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Cell-like P systems with channel states, which are a variant of tissue P systems in membrane computing, can be viewed as highly
parallel computing devices based on the nested structure of cells, where communication rules are classifed as symport rules and
antiport rules. In this work, we remove the antiport rules and construct a novel variant, namely, cell-like P systems with channel
states and symport rules, where one rule is only allowed to be nondeterministically applied once per channel. To explore the
computational efciency of the variant, we solve the SAT problem and obtain a uniform solution in polynomial time with the
maximal length of rules 1. Te results of our work are refected in the following two aspects: frst, communication rules are
restricted to only one type, namely, symport rules; second, themaximal length of rules is decreased from 2 to 1. Our work indicates
that the constructed variant with fewer rule types can still solve the SAT problem and obtain better results in terms of
computational complexity. Hence, in terms of computational efciency, our work is a notable improvement.

1. Introduction

Membrane computing, a new type of bioinspired computing
model, was frst proposed by Păun [1]. Like quantum
computing and DNA computing, it can be used to construct
various models and implement computer algorithms. In [2],
Professor Adleman successfully solved the Hamiltonian path
problem with 7 vertices. Membrane computing is inspired
by biological cells, tissues, and nervous systems and can be
implemented as distributed and parallel computing devices.
At present, many new variants have been proposed [3–9],
andmany variants have been proven Turing universal. In the
theoretical research of membrane computing, various
computationally hard problems were solved [10–14]. Re-
cently, inspired by membrane computing, Roy et al. pro-
posed a new type of neural computing system [15], which
will promote the development of membrane computing. In
the application feld, membrane computing has achieved
excellent results in optimization algorithms [16, 17],

biology-based approaches [18, 19], mobile robots [20], fault
diagnosis [21, 22], and other related applications [23, 24].
Recently, some excellent results have been achieved in the
feld of machine learning [25–27], and some researchers
combine these two research areas and obtain excellent re-
sults [28]. Currently, many scholars are focusing on de-
velopments in this feld. For additional details, some review
books including papers (e.g., [29]) and the website https://
ppage.psystems.eu/ can be viewed to obtain the latest
information.

Currently, there are primarily three types of P systems in
membrane computing: cell-like P systems [1], tissue-like P
systems [30], and neural-like P systems [31]. Tis article
focuses on cell-like P systems (for additional details, see [1]).
In [32], symport/antiport rules were introduced to cell-like P
systems, and substances can move between two membranes;
moreover, multisets of objects in adjacent regions can ex-
change positions. Freund et al. proposed the concept of the
channel state by combining tissue P systems [33]. When
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such a P system is running, the states of channels can be
changed; in addition, channel states can activate rule exe-
cution. In [34], the channel state concept was introduced to
cell-like P systems with symport/antiport rules to construct
a new variant (abbreviated as CCSSA P systems); further-
more, the computational power of this new variant was
explored, but the study of computational efciency was not
involved. Recently, Jiang et al. solved the SAT problem
with CCSSA P systems to study its computational efciency
[35]; however, in the study, although a uniform SAT

solution was obtained, the maximum rule length in the
CCSSA P systems was 2. In terms of computational com-
plexity, in membrane computing, a better method can solve
the same NP-hard problem with a maximum rule length
shorter than 2. If a membrane system can be constructed to
solve the same problem, even with a shorter maximum rule
length, then the system provides excellent computational
property. For instance, in [36], SAT was solved with
a maximum length rule of 8; however, in [37], the maximum
length of rules was reduced to 3 with the samemodel. Hence,
the latter paper improved upon the previous research results.
Obviously, in membrane computing, the length of rules is an
important factor in terms of computational complexity.

In [1], the notion of maximal parallelism was proposed,
and it is an attractive strategy: at a given moment, multiple
rules on each channel can be selected to use, where one rule
may be executed multiple times. Nevertheless, in fat
maximal parallelism [38], such a rule can only be activated
once. In our work, we adopt a new method combined se-
quential manner with fat maximal parallelism, that is, on an
arbitrary channel, even if more than one rule is employed at
a given moment, regardless of the direction of movement of
the rules on the channel and the channel states considered in
the rules, only one rule can be nondeterministically
applied once.

