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Te synchronization behaviors of coupled oscillators under time-varying couplings are of both theoretical and practical sig-
nifcance. While recent studies show that synchronization is suppressed by time-varying coupling in general, the underlying
mechanism is still not very clear. Here, by the kernel of sinusoidal coupling function, we revisit the efects of periodic coupling on
the synchronization of networked phase oscillators. It is found that the suppressed synchronization by periodic coupling is
attributed to the formation of synchronization clusters in the transition from desynchronization to global synchronization. Te
clusters are diferent in size and frequency but are all locked to the frequency of the periodic coupling. We demonstrate this
phenomenon numerically in diferent network models and conduct a theoretical analysis on the numerical results based on the
method of dimension reduction.Te fndings extend our knowledge on the dynamical responses of a complex network to external
drivings, and shed lights on the mechanism of suppressed synchronization in periodically coupled oscillators.

1. Introduction

Te study of collective behaviors covers many diferent
felds, which range from physics to chemistry, biology, and
social economy [1–4]. However, realistic systems are un-
avoidably afected by the surrounding circumstances. Typ-
ical examples include the seasonal variations in ecosystems
[5], the circadian rhythm of the nervous system [6], the
diurnal cycles on gene expressions [7], and the electrical and
magnetic stimulations in brain areas [8]. Pharmacological
and neurological evidence has revealed that the molecular
and cellular pathology of neural disorders can be altered by
externally added low-frequency periodic stimuli, yet the
underlying mechanism remains unknown [8–10]. Revealing
the mechanism behind these collective behaviors has always
been an important research feld of nonlinear dynamics and
network science which expands the understanding of the
macroscopic dynamics in complex systems [3, 4].

Synchronization is a typical collective behavior in net-
work science. Te Kuramoto model is a classical model to
describe the synchronization phenomenon of coupled phase

oscillators [1, 2]. When the coupling strength between os-
cillators exceeds a certain critical value (i.e., critical coupling
strength Kc), the partial synchronization of coupled phase
oscillators can be observed. As the coupling strength further
increases, more and more oscillators are added to the
synchronized cluster, forming a macroscopic nonzero order
parameter. Since it was introduced, the classical Kuramoto
model and its generalization have received wide attention
aimed at analyzing collective synchronization [3, 4].

Te robustness of synchronization to external pertur-
bations is one of the central issues in probing oscillator
synchronization. Due to the nonlinear characteristics of
system dynamics, many interesting phenomena can be
produced by the existence of external perturbations, e.g., the
controlling synchronization by periodic signals [11–13], the
steering synchronization by periodic drivings [14–18], the
generating synchronization by specifying initial conditions
[19], and the enhancing synchronization by random noise
[20–23]. Similar studies also exist in ecosystems (where the
interaction of biological species are changing with seasons)
and metabolic systems (where gene expressions are afected
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by diurnal cycles) [5, 7]. Recently, the feld of time-varying
coupling has received a great deal of attention [24–30]. It
should be noted that periodic and even random modulation
of the coupling strength does not always enhance syn-
chronization [17, 31]. For example, periodic coupling sup-
presses synchronization in coupled phase oscillators in
general, and the suppressed synchronization by periodic
coupling has been attributed to the asymmetric oscillation of
the temporal order parameter at the macroscopic scale [31].
However, it is still not very clear how this happened at the
microscopic scale. In coupled nonlinear systems, some
microscopical synchronous behaviors are exhibited when
the inner elements compete or cooperate [29, 32]. In these
studies, two questions are naturally raised: How the syn-
chronization behaviors of coupled oscillators are afected by
periodic couplings at the microscopic scale? How the critical
coupling strength of coupled oscillators are afected by
periodic couplings?

