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In this article, antisynchronization problem of multiweighted coupled complex-valued delayed memristive neural networks
(MWCCVDMNNSs) with and without coupling delays are investigated. First, via devising a suitable controller and constructing an
appropriate Lyapunov functional, a criterion for ensuring antisynchronization of MWCCVDMNNSs is derived. Second, we
research the generalized pinning antisynchronization of MWCCVDMNNSs by creating a generalized pinning controller to
guarantee that the considered networks can accomplish antisynchronization. Similarly, several sufficient conditions guaranteeing
the antisynchronization and generalized pinning antisynchronization of MWCCVDMNNSs with coupling delays are also pre-
sented. Third, two numerical examples are provided to verify the correctness of the obtained antisynchronization results.

1. Introduction

In recent decades, the applications of neural networks (NNs)
in automatic control [1], pattern recognition [2], associative
memory [3], and many other fields have attracted much
attention. As a particular case of complex networks, coupled
NNs (CNNs) are generated from a large number of single
NN through complex interactions between different NNis.
Enormous practical problems such as target recognition,
edge detection, and image segmentation can be described
and studied with the help of CNNs. Therefore, increasing
interest has been dedicated to exploring the dynamic be-
haviors of CNNs, such as the passivity and synchronization
of CNNs [4-8]. The authors in [4] obtained the global ex-
ponential synchronization and passivity conditions of CNNs
under impulse control. Wang et al. [5] derived some ade-
quate conditions to ensure the finite-time passivity of di-
rected and undirected CNNGs.

Chua [9] first presented the concept of memristor in
1971. Numerous studies have shown that memristor shows

the characteristic of pinched hysteresis, that is to say, there is
a lag between the application and removal of a field and its
succeeding effect, just like neurons in the human brain have
[10, 11]. Due to this feature, the past dynamic history of
memristor can be remembered, with a substantial similarity
to the function of synapses. For this reason, many scholars
have been trying to use memristors to simulate neurons to
achieve brain-like computation, which leads to the devel-
opment of memristive neural networks (MNNs5s) [12, 13]. An
increasing number of scholars have recently investigated the
dynamical behaviors of coupled MNNs (CMNNs) [14-16].
In [14], a distributed impulsive control strategy is employed
to explore the multisynchronization problem of CMNNS. As
discussed in [15], several synchronization conditions in fi-
nite-time and fixed-time for CMNNs were derived. Wu and
Zeng [16] investigated a class of memristive recurrent NNs
(MRNNS5s) and realized the exponential antisynchronization
of the drive-response-based coupled MRNNs (CMRNNSs).
As a generalization of the real-valued NNs (RVNNs), the
state, activation function, connection weight matrix, and
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external input of the complex-valued NNs (CVNNs) are all
defined in the range of complex numbers. The CVNNs can
solve many practical problems which cannot be solved by
RVNNS. Thus, it is urgent to explore the dynamic properties
of CVNNs, and some achievements have been made in
recent years [17-19]. As discussed by Wei et al. [17], the
antisynchronization and synchronization problems of
complex-valued inertial NNs were studied, and some cor-
responding adequate conditions for synchronization and
antisynchronization of complex-valued inertial NNs were
established. The authors in [18] researched the multistability
and robustness of CVNNs with delays and input pertur-
bation. Moreover, Wei et al. [19] analyzed the matter of
antisynchronization for CVNNs with time-varying delays
and leakage delay and proposed several corresponding
antisynchronization criteria. Furthermore, a large number of
researchers have discussed the synchronization and passivity
of complex-valued MNNs (CVMNNSs) [20, 21]. In [20], the
model of delayed CVMNNSs is established for the first time,
and some sufficient criteria for the passivity of the given
CVMNNS s are derived. Zhang et al. [21] discussed the global
asymptotical synchronization of fractional-order CVMNNs
with both parameter uncertainties and multiple time delays.
To the best of the authors’ knowledge, there is no research
result on the coupled CVMNNs (CCVMNNSs) except that
some conditions for ensuring passivity and synchronization
of CCVMNNSs were established in [22].

In the works as mentioned above, the network models
about CCVMNNSs are coupled by single-weight. As a matter
of fact, in the real world, it is more intuitive and convenient
to describe some large-scale networks with multiweighted
complex dynamical networks (MWCDNSs), such as social
networks, bus line networks, and communication networks.
Hence, the multiweighted coupled neural networks
(MWCNNSs) as a special type of MWCDN s have received
extensive attention [23, 24]. Wang et al. [23] obtained several
novel criteria for ensuring finite-time passivity and syn-
chronization of MWCNN s without and with coupling delays
by proposing several novel concepts about passivity in finite-
time and designing appropriate controllers. The authors
derived some passivity and synchronization of MWCNNs by
means of designing proportional-integral-derivative con-
trollers [24]. As is known to all, stability is an essential
theoretical problem in studying NNs. The introduction of
time delays may lead to oscillations or instability or even
chaos in the neural network system. Thus, multiweighted
coupled complex-valued delayed MNNs5s
(MWCCVDMNNSs) is more worthy of being studied.
Moreover, it is also important to discuss the
MWCCVDMNNSs with coupling delays. In [25, 26], the
authors studied the multiweighted coupled delayed MNNs
(MWCDMNNE) for event-triggered passivity and passivity-
based synchronization, but the networks considered in these
publications are all real-valued.

It is generally known that antisynchronization of chaotic
oscillators is a fascinating phenomenon. Antisynchroniza-
tion is basically the same type of synchronization that Pecora
and Carroll [27] first studied. The only discrepancy is that
antisynchronization allows mutually symmetrical chaotic
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attractors to coexist. More precisely, antisynchronization
refers to a phenomenon that the state vectors of the slave
systems have the opposite signs but the same amplitude as
those of the master system. Hence, the sum of two signals is
anticipated to converge to 0 when antisynchronization
occurs. So far, a wide range of methods have been proposed
for the antisynchronization of chaotic systems, such as
adaptive control, direct linear coupling, and nonlinear
control. In [28], Ren et al. investigated the anti-
synchronization of chaotic systems and deduced some
sufficient conditions for the given chaotic system to realize
antisynchronization.

In many practical situations, antisynchronization has
gained widespread use in many areas including image
processing, communication systems, and laser. Hence,
antisynchronization, like synchronization, also plays a crit-
ical role in the study of the dynamic behaviors of CNNs
[29, 30]. In [29], some finite-time antisynchronization
conditions were derived for the MWCNNSs. By integrating
the definition of lag synchronization into the definition of
decay synchronization, the concept of general decay lag
antisynchronization was proposed and obtained several
criteria for guaranteeing that multiweighted delayed CNNs
with reaction-diffusion terms achieve decay lag anti-
synchronization [30].

Different from other control methods, pinning control is
a very effective control scheme in which only a small fraction
of nodes are chosen to be controlled. So far, some scholars
have investigated pinning synchronization control problem
of the coupled delayed NNs (CDNNs) [31] and CMNNs
[32]. In [31], several criteria were proposed to ensure the
cluster synchronization of nonlinear CDNNss in both finite-
time and fixed-time aspects based on the pinning control
strategy. In a previous study [32], Yue et al. addressed the
passivity and synchronization of CMNNs by making use of
two effective pinning control strategies. However, the in-
vestigation on pinning antisynchronization of MWCNNS is
very rare [33]. Hou et al. [33] analyzed the pinning anti-
synchronization of the MWCNN:Ss. To the best of the authors’
knowledge, antisynchronization and pinning anti-
synchronization problems of MWCCVDMNNs have not
been researched yet which motivates the study in this paper.
Different from the classical pinning control method, what
we study in this paper is the networks with discontinuous
neurons; in this case, we develop the generalized anti-
synchronization pinning scheme for this kind of network.