With respect to CCSSA P systems, communication rules
are classifed into two categories, namely, symport rules and
antiport rules. In this work, we consider constructing
a variant with fewer rule types; if the new variant can still
solve the same problem, it is shown that the constructed
variant is powerful enough. Hence, we remove the antiport
rules of CCSSA P systems, thereby constructing a novel
variant, that is, cell-like P systems with channel states and
symport rules (abbreviated as CCSS P systems).

Te following are the contributions of our work:

(i) We remove the antiport rules of CCSSA P systems,
thereby constructing a novel variant, that is, cell-like
P systems with channel states and symport rules,
where, with respect to communication rules, ony
symport rules are used. In such a variant, at a given
moment, one rule is only allowed to be non-
deterministically applied once per channel.

(ii) Membrane division is introduced to the constructed
variant, and its computational complexity is studied.
Specifcally, we solve SAT and obtain a uniform
solution. With respect to computational complexity,
in the process of obtaining a theoretical proof, the
maximal length of rules is 1, which refects excellent

performance. Our approach improves upon the
current research method.

Te structure of this paper is as follows: Section 2 mainly
gives the defnition of CCSS P systems. In Section 3, based on
the SAT problem, the computational efciency of the
system with respect to solving an NP-complete problem is
studied; next, we explore a case study to verify themembrane
system introduced in Section 4. Finally, some conclusions
are presented, and future work is considered.

2. Cell-Like P Systems with Channel States and
Symport Rules

In this section, we remove the antiport rules of CCSSA P
systems, thereby constructing a novel variant, namely, CCSS
P systems. For the formal language and the automaton
theory, one can see [39, 40].

2.1. Te Model of CCSS P Systems

Defnition 1. A CCSS P system (degree m≥ 1, 1≤ i≤m) is
a tuple:

Π � O, K, E, μ, wi, si,Ri, iout( , (1)

where

(i) O is an alphabet of objects
(ii) K represents the set of channel states (not nec-

essarily exist in the set of O)
(iii) E represents an infnite number of objects in the

environment
(iv) μmeans themembrane structure denoted by a tree,

and all nodes 1, . . . , m in the tree correspond to the
labels of membranes. Relative to each membrane i,
p(i) denotes the outside region of membrane i;

(v) wi ⊆O(1≤ i≤m) denote the multisets of objects
initially located in membrane i

(vi) si(1≤ i≤m) represent channel states initially lo-
cated on the membrane with label i, which is the
channel between membrane i and p(i)

(vii) iout is the output region (iout ∈ 0, 1, . . . , m{ })

(viii) Ri, i ∈ 1, . . . , m{ } represent a series of rules, in-
cluding symport rules and division rules. In what
follows, O+ denotes the set of strings composed by
the symbol in O but without λ; and given a string x,
the length of x, which is the quantity of symbols in
this string, is denoted by |x|.

2.1.1. Symport Rules

S, (x, in), S
′

  or S, (x, out), S
′

 , (2)

where S, S′ ∈ K, x ∈ O+, |x|> 0. Te length of a symport rule
is |x|. Formally, the maximum rule length of a CCSS P
system can be denoted by the maximum rule length of
symport rules in the system.
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At a given moment, when the channel state of a mem-
brane is S and multiset x exists inside (resp., outside)
membrane i, (S, (x, out), S′) (resp., (S, (x, in), S′)) can be
applied. By changing the channel state to S′, multiset x is
transferred to region p(i) (resp., membrane i), where p(i)

represents the outer membrane of membrane i; if membrane
i is the skin membrane (it does not have the upper neighbor
membrane), p(i) represents the environment.