Motivated by the questions mentioned previously, we
revisit how the synchronization behaviors of networked
phase oscillators could be afected by periodic coupling [31].
Using the dimension reduction method, we analyze the
impacts of periodic coupling on synchronization and give
the formula of synchronization order parameter analytically.
In particular, it is proven theoretically that the critical
coupling strength remains unchanged by the periodic
coupling. Numerical results demonstrate that the adoption
of periodic coupling will suppress synchronization in gen-
eral, showing the decreased synchronization order param-
eter as compared with the results of constant coupling. Te
theoretical predictions of the dimension reduction method
are in good agreement with the results of numerical sim-
ulations. We investigate further the microscopic mechanism
underlying the observed phenomena using the bifurcation
tree, which shows clearly that the suppressed synchroni-
zation by periodic coupling is attributed to the formation of
microscopic clustering patterns in the system. Te fndings
shed lights on the interaction between complex nonlinear
systems and external stimuli, and it might have implications
for the interventions (evaluations) of function (operation) in
some realistic systems, for example, the therapeutic in-
terventions of neurological disorders, the control of cellular
metabolism by diurnal cycles and circadian rhythm, and the
evaluation of the impacts of seasonal variation on ecological
processes [6–8].

Te rest of this paper is organized as follows. In the next
section, we will present the generalized model with
a unimodal distribution of natural frequencies. In Section 3,
we will derive a dimension reduction on the efects of pe-
riodic coupling on synchronization. Specially, we will
provide rigorous proof of the critical strength coupling. In
Section 4, we explore the microscopic mechanism of the
suppressed synchronization, and discuss the generalizations
to diferent network models, containing Zachary’s karate
club network and the neural network of nematode
C. elegans. Te conclusion will be given in Section 5.

2. The Generalized Model

We consider the dynamics of network-coupled phase os-
cillators governed by the following equations:

θ
.

i � ωi +
K(t)

di

􏽘

N

j�1
aij sin θj − θi􏼐 􏼑, (1)

with
K(t) � K0[1 + sin(Ωt)], (2)

where i, j � 1, . . . , N are the oscillator (node) indices, θi is
the phase of the ith oscillator, and ωi and N are, respectively,
natural frequency of the ith oscillator and the size of the
system. Te natural frequency ωi follows a prescribed
probability density function g(ω). Te coupling relationship
between oscillators can be described by the adjacency matrix
A � aij􏽮 􏽯, with aij � aji � 1 if two oscillators are connected
by a link, otherwise aij � aji � 0. di represents the number of
connections associated with oscillator i, that is, its degree. In
contrast to the case of the classical Kuramoto model where
the coupling strength among oscillators is an invariant
constant, the generalized model considered here involves
a coupling strength function K(t) that depends on the
coupling frequency Ω and coupling amplitude K0 of peri-
odic coupling [15]. If Ω � 0, we have K � K0 and the model
is equivalent to the generalized Kuramoto model with
constant coupling [4]. Furthermore, when all the oscillators
are connected (i.e., aij � aji � 1 for all the nondiagonal el-
ements in matrix A), equation (1) depicts the classical
Kuramoto model [4]. Te main work of this paper is to
investigate how the variations of Ω and K0 will afect the
synchronization degree of the oscillators at the
microscopic scale.

Following the references [33, 34], we select the natural
frequency ωi from the Lorentzian distribution as follows:

g(ω) �
∆
π

1
ω − ω0( 􏼁

2
+ ∆2

. (3)

Here, ∆ and ω0 are the scale parameter and the central
frequency of the Lorentzian distribution, respectively. To
describe the synchronization behaviors of the oscillator,
Kuramoto introduces the macroscopic order parameter,
which is defned as follows [2]:

z(t) � R(t)e
iψ

�
1
N

􏽘

N

j�1
e
iθj ,

(4)

where R(t) denotes the modulus of the complex order
parameter z(t), ψ is a collective phase, and i �

���
− 1

√
is an

imaginary unit. R ∈ [0, 1] describes the degree of synchro-
nization between oscillators, such that R � 0 denotes the
desynchronization state, whereas R � 1 is the global (per-
fectly) synchronization state.
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3. Theoretical Analysis