From what has been discussed above, this paper studies
two classes of NNs: MWCCVDMNNs and
MWCCVDMNNSs with coupling delays. The main novelties
of our work can be outlined as follows. (1) The network
model of CCVDMNNs with multiweights is presented for
the first time. (2) By virtue of employing appropriate Lya-
punov functional and several inequality techniques, several
adequate conditions are proposed to ensure the anti-
synchronization of MWCCVDMNNs with and without
coupling delays. (3) Considering that MWCCVDMNNS are
discontinuous neural networks, a novel pinning controller
for this type of network is designed to realize the generalized
pinning antisynchronization.
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2. Preliminaries

2.1. Notations. Let RN and CV be the N-dimensional real
and complex vector space, respectively. The smallest and
largest eigenvalue of the corresponding matrix are denoted
by A, (-) and A, (), respectively. ® represents the Kro-
necker product. For any complex number a = a® +ial, in
which i = /-1 is the imaginary unit, a’,a® € R are the
imaginary part and real part of g, respectively. For any vector
a(t) e CN, lla@®)ll = \af (H)a(t), where a' (t) represents
the conjugate transposition of a (t). If the real and imaginary
parts of a(t) € CV are denoted by a® (¢), a’ (t) € RV, then

one has [a(t)] = \/ (aR () aR (t) + (al (t))Tal (t). Obvi-
ously, the vector norm in our paper is Euclidean norm, i.e.,
L, norm. Note that the vector a(t) is a complex vector, and
the norm of a(t) is the square of af(t)a(t)=
(a® () ak (1) + (al (1) al (1)

2.2. Lemmas

Lemma 1 (see [34]). For any real vectors a;, o, € R" and
matrix 0< B € R™",

T To To-1
20, <oy Bap + 0, By, (1)

Lemma 2 (see [35]). Let A, B,C, and D be matrices with
compatible dimensions and a € R. Then,

(1)(aA)®B = A® (aB);
(2)(A®B) = AT®B";
(3)(A®B)(C® D) = (AC)® (B D);

(4)(A+B)®C=A®C+B®C.

(2)

3. Antisynchronization and Generalized
Pinning
Antisynchronization of MWCCVDMNNSs

3.1. Antisynchronization of MWCCVDMNNS. In this paper,
a single model of CVDMNN is presented as follows:

ds (1) = _dsas (1) + Z Psn (as (t))yh (ah (t — Uy (t)))’
h=1

s=1,2,...,n,

where the complex-valued a, (¢) indicates the state variable
associated with the s-th neuron; d, >0 represents the self-
feedback coeflicient; pg, (a, (¢)) stands for the weight of the
synaptic connection of complex-valued memristor; the
complex-valued nonlinear function y,(-) denotes the acti-
vation function of the h-th neuron; u, (t) is the time-varying
delay with  O0<uy,(t)<u, <u =max,_, ,{u,} and
l:lh (t) < 0n < 1.
Let

a; () +ial (t), py, (a, (1)
pa(ad ) +ipg,(ai (), yu(a, (t—u, (1) (4)
= J’f(aﬁ (t-u, (1)) + iynay (t—u, ®)),

where aﬁ (1), pﬁh (ag (1)), y{l (a{l (t —uy, (1)) are the imaginary
parts of a,(t), pg, (a, (), y,(a, (t —u,(¢))) and af (1),
PR (@R (1), yR(aR (t —u, (1)) are the real parts of

a, (£), pg, (a, (1)), yy (ay (£ = w, (1))
According to the characteristics of memristor’s current
and voltage, one has

pa(ad®) = {

a(t)

Pow | (f)' <A,

Pow | (f)' > A,
. ; (5)
I I psh’ as (t)|SAs’
psh(as (t)) = LI I
Psio |45 (t)|>As’
SR <R ol o]
where s,he{l,2,...,n}; Py, Py Py P, are constants;
[,>0 represents the threshold level. Let 75 =

max{{p b1k 7l = max{ipil 2o} 75 = 55 - P
Po=1Ph P P Pl P'= Bl P
diag (Y7, (Pr)5 Thoy By s Xy (PR)?), and P =

diag (Y5, (P1y)* Thoy Po)s- - > Xy (B)?)-
In the following, we consider the MWCCVDMNNSs
made up of N CVDMNN:Gs as (3)

As(t) = —=DAs () + P(As (1) y(As (1)) + ¢, (t)
n N (6)
+ Z ZlngxHeAx(t)s(s =1,2,...,N,

e=1 k=1

in which the complex-valued vector A;(t) = (A (1),
Ag (1), ... ,Aan(t))T € C" denotes the state vector for the
8-th node; 0<D =diag(d,,d,,...,d,) € R™", As(t) =
(Aﬁ u, (1), Agy(t —u, (1)), ..., As, (t —u, (1) € C",
y(As () = (y; (Agy (t —uy (1)), y, (A (E —uy (1)), -+,
V(A (t =, (1)) € C",and H, € R™" (e = 1,2,...,7) is
an internally coupled matrix; P(As(t)) =
(P (Ass D) en € TP c5(8) = c§ (8) +ic§ () = (c5 (2),
sy (). 55, ()T € C"  represents  the  controller;
R>1,>0(e=1,2,...,n) symbols coupling strength for the
e-th coupling form; K¢ = (K§, )y € RMN(e=1,2,..., )
describes the outer coupling matrix, where R > K§,_>0, if

there is a connection from node ¢ to node x (& # «); other-
wise, R > K§,_=0.

N
€ € _
K&;——;KM&—I,Z,...,N. )
ket

Remark 1. CVNNSs, as an extension of RVNNs, can solve
some problems which cannot be dealt by RVNNs because
their states, activation functions, and connection weights are



all complex-valued. For instance, the detection of symmetric
problem and the XOR problem cannot be modelled by
a single real-valued neuron, but they can be achieved by
a single complex-valued neuron with the orthogonal de-
cision boundaries [36]. Moreover, it is more suitable to
describe various physical phenomena (e.g., the phase pro-
gression and retardation, the superposition of fields, and the
wave propagation) through complex numbers in reality, all
of which can be drawn as the applications of CVNNs.
Naturally, CVNNs have found widespread practical appli-
cations in physical systems dealing with quantum waves,
ultrasonic, and electromagnetic waves. Therefore, it is very
meaningful to consider the characteristic of complex-value
when studying CMNN:Ss.