2.1.2. Division Rules

[a]i⟶ [b]i[c]i, (3)

where i ∈ 1, 2, . . . , m{ }, a, b, c ∈ O, i≠ iout.
At a given moment, relative to object a in membrane i

(except for the skin membrane), a division rule is executed,
and two membranes with the same label will appear. Si-
multaneously, object b including c appear in new mem-
branes to replace the previous object a; other objects in the
initial membrane can be copied to the two newly generated
membranes. It is important to emphasize that objects a, b,
and c can represent the same or diferent symbols. Moreover,
the priority of division rules is higher than that of other rules,
that is, if such a rule can be applied, symport rules cannot be
applied at that moment.

2.2. System Operation. Even if more than one rule can be
employed on a channel at a given moment, only a rule can be
nondeterministically selected. In addition, if a rule can be
executed more than one time at a given moment, this rule
can only be activated once.When the application of a rule on
a channel is completed, another rule can be applied.
However, relative to all channels, at any step, rules can be
executed in parallel on diferent channels; moreover, rules
that can be executed must be executed on the corresponding
channel. For example, multiset of objects u2v2 exists in
membrane 1, and channel state S appears on the membrane;
in addition, there are two rules associated with the
membrane:

R1: S, (u, out), S
′

 ,

R2: S, (v, out), S
′

 .

(4)

First, we consider the strategy of maximal parallelism to
run a system. Initially, rules R1 and R2 are activated si-
multaneously, and each rule can be executed multiple times.
As a result, all copies of objects u and v will be transferred to
the environment. Te computing process is shown in
Figure 1.

Next, we consider the method combined sequential
manner with fat maximal parallelism. When the system
starts running, one rule (R1 or R2) is only allowed to be
nondeterministically applied on the channel; moreover,
relative to the rule that is selected to be applied on the
channel, it is only allowed to be applied once. Hence, the
following two cases will occur: (i) Rule R1 is only allowed to
be applied. Eventually, one copy of object u is transferred to

the environment; (ii) Rule R2 is only allowed to be applied.
Eventually, one copy of object v is transferred to the en-
vironment. Te computing process is shown in Figure 2.

Tere is at most one channel on each membrane (be-
tween two adjacent regions). On each channel, we use the
strategy of sequential manner combined with fat maximal
parallelism to apply rules. Te confguration of CCSS P
systems is infuenced by the following factors: the membrane
structure, the multiset of objects in each region, and the
channel states between adjacent regions. Before such a sys-
tem starts running, we use the initial confguration to
characterize it. As the computation continues, a series of
confgurations can be generated with the execution of rules
at each step, and we call it a transition between two arbitrary
confgurations. A series of transitions is called a computa-
tion. Notably, the application of rules is based on sequential
manner combined with fat maximal parallelism and follows
the principle of nondeterminism [1]. Finally, when system
operation stops, the halting confguration can be obtained; at
that moment, the system halts, and no rules are applied, and
the computing result is sent to the output region.

2.3. Recognizer CCSS P Systems. In membrane computing,
the recognizer P systems are used to solve decision problems.

Defnition 2. A recognizer CCSS P system (degree m≥ 1,
1≤ i≤m) is a tuple:

Π � O, K,Σ, E, μ, wi, si,Ri, iin, iout( , (5)

where

(i) Σ represents an input alphabet (Σ⊆O);
(ii) YES, NO ∈ O;
(iii) iin (resp., iout) represents the input (resp., output)

region.

In such a system, the other parameters are defned as in
Defnition 1. A recognizer CCSS P system can start from the
initial confguration with an input multiset; eventually,
YES occurs in the region iout.

Defnition 3. X � (IX, θX) denotes a decision problem,
where IX is the instance, and θX represents a predicate of the
instances. Te problem can be solved in polynomial time, if
the following holds:

(i) Π is polynomially uniform by Turing machines
(ii) Relative to IX, there is a pair (cod, s) of polynomial-

time computable functions such that

(a) suppose u corresponds to an instance, u ∈ IX,
and s(u) is a natural number; additionally,

u2v2

u2v2

1

S

1

R1, R3

S′

Figure 1: Applying maximal parallelism.
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cod(u) represents an input multiset of CCSS P
systems;

(b) relative to (X, cod, s), such a system is sound,
that is, with regard to u ∈ IX, if CCSS P systems
have an accepting computation, then θX(u) � 1;

(c) relative to (X, cod, s), such a system is complete,
that is, suppose u ∈ IX, relative to a problem, if
θX(u) � 1, computations of Π(s(u)) with
cod(u) is an accepting one;

(d) such a system is polynomially bounded, that is,
CCSS P systems stop computation and reach the
halting confguration after p(|u|) steps (p is
a polynomial function).