To make the model theoretically tractable, we choose
N⟶∞ and employ the all-to-all coupling structure (all-
coupled model). Using the dimension reduction method
proposed by Ott and Antonsen [33, 34], we investigate the
dynamical mechanism of the network-coupled phase os-
cillators. Under the thermodynamic limit condition
(N⟶∞), the state of the system at time t can be depicted
by a continuous probability function ρ(θ,ω, t). Te evolu-
tion of ρ(θ,ω, t) satisfes the continuity equation as follows:

zρ(θ,ω, t)

zt
+

z υθρ(θ,ω, t)􏼂 􏼃

zθ
� 0, (5)

with

υθ(θ,ω, t) � ω +
K(t)

2i
z(t)e

− iθ
− z
∗
(t)e

iθ
􏽨 􏽩. (6)

Te complex order parameter z(t) is written in the
continuous form as follows:

z(t) � 􏽚
2π

0
dθ􏽚

+∞

− ∞
dωρ(θ,ω, t)e

iθ
. (7)

Here, z∗(t) denotes the complex conjugate of z(t).
Expanding the Fourier series of ρ(θ,ω, t) with respect to θ,
we can obtain the following:

ρ �
g(ω)

2π
1 + 􏽘

∞

n�1
ρn(ω, t)e

− inθ
+ c.c.⎡⎣ ⎤⎦. (8)

Here, c.c. stands for the complex conjugate of
􏽐
∞
n�1ρn(ω, t)e− inθ. Using the Ott-Antonsen ansatz method

[33, 34], we get

ρn(ω, t) � [a(ω, t)]
n
, |a(ω, t)|≤ 1, (9)

we can obtain the following equations by substituting
equation (8) into equations (5) and (7):

za

zt
+ iωa +

K(t)

2
z(t)a

2
− z
∗
(t)􏽨 􏽩 � 0, (10)

z
∗
(t) � 􏽚

∞

− ∞
dωa(ω, t)g(ω). (11)

Te Lorentzian distribution can be described as
g(ω) � 1/(i2π)[(ω − ω0 − i∆)− 1 − (ω − ω0 + i∆)− 1]. We
thus obtain z(t) � a∗(ω0 − i∆, t) by the residue theorem.
Substituting this result into equation (10), we obtain the
following nonlinear equation with respect to the order
parameter:

dR

dt
+ ∆ −

K(t)

2
􏼢 􏼣R +

K(t)

2
R
3

� 0, (12)

where R is the modulus of z(t).
For the case of coupling frequencyΩ � 0, the solution of

equation (12) is as follows [33, 34]:

R(t) � R0 1 +
R2
0

R(0)2
− 1􏼠 􏼡e

2∆− K0( )t
􏼨 􏼩

− 1/2

, (13)

where R0 �
���������
1 − 2∆/K0

􏽰
and R(0) is the initial value of the

order parameter. Equation (13) shows that the value of R

approachesR0 forK0 >Kc � 2∆ and approaches 0 forK0 <Kc.
For the case of coupling frequency Ω≠ 0, the

desynchronization state is described by R � 0. Te lineari-
zation of R � 0 is performed in equation (12). Letting
R � 0 + δR � δR, we obtain

dδR

dt
� − ∆ +

K(t)

2
􏼢 􏼣δR −

K(t)

2
(δR)

3
. (14)

Neglecting the higher order term o((δR)2), we have

dδR

dt
� − ∆ +

K(t)

2
􏼢 􏼣δR. (15)

Terefore, we get the averaged eigenvalue as follows:

λ〈 〉 � − ∆ +
K(t)

2
􏼪 􏼫 � − ∆ +

K(t)

2
􏼪 􏼫

� − ∆ +
K0

2
.

(16)

Here, the brackets denote a time average. Hence, R � 0
will be transversely stable if λ〈 〉< 0. It is found that the
frequency and amplitude of periodic coupling do not appear
on the right-hand side of equation (16). Tis decoupling
process shows that λ〈 〉 is the eigenvalue connected with the
transverse perturbation δR (In the case where R � 0 is the
incoherent state). If λ〈 〉< 0, we can deduce that K0 < 2∆.
Terefore, the critical coupling strength Kc (� 2∆) is in-
dependent of periodic coupling, and it depends only on the
scale parameter ∆ of the Lorentzian distribution.