Then, separating network (6) into the following imagi-
nary and real parts:

- N
A5 (6 = -DAR (1) + PR(AR () yR(AF (t)) 4 i 31K H AR (1)

e=1x=1

=

~P(450)y (45 0) + o),

n N
Ay(t) = —DAY (1) + P*(AR 1))y <A5(t))+ZZl€K H AL(
=1 x=1

=

P(Al(®) yR(A(; (t)) vk,
(8)
where yR (AR ()= (yR (AR (t-u, (1)), yX (AL, (t—u, (1)),

L YR(AR (t=u, O, ¥ (AL () = (v} (A, (t—uy (1)), 3
(A b (E=uy (D)), yh (AG, (t—u, (1)), AR ()= (AF, (1),

Algz (t)w--aAgn (t))T’ PR ()= (p?h('))nxn) A(IS (t)= (A(In (®),
AL (1), AL ()T, R ()= (R (1),cR (),....cR ()T, and

P ()= (ph (e S5 (1) = (ck, (£),6h, (1), ol ()T

Assumption 1. For all ,,f3, € R, there exist real numbers
Y&, YL, X, i8>0 such that

s O Y5 [75 0] < ¥,
'J’g (B)) + )’5R (ﬁz)| S].5R|/31 +ﬂz|’ 9
')’é (B) +¥s (ﬂ2)| < jslBi + B

For the network (6), assume that

A, ()= (A, (1), A, (),..., A, (1) €eC"eC" is an ar-
bitrary solution, then

A, (1) = -DA, (1) + P(A, (1)y(A. (1)). (10)

Here, A, (t) = AR(t) +iAL(¢). Then, (10) can be

expressed by separating it into the following two real
systems:
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AL(0) = -DAR (1) + PR(AR () y" (4% (1))
PI(AL(0)y (AL ),

(11)
AL(0) = -DAL (1) + P*(4% (1), (AL (1))
+P'(AL (0))y"(AF @)
Let z;5(t) = As(t) + A, (t), then
25 (t) = -Dzg () + P(A; (1) y( A (1))
+ ca(tli+ P(A,(1)y (A, (1) (12)
n
+ Z Z 1. K5 Hz, (1),
e=1 k=1
where z4(t) = (24 (£), 25, (1), . . .» 25, (1))', 8 = 1,2,...,N.

Then, the decomposition form of (12) can be expressed
as

£R(t) = -D2R (1) + PR(AL (t))G%%)

-P(450)¢ (5 0)

—(P*(A5 (D) - PX(AT())y (AX () +c5 (1)
+ (P'(A5(1) - P'(AL(0))y (AL (D)

n N
+ Y 1K Hz (1)

£5(8) = ~Dzh (1) + P*(AF (t))G’(%)
+ P’(Ag(t))GR(%)
—(P*(A5 (1) - PX(AT (D))" (AL(®) + c5 (1)

(
~(P'(45(0) - P'(AL(1))y" (A% 1)

n N
+> Y 1K Hz, (t),
e=1 k=1
(13)
where zR(t)= (2R (£),28, (1),....28 ()T, 25(t)= (2}, (¢),

2hy (0,25, (), 2R (6)= (2§, (E—uy (6)),25, (t-u, (1)),
...,zgn(t—un(t)))T, zf;(t)—(z(lsl (t—uy (1),25, (t—uy (1)),
2L (t—u, ()", GR(ZR®)=yR (AR () +yR (AR (1)), and
G (i (1) =y" (AL (1) +y" (AL (1)).

Definition 1. The network (6) is said to be antisynchronized
if

im0 As () + A, (O] = 0, foralld = 1,2,...,N.  (14)

In this paper, the authors construct the following con-
troller for the MWCCVDMNNSs (6):
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R, _ R_R . R SRR Theorem 1. The antisynchronization of network (6) can be
t)=-0 t) — HIPY P Y Y
cs (t) 525 (1) 51gn(za ( ))( + ) (15)  realized under the controller (15) if the following conditions
¢ (1) = ~@pz5 (1) - sign(z5 (1) (P'Y' + P'Y"), hold:
R 1
where 8=12,...,N; R>v8>0 and R>3v>0 @y <0and®, <0, (17)

Y= (YR YR YRS @F = diag (v, VR, ..., WR ) € R™®
and @} = diag(vl,, vi,,...,v} ) € R™ are the positive
definite control gain matrices; sign (z§ (t)) = diag (sign

where  ®f=Iy®(-2D+P"+P +2JRA)—20R + Y 1.

[K@H, + (K) @ HT,0! = Iy® (-2 D+ P" + ' +2J'A)-

X . A ' X = o 200431 I [K@H, + (K9 ®H]]; ©"=diag(®F, ©5,...,

(z5; (1), sign (zg, (£),..., sign (z5,()); Y = (Y,Y5, @ﬁ)eRannN’ and G)I:diag(@I,@é,...,@f\,)EIR”NX”N.
SYDT; and sign (25 (1) = diag (sign (2}, (1), sign

(25, (1)), ..., sign (2%, (1))).
For convenience, some symbols are denoted as follows:

T R_R 2
zR(t)z((z’f(t))T, (zﬁ(t))T,...,(zﬁ,(t))T> , V() = Z(Za ()" (t)”ZZJ (jnzan () 5

it 1o
T
20 =((=0).(ZE0) (o)),

Proof. Consider the Lyapunov function as

N n N
+2 Z Z Jt_uh(t) (thah (8)) Z (Za(t ) Zé(t).

1-oy
- . . T
0 =(EF®) L (FO) o (FO) ) (18)

Then, one can yield

T ~(E0) @EO) o FO)) . 09
JR = diag((jlf)z, (Jf)z, e (j5)2>,
J' = diag((71)" (1) (7))

. 1 1 1
A=d1ag( X s )
l-0,1-0, l1-o,

M=

lKHz(t)

€7 IK €K

I
—

e=lk

N P - 1
Vi< (o) { ~Dzf (1) + P (4] 0)G* (25 () - P'(4;0)G' (50)) + Y.
=1

—®§z§ (t) - sign(zf;Z (t))(ﬁRYR

N
+P'Y) - [PR(AF (1) - PR(AR(0)]y" (AX ) + [P'(A5 (1) - PH(AL )]y (AL )} +2 ) (25 (t))T{—ng(t)
d=1

+ PR(A5 )G (25(0) + P(450)G" (25 () + i S 1KEH .2 (1) - 81k (1)~ sign(z (0)(P'Y' + P'PY) - [P(4% ()

1 k=1
PR(AR )]y (AL (1) - [P'(45 (1) - P'(AL )]y} (AR (0)} +2(2R 1) (1y @ (J*A))2R ()
—2(F®) (v TR +2(' ) (Iye (J'A))2' (1) - 2(ZT D) (Iy e 1)2 (1.
(19)

From Assumption 1, we can deduce



B

(25 ) P* (a5 0)G* (25 )

d=1
N n n _
<2} Y Y |h @[B4 ) + (A%, o)
6=1s=1 h=1 (20)
N n n R N n
< 220 (O (E5) + 22 () (5.0)
~(2" ) (1B )2 (0 + (K@) (1y 0 7)) ()
and
N T -
-2) (24 0) P4 0)6' ()
d=1

(2 ) (voP )0+ (FO) (1ve 1)z o),
(21)

S (1 o\ pR( 4R I T/
2y (z3(0)"PH(4f )6 (250
d=1

<(2' )" (1veP" ) 0+ (ZT®) (1yo1) )

(22)
N T -
2y (24(0)"P'(450)G" (45 )
o=1
<(z' )" (1veP ) 0 + (ZF®) (1y o 1) 0.
(23)
In addition,
n N N T
23 Y IK5 (25 (D) Hezg (1)
e=1 §=1 k=1 (24)

= (" (t))T [i I(K°eH, +(K%) ®

e=1

HZ):|ZR ().