Defnition 4. Te maximum rule length of a CCSS P system
is equivalent to that of symport rules in the system.
PMCCPS−CSSR(k) represents that the class of decision prob-
lems can be solved by a family of recognizer CCSS P systems

in a uniformmanner in polynomial time, where the maximal
length of rules is k.

3. A Uniform Solution to the SAT Problem
Based on CCSS P Systems

3.1. Constructing CCSS P Systems to Solve the SAT

Theorem 5. SAT ∈ PMCCPS−CSSR(1).

Proof. A SAT formula consists of n Boolean variables and
m clauses:

Cj � y1,j∨ · · ·∨ypj,j, (6)

where yi,j ∈ xl, xl|1≤ l≤ n , 1≤ i≤pj, and 1≤ j≤m; xl is
the negation of a propositional variable xl.

A SAT formula c is encoded by cod(c):

cod(c) � α1,1 · · · αn,1α1,2 · · · αn,2 · · · α1,m · · · αn,m. (7)

We codify c with the multiset (1≤ j≤m and 1≤ i≤ n).

αi,j �

di,j,which denotes xi  is  in Cj;

di,j,which denotes xi  is  in Cj;

d
′
i,j ,which denotes  that neither xi nor xi  is  in Cj.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

To solve the SAT, a recognizer P system ΠSAT(m,n) is
constructed:

Π � O, K,Σ, E, μ, w1, . . . , w4, P1, S1, K, Q1,R1, . . . ,R4, iin, iout( , (9)

where

(i) O is the set of objects:

O � Σ∪ gi

1≤ i≤ n + 1 ∪ bi, ti, fi|1≤ i≤ n 

∪ ej

1≤ j≤m ∪ a, b1,YES,NO .
(10)

(ii) K is the set of channel states:

K � Ti, Ti
′, Fi, Fi
′, Si
′
1≤ i≤ n ∪ Ti,j, Fi,j

1≤ i≤ n, 1≤ j≤m + 1 

∪ Pi

1≤ i≤ 2mn + m + 9n + 3 ∪ T
′
i,j , F
′
i,j , Ti,j, Fi,j

1≤ i≤ n, 1≤ j≤m ∪ Si|1≤ i≤ n + 1 

∪ Zi

1≤ i≤m + 2 ∪ K, K
′

 ∪ Qj

1≤ i≤m + 3 .

(11)

(iii) Σ � di,j, di,j, di,j
′|1≤ i≤ n, 1≤ j≤m  denotes input

objects
(iv) E � ϕ
(v) μ � [234]1

(vi) w1 � a,NO{ }, w2 � YES, w4 � g1b1e1, . . . , em.
(vii) iin � 2 and iout � 0.
(viii) Te rules in R1 are as follows:

R1,i ≡ (Pi, (a, out), Pi+1), 1≤ i≤ 2mn + m + 9n + 3.

u2v2

1

S
uv2

1

u

u2v
1

v

R1

R2

S′

S′

Figure 2: Applying sequential manner combined with fat maximal
parallelism.
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R2,i ≡ (Pi, (a, in), Pi+1), 1≤ i≤ 2mn + m + 9n + 3.

R3 ≡ (P2mn+2m+11n, (NO, out), P2mn+2m+11n+1).

R4 ≡ (P2mn+2m+11n+1, (YES, out), P2mn+2m+11n+2).

(ix) Te rules in R2 are as follows:
Division rules:
R5,i ≡ [bi]2⟶ [ti]2[fi]2, 1≤ i≤ n.

Symport rules:
R6,i ≡ (Si, (bi, in), Si

′), 1≤ i≤ n.