When K0 >Kc, equation (12) cannot be solved analyt-
ically. Terefore, we use numerical simulation to solve it. By
solving equation (12) numerically, the variation of R in the
parameter space (Ω, K0) is plotted in Figure 1. It shows that
compared to the constant coupling, the synchronization
performance of the system deteriorates with periodic cou-
pling, and the order parameter R is gradually decreased with
decreasing frequency of periodic coupling. Furthermore,
equation (12) indicates that the evolution of R is in-
dependent of the central frequency, ω0. Tese studies are in
line with the fndings in the periodically coupled phase
oscillators [31]. Diferent from the previous study [31], we
provide theoretical analysis for the critical strength coupling
Kc that is independent of periodic coupling.

4. Numerical Results

In this section, we frst consider the all-coupled case and
show that suppressed synchronization emerges using peri-
odic coupling. We verify our result using the theoretical
analysis. Ten, we explore the underlying microscopic

Discrete Dynamics in Nature and Society 3



mechanism based on the method of bifurcation tree, and
fnally, we extend the study to complex network cases.

4.1. All-Coupled Case. In numerical simulations, we choose
the system size as N � 10, 000, and update equations (1)
and (2) using the fourth-order Runge–Kutta algorithm
with step size δt � 0.01 and the transient time Ttr � 200. In
obtaining the order parameter, R, we average the instant
order parameter, R(t), over a period of T � 20. Figure 2
(a1–c1) show the values of R versus the coupling amplitude
K0 in the all-coupled model. For all the cases, the values of
R are staying around 0 when K0 <Kc ≈ 1.0. When K0 >Kc,
the value of R for the case of Ω � 2 is clearly smaller than
that of constant coupling (Ω � 0), indicating that syn-
chronization is suppressed. Furthermore, for the case of
Ω � 9, we fnd that the value of R is very close to that of
constant coupling, signifying that synchronization is hardly
afected. One can notice that the synchronization is sup-
pressed for periodic coupling, and the theoretical results in
equation (12) are in line with the simulation results in
equation (1).

While recent studies show that synchronization is
suppressed by time-varying coupling in general, the un-
derlying mechanism is still not very clear [31]. Here, by the
method of bifurcation tree, we illustrate the efects of pe-
riodic coupling on synchronization. To characterize the
underlying mechanism, the microscopic efective frequen-
cies are defned as follows [29, 32, 35]:

ωi􏼊 􏼋 �
1
Ti

􏽚
t+Ti

t
θ
.

i(t)dt, (17)

with Ti being the average time window. If two oscillators θi

and θj are phase locked, then ωi􏼊 􏼋 � ωj􏽄 􏽅, otherwise
ωi􏼊 􏼋≠ ωj􏽄 􏽅. When all the oscillators have a common value,
it implies that a global phase-locking of the system has
occurred. However, if ωi􏼊 􏼋 behaves like a random form, it
indicates that the system is in an incoherent state.

For the efective frequencies ωi􏼊 􏼋, we fx t � 200 and
choose Ti � 20. Figure 2(a2–c2) plot the bifurcation trees of
the efective frequencies ωi􏼊 􏼋 versus the coupling ampli-
tude K0 for diferent coupling frequencies Ω � 0, 2, 9. It
initially forms a cluster centered at the central frequency ω0
for all three cases. For coupling frequency Ω � 0, as cou-
pling amplitude K0 increases from 0, a majority of oscil-
lators move close to ωi􏼊 􏼋 � 0, and it fnally generates a large
cluster (Figure 2(a2)). For coupling frequency Ω � 2, as
coupling amplitude K0 increases from 0, a majority of
oscillators form several clusters which are centered at
kΩ(k � ±1, ±2, . . .) (Figure 2(b2)). Tis decreases the
degree of synchronization and indicates that coupling
frequency Ω � 2 suppresses synchronization in coupled
phase oscillators. As coupling amplitude K0 continually
increases, more oscillators merge into the synchronous
cluster ωi􏼊 􏼋 � 0. Tis phenomenon is diferent from the
case of Ω � 0. For coupling frequency Ω � 9, as coupling
amplitude K0 increases from 0, a majority of oscillators
form several clusters which are centered at
kΩ(k � ±1, ±2, . . .) (Figure 2(c2)). Tis decreases the
degree of synchronization and indicates that coupling
frequency Ω � 9 suppresses synchronization in coupled
phase oscillators. However, because kΩ(k � ±1, ±2, . . .)