Similarly,
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e=1¢

LK (25(0) Hyzl (1)

M=z
M=z

1x=1

V, ()< (zR(t))T{IN®<—2 D+P 4P + 2]RA> —20R% + ile [KeczaHe + (KE)T®HZ] }zR(t)
e=1

+(zI(t))T{IN®<—2 D+DP +P +2]IA> -

2
<arllz(OI,

where a; = max{\,, (®F), 1), (D)} <0.

From (30) and the construction of V, (¢), one can obtain
that V, (¢) is a bounded function that does not increase.
Therefore, V| (t) converges to a nonnegative constant when
t — + 0o. In addition, according to (30), we can get

(25)
n
= (<’ (t))T Y I (K®H, + (K" ®HZ):|ZI ().
e=1
Furthermore,
2Y (20) [PR(AR (@) - PR(AR ()Y (AR 1)
0=1
N n n
=23 3 ¥les 0] [ph(A5 () - ph (A%, )] yi(AL,®)
8=1 h=1s=1
szg hZ Zl R (O]BE, - ufrE
=2)|(z o) [P
4=1
(26)
Likewise,
N
2Y (R @) [P(AF0) - P'(AL (0)]y (AL )
8=1 § (27)
<2 Z‘(zf; (t))T|ﬁIYI
6=1
N
2 (2 (t))T [P*(A5 (1) - P*(AT () ]y (AL ()
6=1
N (28)
<2y |(z50) ' [PY"
6=1
N
23 (=4(0)" [P (41 0) - P(a 0) (4% )
6=1
. (29)
<2 |(z50) [P'T"
6=1
It then follows from (19)-(29) that
20" + ile [K€®H€+(K€)T®HZ] }zl(t) (30)
e=1
e <Y1 ® 1( ) (31)

. . t
From (31), one can infer that lim, , fo lz (e)||>de
exists and is a nonnegative real number. Furthermore,
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t 2(iR2R (e :
(]h on ( )) de
1-gy,

N n
0<lim, oY ) J

o1kl Y ()

<imo | (@) a0 @

t
<ALy e (TN lim, oo | z(Pde

=0.
Similarly,

Nzt 2(j12L, (o))
0<lim, .Y Y J Mds =0. (33
P TGN Sl !

From (32) and (33), we  know  that
lim, o Y5l (R (0) 28 (1) + (25 ()" (25 (1))] exists and
is a nonnegative real number. In the next, we will prove
lim,_ oo Yo, LR @) 2R (1) + (25 (1) 2 ()] = 0. If this is
not true, we have

N T T
lim, oo Y| (25 0) 25 (0 + (25 0) 5 0] =050
8=1

(34)

In other words, there exists a positive real constant @
such that

N
6 N
; [(Zfs2 (t))TzaR () + (zfs (t))Tz(Is (t)] >3 fort>@. (35)

Hence,
, 6 ~
lz (@)l >5, whent > . (36)
From (30) and (36), we can obtain
. 0 .
v, (t)<%,t2®. (37)

Then, according to (37), one gets
-V, (@) <V, (+00) =V, (©)

+00 +00 (38)
= JA V,(tdt < J oiedtz —00,

@ 2 2
which leads to contradiction. Therefore,

N
hmt—>+oo Z
=1

(X)) 28 ) +(zg<t>)ng<t)] =0.  (39)
Then, we have
lim,_ ., lz(®Il =0, (40)

which  means that the network (6) achieves
antisynchronization. O

3.2.  Generalized Pinning  Antisynchronization  of
MWCCVDMNNs. In the following, we generalize the tra-
ditional pinning control method. One part of the controller
we designed controls all the nodes, and the other part
controls the first m nodes of network (6). Then, the
MWCCVDMNNSs with corresponding pinning controller is
described by

As(t) = —=DAs (1) + P(A; (1) y( A, (1))

1 N
+vs(t)+ Y Y LK HA(1),8=1,2,...,N,

€ 1K
e=1 k=1

(41)

where v (t) = v§ (1) + ivé (t) € C" is the generalized pinning
adaptive controller and 0<D e R™", A;(t) eC",
P(As(t) € C™", y(As(1) €C", R>1.>0, K¢ e RV,
and H, € R™" have the same meanings as in Section 3.1.
Without loss of generality, we select the first 7 nodes and
pin them with the following generalized pinning adaptive
controller designed as

vs(£) = cs () + 85 (1), 0 = 1,2,.. ., N, (42)

where c5 (t) = cR(t) +ick(t), 5 (t) = €k (t) + ich (t), in which
cg(t) and cg(t) are given as in (15) for § = 1,2,..., N, and

n
=Y I (p5 (D) Hez§ (8,0 = 1,2,...,m,

E? (t) = e=1
0,0=m+1,m+2,...,N,
. (43)
o =Y I (p5 (D) Hezs(1),6 = 1,2,...,m,
Cs (t) = e=1
0,0=m+1,m+2,...,N,
with
e e TH, +H€T
(ps ()" = &5(25 (1)) —==—=2z5 (1),
2
(44)
e . TH, + H!
(5 (1) = 5(z5(1)) ———<25 (1),
2
when 6=1,2,...,m, where R31.>0, zX(t) = AX(t)+

AR(1), z§(1) = AJ(1) + AL (), z§(t) = (2§ (1), 25, (B), .-,
2R ), 2Lt = (25, @), 25, 1),.... 25, @), H.eR™,
H.+H'>0, 1<m<N, and R > {5>0; R > (p5(0)%>0;
and R > (pg(O))I>O for§=1,2,...,m.

Similar to Section 3.1, the error vector z4(t) = As(f) +
A, (t) can be governed by

25 (t) = =Dzg (t) + P(As (1)) f (A5 (1)) + v5 (1)

+P (A, (0)y(A, (1)
n N
+Y Y 1K Hez, (),6=1,2,...,N.

e=1 k=1

(45)



In order to get the desired result, we separate networks
(45) into the following equivalent imaginary and real
parts:

ZR(t) = -DzR () + P*(AF (t))GR(%)

- P(450)G'(250))

-[PA(45 0) - PA(aT(0) ]y (41 (0)

+ i i 1.KS H zX (1)

+ e[:J;’K(:,lcxg(t)) - PI(AL )]y (AL @) +v5 (),
240 = -Dzj (1) + (4 ()G (25 0))

+ P(450)6" (5 0)

-[p R(A§(f))— PA(AT )]y (4l )

+ Z Zl K§ H.z. (t)

e=1 k=1
Pl(aim)]y (4

(46)

-[P'(A5) - 20) + v (),

where
= -@z; (1) - sign(zj (1)) (P'Y" + P'Y")
U
= L (p5 () Hezs (2),
e=1 o o (47)
vé ) = —@ézé (t) - sign(zé (t))(PRYI + PIYR)

n
- L (p5 (1) Hezi (1),
e=1

Vi (t)

in  which (ps (DR = G (2R )" (H, + HD22R (1),
(P ) = (L) (H, + HD)/22 () for §=1,2,...,m,
and (p§(1)* = (p5(1) =0 for =m+1,m+2,...,N.