R7,i ≡ (Si
′, (fi, out), Fi), 1≤ i≤ n.

R8,i ≡ (Fi, (gn+1, in), Fi
′), 1≤ i≤ n.

R9,i ≡ (Si
′, (fi, in), Ti), 1≤ i≤ n.

R10,i ≡ (Ti, (fi, out), Ti
′), 1≤ i≤ n.

R11,i ≡ (Ti
′, (b1, in), Ti,1), 1≤ i≤ n.

R12,i ≡ (Fi
′, (fi, in), Fi,1), 1≤ i≤ n.

R13,i,j ≡ (Ti,j, (di,j, out), Ti,j
′), 1≤ i≤ n, 1≤ j≤m.

R14,i,j ≡ (Ti,j, (di,j, out), Ti,j), 1≤ i≤ n, 1≤ j≤m.

R15,i,j ≡ (Ti,j, (di,j
′, out), Ti,j), 1≤ i≤ n, 1≤ j≤m.

R16,i,j ≡ (Fi,j, (di,j, out), Fi,j
′), 1≤ i≤ n, 1≤ j≤m.

R17,i,j ≡ (Fi,j, (di,j, out), Fi,j), 1≤ i≤ n, 1≤ j≤m.

R18,i,j ≡ (Fi,j, (di,j
′, out), Fi,j), 1≤ i≤ n, 1≤ j≤m.

R19,i,j ≡ (Ti,j
′, (ej, in), Ti,j+1), 1≤ i≤ n, 1≤ j≤m.

R20,i,j ≡ (Fi,j
′, (ej, in), Fi,j+1), 1≤ i≤ n, 1≤ j≤m.

R21,i,j ≡ (Ti,j, (di,j, in), Ti,j+1), 1≤ i≤ n, 1≤ j≤m.

R22,i,j ≡ (Ti,j, (di,j
′, in), Ti,j+1), 1≤ i≤ n, 1≤ j≤m.

R23,i,j ≡ (Fi,j, (di,j, in), Fi,j+1), 1≤ i≤ n, 1≤ j≤m.

R24,i,j ≡ (Fi,j, (di,j
′, in), Fi,j+1), 1≤ i≤ n, 1≤ j≤m.

R25,i ≡ (Ti,m+1, (ti, out), Si+1), 1≤ i≤ n.

R26,i ≡ (Fi,m+1, (fi, out), Si+1), 1≤ i≤ n.

R27 ≡ (Sn+1, (e1, out), Z2).

R28,j ≡ (Zj, (ej, out), Zj+1), 2≤ j≤m.

R29 ≡ (Zm+1, (NO, in), Zm+2).

R30 ≡ (Zm+2, (YES, out), Zm+2).

(x) Te rules in R3 are as follows:
Division rules:
R31,i ≡ [ti]3⟶ [bi+1]3[bi+1]3, 1≤ i≤ n − 1.

Symport rules:
R32,i ≡ (K, (ti, in), K′), 1≤ i≤ n − 1.

R33,i ≡ (K′, (bi, out), K), 2≤ i≤ n.

(xi) Te rules in R4 are as follows:
Division rules:
R34,i ≡ [gi]4⟶ [gi+1]4[gi+1]4, 1≤ i≤ n.

Symport rules:
R35,j ≡ (Qj, (ej, out), Qj+1), 1≤ j≤m.

R36 ≡ (Qm+1, (gn+1, out), Qm+2).
R37 ≡ (Qm+2, (b1, out), Qm+3).

Te whole computing process is primarily classifed into
two main phases: the generation phase and the checking/
output phase. Tere are many rules involved in the gener-
ation phase, which is relatively complicated; hence, we will
describe the generation phase in detail.