are away from the central frequency ω0, the degree of
synchronization has hardly afected by the periodic cou-
pling. It indicates that coupling frequency Ω � 9 has little
efect on the synchronization performance of coupled
phase oscillators. As coupling amplitude K0 continually
increases, more oscillators merge into the synchronous
cluster ωi􏼊 􏼋 � 0. In contrast to the case of constant coupling
(Ω � 0), a majority of oscillators form several clusters
which are centered at kΩ(k � ±1, ±2, . . .) for Ω � 2, 9.
Te clusters are diferent in size and frequency, but are all
locked to the frequency of the periodic coupling (with
a fairly uniform spacing between adjacent clusters). Fur-
thermore, the closer is the central frequency ω0, the bigger
is the cluster size (Figure 2(a2–c2)).

Terefore, it is found that when coupling amplitude K0 is
small (K0 <Kc), although the variation of Ω, the efective
frequencies ωi􏼊 􏼋 are almost a random form for all the cases.
As K0 increases from Kc, the efective frequencies ωi􏼊 􏼋 have
clearly several common values for the case of periodic
coupling, indicating that synchronization is suppressed by
periodic coupling. However, for the case of high-frequency
coupling (Ω � 9), we observe that the efective frequencies
ωi􏼊 􏼋 are approximate to that of constant coupling for the
whole area, signifying that synchronization is less infuenced
by high-frequency coupling. Tese studies demonstrate that
the adoption of periodic coupling will suppress synchro-
nization in general, and the degree of synchronization
gradually deteriorates with decreasing the frequency of
periodic coupling. Te fndings of this study are reported in
the periodically coupled phase oscillators [31]. It is im-
portant to note that the suppressed synchronization is at-
tributed to the formation of microscopic clustering patterns
in our study, which was previously not found in the peri-
odically coupled phase oscillators [31].
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Figure 1: (Color online) for ∆ � 0.5 and ω0 � 0, the contour plot of
R in the parameter space of (Ω, K0) by solving equation (12). Te
color bar represents the magnitude of the order parameter, R.
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When the time scale of the nodal dynamics is almost
identical to that of periodic coupling, the synchronization
performance could be greatly changed in the periodically
coupled chaotic oscillators [15]. In particular, it is shown
that at some characteristic frequencies of the periodic
coupling, the upper bound of stable synchronization in the
parameter space of the coupling strength can be enhanced.
For the periodically coupled phase oscillators, the averaged
time scale of the nodal dynamics is measured by the central
frequency ω0 in the Lorentzian distribution. However, it is
shown that ω0 is irrelevant to the synchronization perfor-
mance for periodic coupling [31]. Tis arouses our interest
in studying the infuence of ω0 on synchronization using
bifurcation trees.

Changing ω0 to − 2 and 2, we plot the variations of ωi􏼊 􏼋

with respect to K0 for Ω � 2 in Figure 3. We see that the
clusters are diferent in size and frequency, but are all locked to
ω0 + kΩ(k � ±1, ±2, . . .). Furthermore, the closer is the
central frequencyω0, the bigger is the cluster size (Figures 2 and
3). Tis signifes that the clusters are dependent on the central
frequencyω0 and the frequencyΩ of the periodic coupling.We
also see that the results of ω0 � − 2 and 2 are identical to that of
ω0 � 0 except for the position of clusters. It suggests that the
synchronization performance of periodically coupled phase
oscillators is irrelevant to the time scale of the nodal dynamics
(the central frequency ω0 of the Lorentzian distribution). Te
results of this study are in line with the fndings in the peri-
odically coupled phase oscillators [31]. It should be noted that
the main phenomenon is independent of the specifc form of
the frequency distribution. It has been verifed from bifurcation
trees that Gaussian distribution and the triangular frequency
distribution also have similar phenomena.