N

N
V(<2 (250) H-pz @+ P (af 0)G" (5 ) - P
(2

"(AL))G (zg(t)) ~[PR(AR ) -

1
Z”:ZZK&(HF.Z (t) - @ng;(t) sign(z; (¢ )(P e +PY)

Discrete Dynamics in Nature and Society

Theorem 2. If there are matrices 0< (p9)" =
diag (PR, (R, ..., (S)R,0,...,0) € RNN and
0< () = diag (75", B, () 0,...,0) € RNV,
€=1,2,...,u, such that

®X < 0and®! <0, (48)
where ®F =Ty® (-2 D+P +P 1+2JRA) - 208 + Y|
LUK = (PN @H + ((K)' - (p))@H!,05 = Iy ®
(2D + B + B +2J7A) - 20! +Y LUK - ) e
H,+ (K" - ) ®H!]; OFf =diag(@F,0%,...,0R8) ¢
RN @l = diag (L, 01,...,0L) e R™N; (558 >0

and (/35)1 >0 for 6 =1,2,...,m, then the network (41) is
pinning adaptive antisynchronized.

Proof. Take the Lyapunov functional for network (45) as
follows:

z

n
V=) Y E (0"
=1

e=1

-(5)")

01

> () - GiY X () o

o=1 o=1

M:

+

™

Il

—_
[STNG]

(5®) 25

M=z

+
&

Il
—

)

N ‘ g1 2
npg[ (O,

1-oy,

+
[N}

t iRk (o))’
J (]h on ( )) de
t-u, (1) 1=y

=
T M=
L

=
—

(49)

Then, we have

PR(AZ()]y" (AR )

n
Y L (p5(8) Hezs () +[P'(A5(#))

e=1

=1«
(AL 0)]y (Al 0)] 2 Y (23(0) Dz (6 + P(45 (0)G' (550) + P'(45(0)G* (25 () - [P*(4F 1))
0=1

N
PA(AS )]y (AL () + i Y 1LK§H 2. () - @5z; (1) - sign(z5 (1)) (P'Y +P'Y") - i I (S (1)) H 25 (1)

e=1 k=1
m

[P(450) - PAL )AL @) + 3 3 L5 0)" - (<
*A))" (1) -

e=1 =1

)](z5 )T(H +H )zs(t)+2(zR(Tt))T( ®(]
2(21 (1) (IyeJ')z' (o).

+2(z )" (Iye (J'A))2' (1) -

Moreover, we can derive that

OV (H+ H)E 0+ Y S 1[50

e=1§=1

22K @) (1y @ )" (1)

(50)
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N 7 n m
2 ) DL O) ) Hezi (0 + ). Y L (5 0)" = (35)") (=5 ) (H, + HI)zh (1)
d=1e=1 e=146=1
N 1 m N m
=2Y Y L) () HE 0+ Y Y L (s ) (=R 0) (He + HD)R )= Y Y 1.(55) (22 0)" (H, + HT )28 (1)
8=1e=1 e=1§=1 e=14=1 (51)
n m
D IRACNENG! ) (H,+H{)z; (t)
e=14=1
- (o) 216(,3€)R®(H€ +HD) | (1),
e=1
Similarly,
& I( 1 T I O I T T\ I
-2y Z (s 0)' (z5(1) Hezs )+ Y Y L[ (05 (0) - (35)'] (25 (1)) (He + HL )z (1)
d=1e=1 e=14=1
H m
Z N 1.9 (25 @) (H + HD )25 (1) (52)
e=16=1

= (t))T[i 1.(p%) ®(H, + HeT):|zI(t).

Thus, it is easy to get that by (20)-(29) and (50)-(52)

V, (1) < (ZR(t))T{IN®<—2 D+P +P + 2]RA> - 208 + i (ke -
e=1

+(2" (t))T{IN ® (—2 D+B +P + 2]’A) —20" + ile (ke
e=1

2
< ‘XZHZ (t)" >

where a, = max{\,, (®X),1,, (D))} <0.

From (49) and (53), we can get V, (t) is nonincreasing, and
any term of V, (¢) is bounded. Therefore, lim,_,,V, (¢) >0,
(p§ (t))R and ( P5 ()" are bounded. According to (44), we can
get (p; ()R and (pg(t))l are monotonically increasing; thus,
(p§ ()R and (p§ (1)) converge to a finite nonnegative value,
which means both the limitation of Y Y%,
LIC (5 (0~ and S, T, 1G5 (5 ()~ 75)°
exist as well as lim,__,, . >7_ Y% I /(g((pﬁ(t))R -p5)?=0
and lim, o Y7, Y0 1/C5((p5 (1) — p5)* > 0. Thus, we

have lim, {zgi T b QU )21 - g)det

[t 0 2ikeh, (©21(1 — g)del + T3, LR ()2 (0)+ (2
(t))Tzfs (t)]}exist and is a nonnegative real number. Then, by
virtue of the similar proof method as in Theorem 1, we can
obtain that lim, [z (¢)|| = 0. Therefore, the network (41)
achieves antisynchronization under the generalized pinning
adaptive controller (47). O

et (- 6 )orl] |0
GODLYH }z%t) =

(7)) e He +((K)" -

4. Antisynchronization and Pinning
Antisynchronization of
MWCCVDMNNs with Coupling Delays

4.1. Antisynchronization of MWCCVDMNNSs with Coupling
Delays. In this section, the MWCCVDMNNs with coupling
delays is considered as follows:

A5 (1) = =DAs () + P (As (1) y(As (1) + ¢ (£)

N . (54)
+> Y IK5HA,(),6=12,...,N,

e=1 k=1

where D, A;(t), P(A;s(t), y(As(1), cs(t), 1., K¢, H, have

the similar meanings as in Section 3.1; Af(t) = (A, (t-w
1 (D) Ag(t—w,y ()., Ay, (t—w, (1)) € R w(t)(e =
1,2,...,1) denote the coupling delay with

0<w, () <w,<w=max._,, ,{w}andw,(t)<p <1.
Let Zs (t) = Aé\ (t) + A* (f), then
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25 (t) = -Dzg (t) + P(As (1)) y(As (1)) + 5 (£)
+P(A, 1)y (Y. ()

n N
+Y Y IK§Hez, (£),0=12,...,N.

e=1 k=1

R (1) = -DR (1) + pRA§(t)GR<z§(t))

+[P'(A5(1) - PI(AL(0)]y' (AL (®) + 5 (),

24(0) = -Dz + P45 )G (250 ) + P'(450)G" (25 (0) - [P*(45 )

- [P'(A5(®) - PI(AL(0) ]y (AT (®) +c5 (1),

where 28 (1), 25 (1), 28 (1), 2 (¢), GR (2R (1)), and G (%)
have the same definitions as in Section 3.1; zg-(\t) =
(2R (t—w, (1), 28 (t —w, (1)), ..., 2R (t—w,(t)))" and
ZL(t) = (2L, (t—w , (), 2L, (t—w, (1)),..., 2L, (t—w, ().

Theorem 3. If there are some matrices 0<V¥, = diag

(b5, B5,...,b5) € RN e — 1,2,...,n, such that
O <0and @ <0, (57)
where DR =Ty @ (-2D+P" + B +2JRA) - 20R + ¥

VL [(KE@H )Y (K @ HY) +1/(1 -5,)¥,); @ = Iy®

(-2D +P"+ P+ 2J’A) - 20" + 31 Aot ¥
(KHT@HT) +1/(1 - g)¥.]; - diag (®F, @, ...,
OR) € R™N; and @ = diag(®1,@£) ..., 0L) ¢ RN

Then, the network (54) achieves antisynchronized under the
controller (15).