Te generation phase generates all possible assignments
of all variables and detects satisfable clauses with these
assignments. Te computing process of this phase is shown
in Figure 3. Initially, the computation begins by using the
membranes with label 1 and label 4. Relative to these two
membranes, a parallel computing process is used. Te
function of membrane 1 is to count the steps during system
operation so that the computing result can be output at
a given moment (we will explain this computing process
later). Next, we only consider the computations involving
membranes with label 4. At the initial confguration, the
multiset of objects g1b1e1, . . . , em exists in membrane 4.
Because the system includes object g1 present in membrane
4, the system executes the division rule R34,i, which can
generate two cells with the same label, and object g2 will
appear in the two membranes. Since division rules have
higher priority, they can be used in membrane 4 because of
g2. Finally, after n steps, 2n membranes will appear, and
object gn+1 will be generated in each membrane. Sub-
sequently, relative to channel state Q1 on cell 4, rule R35,i is
activated and can be executed m times; the channel state will
increase by 1 at each step, and fnally, object Qm+1 will
appear. At that moment, rule R36 can be executed, sending
object gn+1 to the membrane with label 1. Based on the
channel state on membrane 4, the system will execute R37 at
the next step, and object b1 in membrane 4 will be sent to
membrane 1; these objects will be used in the subsequent
computing process.

After the above computation involving membrane 4
ends, the rules involving membrane 2 begin to be applied.
Te following computing process assigns values (e.g., “true”
or “false”) to the variables x1 of all clauses in a SAT

formula, and the rules from R6,1 to R33,2 are applied. First,
R6,i is activated, and then, division rule R5,i is executed.
Objects t1 and f1 appear in the two newly generated
membranes. After a division rule is used, fi is sent to the
region outside membrane 2 by applying rule R7,i, and the
channel state of this membrane will be Fi. Next, rules R8,i

and R9,i can be activated; objects fi and gn+1 generated from
membrane 4 will enter membrane 2. Ten, only rule R10,i is
used, and the channel state of this membrane changes to Ti

′.
Next, R11,i and R12,i are simultaneously executed, b1 (resp.,
f1) enters membrane 2 based on channel state Ti

′ (resp., Fi
′),

and Ti,1 (resp., Fi,1) will become the new channel state.
Te subsequent computing process is primarily used to

compare the assignment of the current variables with the
corresponding variables in all clauses, and it runs in parallel
related to two diferent membranes simultaneously. In label
2, one rule in set {R13,i,j, R14,i,j, and R15,i,j} is executed frst
and then one rule in set {R19,i,j, R21,i,j, and R22,i,j} will be
used; this process checks the current variable assignment in
each clause labelled “true” in the sequential manner

Discrete Dynamics in Nature and Society 5



combined with fat maximal parallelism. A similar com-
putation is executed in another membrane with label 2: one
rule in set {R16,i,j, R17,i,j, and R18,i,j} is applied frst and then
one rule in set {R20,i,j, R23,i,j, and R24,i,j} will be used; this
process checks the current variable assignment in each
clause labelled “false.” In the computing process above, ej is
an object that has been generated in membrane 4. When
rules are executed, the value of the second subscript of the
channel state corresponding to membrane 2 increases by 1;
when the value increases to m + 1, which means that each
clause associated with the current variable has been checked,
the system executes rule R25,i (resp., R26,i); notably, ti (resp,
fi) would exist in membrane 1, and the channel state of the
corresponding membrane is changed to S2. Te newly
generated object ti is moved to membrane 3 by employing
rule R32,i, and then, division rule R31,i is activated based on
the infuence of ti; simultaneously, object b2 appears in the
newly generated membrane. Next, rule R33,i is employed,
object b2 is sent to membrane 1, and the next iteration
proceeds in the computation.

Te subsequent computation is similar to the previous
process, that is, values are assigned to other variables (from
x2 to xn) in the SAT formula, and the corresponding
process used above for variable x1 is implemented. Finally,
all variables corresponding to clauses in the SAT formula

are compared with assignments, and the result “true” for the
corresponding clauses is obtained. Te system uses the
strategy of sequential manner combined with fat maximal
parallelism; notably, relative to some rules (e.g., R6,i and
R8,i), even if more than one copy of a object can be used to by
a rule simultaneously, such a rule cannot be executed
multiple times and only used once at the step. Finally, when
the n-th variable is executed, the application of rules R25,n

and R26,n ends, and the above computing process ceases.
Although tn and fn appear in membrane 1 at that moment,
the rules in membrane 3 (e.g., R31,i, R32,i, and R33,i) are not
applied.

