles in the swarm can dynamically adjust their positions
and velocities by tracking the two extremes in the swarm and
fnding the global optimal solution through multiple iterations.
Specifc numerical examples are given in the following:

We analyze the efects of system parameters on indi-
vidual equilibrium joining probabilities and social welfare
through numerical examples.

As can be seen in Figure 9, qi increase with service rate μ.
Intuitively, customers have a greater incentive to enter the
system when the server can serve more customers. From
Figures 10 and 11, it is easy to understand that the arrival
rate λ and the failure rate ξ have the same efect. As the
waiting time increases, the equilibrium joining probability of
customers decreases. It can be known from Figure 12 that
there exists the opposite tendency of qi with regard to α. It is
reasonable that with the decreasing of the setup time,
customers fnding the server at state 2 are more willing to
enter the system. On the other hand, as long as the individual
beneft is positive, selfsh customers will always choose to
enter, which results in the congestion of the system. Cus-
tomers are reluctant to enter the system at busy state or
breakdown state.

As for the socially optimal strategy, it can be seen from
Table 1 that with the increase of arrival rate, many customers
join the system resulting in congestion which leads to new
customers are no longer willing to enter. However, due to
the increase in the number of customers arriving at the
system, more social welfare has been brought. From Table 2,
it is found that qs

1 and qs
3 decrease with increasing α, qs

2
increases with α. At this time, the number of customers
entering the system increases, which makes the social
benefts increase. From Table 3, the optimal social joining
probability of each state increases with θ. Customers’ will-
ingness to join the system leads to many social welfare.

5.2. Fully Unobservable Case. In this subsection, we study
individual equilibrium strategy and socially optimal strategy
in the fully unobservable case. Since there are many states of
the server, the arriving customers choose to enter the system
with diferent probabilities depending on the state of the
server. To avoid the complexity of diferent probabilities, we
consider the special case where the joining probability of
customers is the same (q1 � q2 � q3 � q).

Te individual utility function is given by

U(q) � R − CE(W). (70)

Te customers’ equilibrium joining probability, defned
as qe, where qe is given by

(i) qe � 0 if only if U(0)< 0.
(ii) Similarly, qe � 1 if only if U(1)> 0.
(iii) In addition, a necessary and sufcient condition, for

qe ∈ (0, 1) to be an equilibrium joining probability
is that U(qe) � 0.

Te social welfare function is given by

S(q) � λ∗R − CE(N), (71)

where λ∗ is the efective arrival rate of customers, and

λ∗ � λp0 + λq p1 + p2 + p3( 􏼁 �
λμη(λ + θ)(λq + α)

α[μθη − λq(λ + θ)(η + ξ)]
p00.

(72)

From the individual perspective, when customers arrive at
the system, they judge whether to enter the system based on
their proft gain or loss. According to the individual utility
function, we can fnd the customers’ equilibrium joining
probability qe. From the social perspective, the social planner
aims to maximize social welfare by fnding the customers’
optimal joining probability qs. According to the individual
utility function and social welfare function given in the paper,
U(q) and S(q) are complex functions on q. We have difculty
in deriving the analytic solution for qe and qs. Terefore, some
numerical analysis is given in the following fgures.

Figure 13 indicates that qe and qs gradually decrease
with the arrival rate λ. Te reason is that many customers
join the system and the orbit becomes crowded, which
leads to a decline in customers’ enthusiasm to join the
system. It can be seen from Figure 14 that qe and qs show
an upward trend with the increase of θ. Tis is because
customers in the retrial orbit receive service fast, which
leads to less waiting time and more willingness of cus-
tomers to join the system. In Figure 15, qe and qs are
increasing with respect to μ. Te reason is that the server
can complete the service quickly; customers are inclined
to enter the system. Figure 16 examines the infuence of η
on qe and qs. As the repair rate η increases, the customers
reduce the waiting time when the server is fast to change
state from breakdown to the normal working level, hence
customers prefer to enter the system.