(55)

- P(450)G' (550 - [P*(AF () - P*
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Then, by separating the imaginary and real parts, system
(55) can be shown as

—

n N
(AFO)M(AR D)+ Y Y 1K Hozk (1)

e=1 k=

—

n N

PR (4L 0) + ¥ X

e=1 k=1

A

(56)
Proof. The Lyapunov function is chosen as
Vi(h) = Z(Zs(t)) zé(t)+zzz-[ Mde
5=1h=1"7 I~ wy, (t) lfgh
Lo Gien@) 8 )
+2;};J.t“h(f) 1-9, g(zé(t)zg
(58)
n
' ;1 Ji w, <>Z F(e)"Wez" (e)de

M=

t
+ Le J z (e)T‘I’ezI (e)de.
t-w, (t)

11 -0¢

€

Then, we have

- - N -
N . ~DzX () + P*(AX (t))GR(z§ (t)) -P'(Al (t))G’(zfs (t)) + i 31K H 2R (1) - 0828 (1)
Vi1)<2) (z5(1) et
o sign(<X () (T + P'F) - [PR(4F (1) - P(4R () [y (A% 1) + [P (410)) = P (4L )]y (4 ()
R S N N
N . —AZ} (1) + PY(AF (t))G’(z{s (t)) +P'(4} (t))GR(zf; (t)) y Z K& H. 2L (1) - Ol (1)
+2) (z5(0) e=lx=l

~sign(z; (1)) (P"Y' + P'Y") ~[P*(Af (1) - P

+2(220) (Iy @ (JRA))2R (1) - 2(2R () (Iy © JF)R (1) + 2(z’ ) (Iy®

1
(R (0) w2 () - Zl (F®) v,z (t)+z

e=1

n
+Z1

e=1

€

il o —
=Y I ( 1) vz .

e=1

1-

(Al )]y (4l ®) - [P(450) - PI(AL )]y (AT 0)

(I'A))e () - 2(T ) (1y e T")< (1)

(z )R ZA0)

€

(59)
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Obviously,

DRH3

5=

e m(z6 (t)) Hezf(\t)

LM*"

—
—

€: K=

(z )" (Ko H,)z" (1)

[\/]:

€

11

Similarly,

N n N .
zzzz € uc(zé(t)) Hezi(t)

d=1€e=1«k=1

n
< Y1 (0) (K oH)' (k) eH) (1) (61)

e=1

(60)
<y le(zR(t))T (K o H )Y, ((K) ®H. )" (1) + Z”:le(;(\t))T\PezT(?).
e=1 e=1
.\ ile (zf(\t))T\Per(\t)‘ By (20)-(30), (26)-(29), and (60)-(61), one obtains
e=1
AGHES (t))T{IN ® <—2 D+B"+P + 2]RA> -20" + ile (K o H )Y, ((K9) ®H.)+ . _1§ ‘P] }zR(t)
e=1 €
1,0\T =R =l T I - e -1 T T 1 I (62)
+(z' (1)) {1N®<—2 D+P +P +2] A) -20"+ Y 1| (K°®H )Y, ((K*) ®H[) + = \I’e] ]»z (t)
e=1 €

2
<oz,

where a; = max{l,, (®5),1,,(®1)} <0. Similar to the de-
duction of (31), we can obtain that hmt_wroo_[O llx (e)|*de
exists and is a real nonnegative number. In addition,

3 le ' R T R
0= e; 1-o, thwe(t) (Z (8)) Y.z (e)de
< i le Jf (zR(S))T\IJ A(de
= 1- @e t-w €
e=1 (63)
1o t .
: Z; 1 —€*€AM (\Pe)L_w lz ()| de
=0.
Similarly,
v ! ' I T I
€ \P _ . 4
0= ezzl 1- @ejt—wc(t)(z (8)) e? (S)de 0 (6 )

From (32)-(33) and (63)-(64), one can obtain that
lim, o Y50, LR () 2R (1) + (2 ()25 (1)] exists and is
a nonnegative real number. Then, based on the method for
proving Theorem 1, one «can easily obtain
lim,_,, lz(H)] = 0. Thus, under the controller (15), the
network (54) is antisynchronized. O

4.2.  Generalized  Pinning  Antisynchronization  of
MWCCVDMNN:s with Coupling Delays. In this section, we
add generalized pinning adaptive controller as in Section 3.2
to the MWCCVDMNNs with coupling delays, then the
network (54) under the pinning adaptive controller can be
expressed as follows:

As(t) = —=DAs () + P(As (1)) y(As (1)) + v5 (1)

N _ (65)
+Y Y IK§HA,(),6=1,2,...,N,

e=1 k=1
where vy (t) = V§ (t) + iv(IS (t) € C" is the generalized pinning
adaptive controller as given in (42), 0<D e R™",
As(t) € C", P(As(t) € C™", y(As() eC", R>1.>0,
K¢ e RNN| H_ e R™", and m)e R"” have the same
meanings as in Section 4.1.

Similarly, the error vector z;(t)
governed by equations as follows:

25 (t) = =Dzg (t) + P(As (1) y(As (1)) + v5 (£)
+P(A, ()y(A, (1)

=As(t)+ A, (t) can be

(66)
N

n
+ZZZ K§H.z, (t),6=1,2,...,N.

e=1k

Separating (66) into the following imaginary and real
parts:
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2Rt = -DR (1) + PR(AR (1)) R(z (t )

+[P(A50) -

25(8) = =Dz (1) + PR(AR (1) G’<z (t)>+P (4l )G (zf;(t))—[pR(Af;(t))_

[P (af0)-

where v (t) and vi (t) are given as in (47).

Theorem 4. The network (65) is pinning adaptive anti-

Discrete Dynamics in Nature and Society

'(ALH)G <z§ (t)) —[PR(AR @) - PR(AR®) ] yF (AR ®) + v (1)

N —
Pl(AL )]y (AL ) + ZZleszHesz(t),

e=1 k=1

R R 1 1 1 (67)
PR(AL )]y (AL (®) + vi(t)

n N

P AL )R (A% 0) + Y Y LK H ez (1),

e=1 k=1

where  OF=Iy®(-2D+P  R+P +2JRA) - 2YR+
YL LK ®H,) ¥, ' ((K)"eH!) - (p) @ (H, +H!)+
1/(1-p)V.; ®L=Iye(-2D+P +P +2]/A) - 27"+

synchronization if there are matrices 1 (Ko H)W (KT eHT) - (59)R

e e R . . et b ¥e )= (p)e(H +H
0< (p)" = dzag((pl)R, (5 R, (pf,,)R,O, ...,0) € RNN, Ty +1 1/(1-3)¥.]; OF = diag(®F,©F,...,0k) ¢ R™*N,
0< (ﬁe)l :dzag((ﬁf)l, (ﬁz)l,..., (ﬁfn)l,o,,()) € RNXN, @I —_ dlag(@{,@;,,@{\]) € RannN; (ﬁg)R>0 and

and 0 <Y, = diag (b5,b5, .. .,
satisfying
®4R < Oand(Di <0,

V(1)

Taking the derivative of V, (¢), we have

bey) € RN e = 1,2, ..

b B >0 for8=1,2,...,m

Proof. A proper Lyapunov functional for (66) is constructed
as follows:

(68)

(%(9) w.2R (e)de

1-9cJt-w.t)

e=1

o]
+Z€

611_95

Jt © (zI (e))T‘I’ezI (e)de

() - @)Y

M=z

(69)

F3 Y 0) -G

(jrzs, ()
1 -9,

de

( hzah(f))
1-o,

N

o=1
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N R
Vi(0<2Y (25 0) {-Dzf 0+ P(a5 0)G" (5 ©)) - P (45 0)G (25 (0) - [P*(4F () - P*(a% (9) 5" (a% 1))
d=1