When Sn+1 exists on the channel state of membrane 2, the
system begins the computation for the checking/output
phase. At this point, rule R27 is activated, and object e1 is
transferred out of membrane 2; additionally, Z2 would be
the new channel state. Next, rule R28,j is applied as long as
objects e2, e3, . . . , em exist in a membrane with label 2, and
these objects can be removed from membrane 2; simulta-
neously, the value of the corresponding channel state will be
continuously increased. If the channel state of membrane 2
reaches Zm+1, theSAT formula has a satisfable solution; at
that moment, rulesR29 andR30 can be applied to sendNO to
membrane 2 andYES to the membrane with label 1. If the
channel state of membrane 2 does not reach Zm+1, the
conclusion is no satisfable solution; in this case, rules R29
and R30 are not executed, and NO remains in membrane 1.
At step 2mn + 2m + 11n, ifNO is in membrane 1, rule R3 is
activated, and NO appears in the environment as the
computing result. Terefore, if an SAT solution is un-
satisfactory, the entire computation requires 2mn + 2m +

11n + 1 steps; otherwise, rule R3 will not be executed. Ad-
ditionally, when the system remains at step
2mn + 2m + 11n + 1, rule R4 is activated, andYES appears
in the environment as the computing result. Terefore, if an
SAT solution is satisfed, the whole computation requires
2mn + 2m + 11n + 2 steps. □

3.2. Some Formal Details

(i) Size of the set O: 3mn + m + 4n + 5;
(ii) Size of the set K: 8mn + 3m + 17n + 11;
(iii) Initial number of membranes: 4;

R34, i R35, i R36 R37 R6, i R5, i R7, i

R8, i R12, i

R9, i R10, i R11, i

R15, i R14, i R13, i

R18, i R17, i R16, i

R22, i R21, i R19, i

R24, i R23, i R20, iR26, i

R25, i

R33, i R31, i R32, i

Figure 3: Te computing process during the generation phase.
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Figure 4: Te initial confguration.

2

1

S2

S2

3 4

K

4
8 membranes

2

K

3

P24 Q6 Q6

b2
2 f1ab1

6g4
7e1

7e2
7e3

7

d1,1d1,2d1,3

e3cd1,1d2,1d′3,1d1,2d2,2d3,2d′2,3d3,3YES

e1e2b1d2,1d′3,1d2,2d3,2d1,3d′2,3d3,3YES

Figure 5: When the process corresponding to x1 completes.
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(iv) Initial number of objects: m + 5;
(v) Te total number of rules: 14mn + 3m + 23n + 11;
(vi) Te maximal length of rules: 1.

Corollary 6. NP∪ co − NP⊆ PMCCPS−CSSR(1).

In [35], the SAT problem was solved with the maxi-
mum rule length 2, where communication rules include
symport rules and antiport rules.

In this work, however, on the one hand, communication
rules are restricted to only one type, namely, symport rules;
on the other hand, the maximal length of rules is decreased
from 2 to 1. Te proof indicates that our work has improved
upon the current research method.

4. Case Study

In what follows, a case study is explored to demonstrate the
previous proof. A formula of the SAT is denoted by c �

(x1 ∨ x2)∧ (x1 ∨ x2 ∨x3)∧ (x1 ∨x3), which has 3 clauses
and 3 variables, and the input multiset is denoted by Σ � d1,1

d2,1d
′
3,1d1,2d2,2d3,2d1,3d

′
2,3d3,3.