From Figure 17, the social welfare gradually increases
with λ and decreases with ξ. Tis is because as λ increases,
many customers enter the system leading to an increase in
the maximum of social welfare. Te increase of ξ shortens
the available time of the server, which leads to a decrease
in the number of customers entering the system and the
social welfare is reduced. Te trend of social welfare with
respect to R and C is depicted in Figure 18. It is intuitive
that many rewards attract customers to join the system,
leading to greater social welfare. Te higher cost per unit
time leads to higher waiting costs for customers, which
reduces the enthusiasm of customers to enter the system
and leads to lower social welfare. Te relationship be-
tween the social welfare and the setup rate α for diferent
service rates μ is shown in Figure 19. It presents that the
social welfare increases with respect to the setup rate and
service rate. Te shortened setup time and service time
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Figure 9: Te joining probabilities vs. μ for λ � 3, θ � 2, ξ � 0.8, α � 2.4, η � 2, R � 20, C � 5.
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14 Discrete Dynamics in Nature and Society



attract more customers to enter the system which pro-
motes the growth of social welfare. Figure 20 displays that
the growth of both η and θ can increase the maximum

social welfare. In this case, the decrease of the waiting
time encourages customers to join the system; this
contributes to the growth of social welfare.
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Figure 11: Te joining probabilities vs. ξ for λ � 1.3, μ � 3.9, θ � 2.6, η � 1, α � 2.4, R � 15, C � 4.
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Figure 12: Te joining probabilities vs. α for λ � 2.45, μ � 5.5, θ � 2.9, ξ � 0.8, η � 1, R � 15, C � 1.2.

Table 1: (qs
1, qs

2, qs
3) and S(qs

1, qs
2, qs

3) vs. λ for μ � 3.6, ξ � 0.5, α � 1.4, η � 1, R � 15, C � 4.

λ � 0.7 λ � 0.8 λ � 0.9 λ � 1 λ � 1.1 λ � 1.2
qs
1 0.9996 0.9992 0.9991 0.9969 0.9951 0.9072

qs
2 0.8353 0.6345 0.4744 0.3298 0.2491 0.1969

qs
3 0.0166 0.0026 0.0011 0.0010 0.0002 0

S(qs
1, qs

2, qs
3) 6.2379 6.7708 7.2505 7.6781 8.0494 8.3686
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Table 2: (qs
1, qs

2, qs
3) and S(qs

1, qs
2, qs

3) vs. α for λ � 1.6, μ � 4.5, ξ � 0.8, θ � 2.9, η � 1, R � 20, C � 1.2.

α � 0.2 α � 0.4 α � 0.6 α � 0.8 α � 1 α � 1.2
qs
1 1 1 1 0.9990 0.9984 0.9982

qs
2 0.4198 0.7143 0.9681 0.9960 0.9987 0.9992

qs
3 0.4045 0.2961 0.2311 0.2215 0.2180 0.2155

S(qs
1, qs

2, qs
3) 15.6170 18.5100 19.8904 20.6842 21.1638 21.4821

Table 3: (qs
1, qs

2, qs
3) and S(qs

1, qs
2, qs

3) vs. θ for λ � 1.6, μ � 5, ξ � 0.8, α � 2, η � 2, R � 20, C � 3.

θ � 1.5 θ � 1.8 θ � 2.1 θ � 3 θ � 3.5 θ � 4
qs
1 0.6597 0.8001 0.9254 0.9990 0.9999 1

qs
2 0.8377 0.9291 0.9973 0.9992 0.9993 0.9997

qs
3 0 0.0001 0.0005 0.2401 0.4659 0.5456

S(qs
1, qs

2, qs
3) 19.7389 20.2720 20.8122 22.1048 22.5958 23.0088
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Figure 13: Te joining probabilities vs. λ for α � 4, μ � 5, θ � 2, ξ � 0.8, η � 2, R � 20, C � 4.
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Figure 15: Te joining probabilities vs. μ for λ � 1.5, α � 3, θ � 2, ξ � 0.5, η � 2, R � 20, C � 4.
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Figure 16: Te joining probabilities vs. η for λ � 1.8, α � 4, μ � 5, θ � 2, ξ � 0.6, R � 20, C � 4.
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6. Conclusion

In this paper, we analyze a repairable M/M/1 retrial queue
with setup times. Under the stability condition, we construct
balance equations to obtain the steady-state probabilities of
the server in diferent states. And we derive the performance
measures of the system. Next, the efects of parameters on
the performance measures of the system and the cost
function are analyzed by numerical examples. Finally, we
present an extensive analysis of customers’ equilibrium
joining behavior and socially optimal strategies in the almost
and fully unobservable cases.

Furthermore, there are also signifcant limitations in this
paper. Our discussions are based on the assumption of the
exponential distribution, which is convenient to obtain
analytical solutions. However, this assumption may not
apply to some practical scenarios. It is worth challenging in
some directions. One is to consider that the service time
obeys the general distribution, which can be studied using
the supplementary variable method and diferential equa-
tion. In addition, we can incorporate the present model in
a proft-maximizing framework, where the owner or man-
ager of the system imposes an entrance fee.
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