+ Zl Z 1LKSH 28 (1) - ©R 2R (1) - sign(z5 (0)(P'Y" +P'Y') - iz p5 () Hz5 (1) + [P (A5 (1))
—P'(AL )]y (AL @)} + 2(2 (2} (t))T{—ng (1) + P*(A} (t))G’(%) + P'(4] (t))G%%) ~[P*(A5 )
PHA )]y (AL ) + 3 3 LKEH.Z(0) - 02k (1) — sign(z (0) (BT + P7) = Y1 (o () Hozh (1)
st &
-[P'(A5®) - P'(AL )]y (A ()} + i i L((ps )" - (35)") (=5 (t))T(He +HY)z5 (1) + i i I (o5 ()

=2

e=16=1 e=14=1

~ (39 (25 ) (He + HD)25 (1) +2(z8 ) (1y ® (JRA)) 2R () - 2(2R () (Iy @ T7) (1) + 2(2' () (I

o(J'A)2 (0 - 2(T0) (1ve ) )7 0 + Y —

e=1

— (z 1) 2" (1) - Zz (K@) w2 (0)

m

——

(z REAOE Zl (@) w2 0.

+

OM:

11—

6

(70)

By (20)-(23), (26)-(29), (51)-(52), (60)-(61), and (70),
we have

IAGCHES (t))T { Iy® (—2 D+P +P + 2]RA) 20" + ile [(Ke oH )Y, (K9 ®H.) - () e(H,+H]) + - —16 \I’E} }zR ()

e=1 ¢
1_ ‘I’E] }zI (t)
~ Qe

(71)

+ (z’(t))T{IN ® (—2 D+P"+P + 2]’A> -20" + Z”:le[(K‘:@He)‘P;l( (K9 ®H.) - (p°) ®(H, +H.) +

e=1

2
<ayllz (DI

where a, = max{1,, (®X),1,,(®})} <0. By combining the 5, Numerical Examples
proofs of Theorems 2 with 3, we can obtain

lim,_, /() =0. Thus, the network (65) is anti-  Example 1. Consider the MWCCVDMNNSs illustrated by
synchronized under the controller (47). O O

As(t) = —=DAs () + P(A; (1) y(As (1)) + ¢, (t)
6 6 6 (72)
+1, Y Ky H A () +1, Y K HLA, (1) + 1, Y K3 H3A, (1),

k=1 xk=1 x=1

whered = 1,2,...,6,  yR(w) =yl w) = (p+11-|p-11)/ h=1,2,3, and the matricesH,, K¢ = (K )¢ (e =1,2,3),
5(i=1,2,3), D =diag(0.4,0.8,0.5), [,=0.1, [,=0.2, and the elements in the matrices P(A;(t))(d =1,2,...,6)
I,=04, u,t)=1-1/Q+hx"", u=1, g,=1/(2+h), are selected as follows:
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0.4 0.1 0.2 0.4 0.3 0.4 0.4 0.3 0.2

H,=| 010402 |,Hy,=| 0207 03 [,H;=] 02 0.8 04 |,

0.4 0.2 0.5 0.4 0.9 0.6 02 11 07

0.42, |a§1 (t)|<1.7, -0.32, |uf§1 (t)|<1.7,
lel(af;l (t)) = leZ(agl (t)) =

~0.32, |af§1 (t)| >17, ~0.36, |af§1 (t)| >17,

~0.28, |af§1 (t)|<1.7, 0.33, |u§2 (t)|<1.7,
P1R3(“§1 (t)) = Pgl(agz (t)) =

~0.40, |af§1 (t)| >17, ~0.28, |a§2 (t)| >17,

~0.29, |a§2(t)|<1.7, 0.20, |u§2(t)|<1.7,
sz(“f;z (t)) = P§3(“5R2 (t)) =

R R

0.36, |a52 (t)| >17, -0.19, |a52 (t)| >17,

0.24, |a§3 (t)|<1.7, 0.39, |a§3 (t)|<1.7,
P?l(“?s (t)) = P?z(“rsRa (t)) =

-0.13, |u§3 (t)| >17, 0.26, |a§3 (t)| >1.7,

034, |af; (0]<17, -0.34, |ag, (1]<1.7,
P§3(“§3(t)) = P{l(“gl (t)) =

~0.27, |a§3 (t)| >17, 0.25, |a§1 (t)| >17,

0.24, |a§1 (t)|<1.7, ~0.42, |af§1 (t)|<1.7,
p{Z(“(’?l (t)) = P{3(“§1 (t)) =

0.17, |afSl (t)| >17, 0.36, |af51 (t)| >17,

027, |ap (]<17, 0.26, |ag, (1)]<1.7,
Pél(afsz(t)) = L Péz(atlsz (t)) = L

~0.14, |a52(t)| >1.7, 0.17, |a52 (t)| >1.7,

-0.19, |aj, (H]<1.7, -0.25, |ag, (1]<1.7,
Pés(“{sz(t)) = Pél(atlss (t)) = (73)

-0.21, |a§2(t)| >17, 0.31, |af53 (t)| >17,

0.27, |a§3 (t)|<1.7, ~0.38, |af53 (t)|<1‘7,
Péz(“{ss (t)) = Pgs(ags (t)) =

0.26, |a§3 (t)| >1.7, 0.40, |af53 (t)| >1.7,

-06 02 01 01 0 02
03 -07 0.1 01 01 0.1
0.1 02 -08 0.1 03 0.1
02 01 03 -1.1 04 0.1
01 01 02 02 -09 03
02 05 0 0 03 -1.0
-0.7 01 02 03 01 O
02 -09 0 03 03 0.1
02 02 -09 0 03 02
0 04 02 -08 01 0.1
03 01 04 01 -11 0.2

01 01 02 02 0 -06
-08 03 0 02 01 02
04 -08 01 02 0 0.1

0 0 -1.0 05 02 03
03 01 04 -12 02 02

02 01 0 03 -09 03

02 04 0 02 03 -11
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FIGURE 2: The single dynamical change process of uncoupled NN in (72).
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FIGURE 5: Time evolution of |z, (t)|| without pinned nodes, where 1 = 1,2,...,6.

It is readily seen that Assumption 1 is satisfied with Y% =
Y} =0.4 and j& = ji = 0.4. Choose the parameters in the
controller @15) as follows:
OF = diag(®F,05%,...,0%) = diag
(1.01,0.98,0.76, 0.69,1.10, 1.05, 0.86,0.79, 0.91,
1.23,1.54,1.71,1.82,1.79,1.79, 1.06, 0.86, 0.78),

@' = diag (0!, @},...,0)) = diag(0.92,
0.76,0.87,0.92,0.71,0.78, 0.86,0.99, 0.94, 0.85,
0.69,0.76,0.59,0.71,0.77,0.89, 0.83, 0.90).