Figure 4 denotes the initial confguration. When the
system begins operation, rules involving membrane 1 and
membrane 4 are applied in parallel. In membrane 4, many
objects e1, e2, . . . , em are generated because of the division
rule, which is useful later. Tere are three variables in the
formula, which correspond to the iterations in the com-
puting process. During the frst iteration, the division rule is
also used in membrane 2, and two assignments (“true” and

e1e2
2b2

1d2,1d′3,1d3,2d1,3d′2,3d3,3YES e2
1e2cb1d′3,1d2,2d3,2d1,3d′2,3d3,3YES

e2e3b1cd1,1d2,1d′3,1d1,2d3,2d′2,3d3,3 YES e1e3c2d1,1d′3,1d1,2d2,2d3,2d′2,3d3,3 YES
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Figure 6: When the process corresponding to x2 completes.

2

P53

3 4
K Q6 Q6

4

1

8 membranes

2

2

S4 S4 S4 S4

S4 S4 S4 S4

2

K
3

4 membranes

2

2

2

2
e2e2

3b2
1cd1,1d2,1d′3,1d1,2d3,2d′2,3 YES

e1e2
2e3b3

1d2,1d′3,1d3,2d1,3d′2,3 YES e1e3
2b2

1cd2,1d′3,1d1,3d′2,3d3,3
YES

e1e2
3b1c2d1,1d′3,1d1,2d2,2d3,2d′2,3 YESe2

2e3b1c2d1,1d2,1d′3,1d1,2d′2,3d3,3 YES

e2
1e2e3cb1

2d′3,1d2,2d3,2d1,3d′2,3 YES

e1e2e3c3d1,1d′3,1d1,2d2,2d′2,3d3,3YES

e2
1e2

2c2b1d′3,1d2,2d1,3d′2,3d3,3 YES

d1,1d1,2d1,3

d2
2,2d2

2,1

d4
3,3d4

3,2

f1 f2
2f 3

4t3
4ag4e1

7e2
7e3

7 NO

Figure 7: When the process corresponding to x3 completes.
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Figure 8: Te halting confguration.
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“false”) for variable x1 occur in each membrane; then, the
system checks the two assignments of variable x1 in each
clause, and fnally, the confguration is obtained (Figure 5).

Te execution process for variable x2 is similar to that for
variable x1, as shown in Figure 6. When the fnal iteration is
completed, Figure 7 denotes the confguration of the system.
Te details of the above computing process for variables x1,
x2, and x3 can be found in Figure 3 of Section 3.1.

Finally, we determine whether multiset e1e2e3 exists in
each membrane with label 2. In this instance, it is obvious
that the formula has satisfable solutions. Hence, when the
system stops, YES is output to the environment as the
computing result (Figure 8).

5. Conclusions

In this work, we have constructed a novel variant, namely,
CCSS P systems; with respect to communication rules, only
symport rules are employed.Te computational efciency of
this variant has been explored. Te proof indicates that the
SAT problem is solved by applying symport rules and
membrane division. With regard to the system we con-
structed, the maximal length of rules is 1; moreover, the rule
types of communication rules decreased from 2 to 1, that is,
only symport rules are applied. Tus, in terms of compu-
tational complexity, our method improves upon the current
research method.

Membrane separation and cell separation have obtained
some satisfactory results in the existing literature (e.g., [37]).
In this work, we adopt membrane division in the proposed
variant; nevertheless, readers can perform membrane sep-
aration to potentially construct a new variant and explore its
computational efciency.

In this work, during system operation, we use sequential
manner combined with fat maximal parallelism as the main
strategy. Inspired by some actual biological phenomena,
other methods have been introduced in membrane com-
puting, such as time-freeness [41], local synchronization
[42], rule synchronization [43], asynchronism [44], and
minimal parallel [45] approaches. Especially for time-
freeness, the execution time of each rule may be diferent.
Terefore, based on the variant of this article, readers can
introduce time-freeness to CCSS P systems and construct
a more robust computing system, which is worthy of
further study.

In our work, multiple membranes can work in parallel to
perform high-efciency computations. However, the par-
allelization of certain computing processes is not particularly
excellent. Readers can attempt to improve parallelism
among diferent membranes to construct a system with
enhanced performance.

Data Availability

No datasets were analyzed or generated during the course of
the current study.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the Science and Technology
Research Program of the Chongqing Municipal Education
Commission (Grant no. KJZD-K202003201).

References
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