By making use of the YALMIP Toolbox in MATLAB, we
can obtain

A((Df) ={-6.2147,-5.8330, —4.5881, —4.2615, —3.9606, —3.8739, -3.6252, -3.5277, -2.7759, —2.5151, —-2.3761, —-2.1608, —2.0750, —1.9064, —1.8040, —1.6740, —1.5948, —1.1972},

A(d){) ={-4.7743,-4.3922, -4.0962, -4.0088, —3.5890, —2.3394, —2.1504, -2.0480, —-1.9877, —1.9329, —1.8667, —1.7628, —1.7475, ~1.7018, —1.5975, —1.5615, —1.4166, —~1.0108},

which meet condition (17). By Theorem 1, it implies that the
network (72) has the capability of realizing anti-
synchronization under the pinning adaptive controller (15).
Figure 1 depicts the antisynchronization simulation result of
network (72). In order to display the effect of multiple
coupling matrices, Figure 2 depicts the single dynamical
change process of uncoupled NN in (72).

Example 2. Take into  account the
MWCCVDMNNSs with coupling delays:

following

(74)
As(t) = DAy () + P (As (1)) y(As (1) + ¢ (£)
N N
+1 Z KllkHlm) +1 Z Klszzm)
k=1 k=1 (75)

N
+1, Y Ko Hy A (),

k=1
where 6=12,...,6, y?(y)=y{(#)= (e + 1
—lu-1/43i=1,2,3), D =diag(0.8,1.0,0.7), I, =04,
I, =0.3, I;=0.1, u,(t)=1-1/Q2+hz ", u=1,

0, =1/ (2+h), w,(t)=(1/20)— (1/10(h+4)z"", B,
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= (1/10(h+4)), h=1,2,3, and the matricesH,,
K" = (K}, )gxs (r = 1,2,3) and the elements in the matrices
P(As(1)(6=1,2,...,6) are selected as follows:

0.18 0 0 0.27 0 0.09 013 0 0
H, = (0,04 0.19 0.06 ),sz ( 0 007 0 ),H3: (0.04 0.15 0.06 )

0 0 018 004 0 012 0 0 015
)= o 1O - TR
- v IR -0 I
o) o PO - o RO
s P - T I
s o O - e
o= " I -y el
reho) - e P - PR
)= o PO b
o) 1RO -0 O

-0.7 01 03 0 01 02
03 -08 01 02 01 0.1
01 02 -1.1 05 01 02

0 02 04 -1.1 02 03
02 01 0 02 -1.0 05
01 02 04 01 0 -08

-08 02 02 03 01 O
01 -1.0 02 02 03 02

2 03 0 -09 0 03 03

K= 02 01 01 -08 03 01 [ (76)

0 03 04 02 -1.1 02
02 01 03 01 02 -09

-09 03 01 01 02 02

02 -08 0 04 01 01

= 0 0 -1.0 05 02 03
- 02 01 02 -07 0 02
01 01 02 02 -09 03

03 0 01 02 04 -10

It is readily seen that Assumption 1 is satisfied with YX =
Y} =05 and j§ = jb =0.5. Select the parameters in the
controller (47) as follows: @OF = diag(@f,@?, R
@g) = diag(0.89, 0.78,0.81,0.64,0.71,0.90, 0.89,0.65, 0.71,

0.67,0.74,  0.57,0.73,0.77,0.89,0.75,0.88,0.73) and®’ =
diag(®!,@8.,...,0) = diag(0.74,0.65,0.54,0.71,0.93,0.73,
0.89,0.65,0.52,0.67,  0.51,0.49,0.81,0.60, 0.83,0.77,0.81,
0.74).

We select the first 5 nodes as pinned nodes. Choose (p")* =
diag ((pH%, PR, ..., (pHR,0) = diag(0.1,0.2,0.3,0.4, 0.5,
0),(pH)% = diag((pH%, (B, ..., (pHR,0) = diag(0.3,0.6,
0.9, 1.2,1.50), (p*)* =diag((,5§) (R (DR 0) =
diag (0.2,0.4,0.6,0.8,1.0,0), (p") =diag((,3l})’, (2
(p1)',0) = diag(0.2,0.4,0.6,0.8,1.0,0), (p*)" = diag((p>)",
(,32 L, (02),0) = diag(0.4,0.8,1.2,1.6,2.0,0), and (p°)’
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=diag((3)), ), ..., (p)',0) = diag(0.3,0.6,0.9,1.2,
1.5,0).

By making use of the YALMIP Toolbox of MATLAB, the
following ¥, (e = 1,2, 3) satisfying (68) can be computed:
¥, = diag(0.5033,0.5033, 0.4082, 0.4840,
0.5203,0.4739, 0.5319, 0.5095, 0.4281, 0.5077, 0.5072,

0.4086, 0.5230,0.5148,0.5041, 0.4876,0.5213,0.4381), ¥, =
diag (0.3954, 0.3820, 0.3388, 0.3965, 0.3908, 0.3726,
0.4044, 0.3796, 0.3394, 0.3947, 0.3783, 0.3282,

0.4068, 0.3867, 0.3864,0.3933,0.3897,0.3518), and
¥, = diag (0.1188,0.1191,0.1194,0.1181,0.1184,
0.1190,0.1186,0.1195,

0.1200,0.1186,0.1190,0.1190, 0.1187,
0.1191,0.1201,0.1192,0.1194, 0.1209).

Based on Theorem 4, we conclude that the pinning
antisynchronization of network (75) is realized with the
controller (47). Figures 3 and 4 show the simulation results.
For comparison, Figure 5 shows the variation trajectory of
error variables x, () without pinned nodes.

6. Conclusions

This paper has investigated the antisynchronization of
MWCCVDMNNSs without and with coupling delays. On the
one hand, we have presented some sufficient conditions for
reaching antisynchronization of the proposed network
models. On the other hand, some generalized pinning
antisynchronization criteria on the basis of the designed
pinning control strategy have been established to ensure that
the considered MW CCVDMNNSs with and without coupling
delays realize generalized pinning antisynchronization, re-
spectively. Furthermore, two numerical examples have been
shown to verify the correctness of the derived results. This
paper is an extended version of our previous work published
in [37]. Based on the derived antisynchronization results of
MWCCVDMNNSs with and without coupling delays in [37],
we have further investigated the generalized pinning anti-
synchronization of the considered networks by designing
anovel generalized pinning adaptive controller in this paper.
More specifically, the pinning controller we designed in this
paper consists of two parts, one part controls all the nodes,
and the other part controls the first m nodes of the con-
sidered network, which is different from the classical pin-
ning control. To the best of the authors” knowledge, this is
the first paper toward to researching the pinning anti-
synchronization of the MWCCVDMNNs. However, there
are several interesting problems for further study. On the
one hand, some scholars have investigated the dynamical
behavior of a new type of coupled complex-valued networks
with intermittent coupling recently [38]. In contrast to the
common continuous coupling in this paper, intermittent
coupling is a discontinuous form of communication which
has greater flexibility for nodes because they are not con-
strained by communication requirements in decoupling
time, which unavoidably result in the difference of dynamics
of nodes between the coupling time and decoupling period.
Therefore, it would be very interesting to take the in-
termittent coupling into consideration when studying the
pinning antisynchronization of MWCCVDMNNSs in our
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future work. On the other hand, it is known to all that
fractional calculus is a theory that generalizes the concept of
calculus from the integer order to arbitrary order. Up to
now, fractional-order systems have been applied in some
new mechanical models due to their non-Markovian and
non-Gaussian properties during the studying of dynamical
systems. In [39], a novel criterion for achieving synchro-
nization of fractional-order chaotic and hyperchaotic sys-
tems was proposed. Motivated by this work, it would be also
a very interesting problem of research to insert fractional
operators into the proposed MWCCVDMNN:Gs in this paper
and study the antisynchronization of this kind of the
fractional-order network model.
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