4.2. Complex Network Cases. We fnally test the universality
of the observed phenomena in the system with complex
network structures. Te frst system we investigate is the
Zachary’s karate club network which consists of 34 nodes
and 78 links [36]. It is one of the most commonly used in
complex networks, sociological analysis, and other felds.
Signifcantly, it has two clusters in Zachary’s karate club
network. Besides the network structure, other settings of
Zachary’s karate club network are the same as the globally
connected network in Figure 2, such as the coupling forms
and the frequency distribution. Figure 4 shows the variations
of ωi􏼊 􏼋 with respect to K0 for the three cases of coupling
frequency Ω � 0, coupling frequency Ω � 0.3 and coupling
frequency Ω � 1. We see that before the onset of syn-
chronization, the efective frequencies of ωi􏼊 􏼋 for all three
cases (Ω � 0, 0.3, 1) are very similar; after the onset point,
the efective frequencies of ωi􏼊 􏼋 for the cases ofΩ � 0.3, 1 are
diferent from that of constant coupling (Ω � 0). Specif-
cally, we see that several clusters have been formed for
Ω � 0.3, 1. Tese results are in agreement with the results
obtained in the globally connected network in Figure 2. It
should be noted that due to the sparse connectivity of
Zachary’s karate club network, the synchronization order
parameter is not precisely described by equation (12).
However, we have revealed that the dynamic mechanism is
universal, and is independent of the network structure
(Figures 2 and 4). Terefore, we see that compared to the
case of constant coupling, synchronization is suppressed by
periodic couplings in general, and this is attributed to the
formation of clusters. In addition, the spacing between
adjacent clusters is identical to the frequency of periodic
coupling.
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Figure 2: (Color online) the results for ∆ � 0.5 and ω0 � 0. (a1–c1) are the values of R versus the coupling amplitude, K0 for diferent cases
Ω � 0, 2, 9, respectively. Black symbols and red lines, respectively, represent the numerical and theoretical results. (a2–c2) are, respectively,
the bifurcation trees of N � 10, 000 oscillators for diferent cases Ω � 0, 2, 9, i e., the efective frequencies, ωi􏼊 􏼋, with respect to the coupling
amplitude, K0. Te vertical dotted lines represent the critical coupling strength Kc � 2∆. For better display, the number of the oscillators is
1,000 evenly extracted from N � 10, 000 of the simulations, and only the efective frequencies ωi􏼊 􏼋 in the range [− 10, 10] are displayed.
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represents the critical coupling strength Kc � 2∆.
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Te second system we study is the neural network of the
nematode C. elegans, which contains 297 nodes and 2,148
links [37]. Te natural frequencies of the oscillators are still
selected from the Lorentzian distribution, and the param-
eters are the same as those of the globally connected network
(Figure 2). Figure 5 shows the variations of ωi􏼊 􏼋 with respect
to K0 for the cases of coupling frequency Ω � 0, coupling

frequency Ω � 1, and coupling frequency Ω � 7. Te results
are similar to the results of Zachary’s karate club network
(Figure 4), i.e., synchronization is suppressed by periodic
couplings compared to the scenario of constant coupling.
Terefore, periodic coupling suppresses synchronization in
the general network structure and this is attributed to the
formation of clusters.
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5. Conclusion

As the dynamical basis of the normal brain function, the
synchronous activity of distributed neurons has attracted
the interest of neuroscientists [38]. In particular, there have
been a variety of stimulation techniques aimed at im-
proving the brain function or restoring the brain function
from disorders in the past few decades [8, 9], including
deep-brain stimulations and transcranial direct-current
stimulations. Although this evidence has revealed that
the molecular and cellular pathology of neural disorders
can be changed by externally added low-frequency periodic
stimuli. However, the underlying mechanism remains
unclear.

Te collective behavior of a complex system implies the
emergence of a microscopic order from the organizations of
populations of units with mutual interaction. Usually, the
number of degrees of freedom at the macroscopic scale is so
large that an exact description of the system at this level is
impossible and also unnecessary. Terefore, a microscopic
study of the complex system is signifcant [29, 32]. Here,
treating the stimuli as periodic perturbations that modify the
strength of couplings, we evaluate how the synchronization
behaviors of networked phase oscillators could be afected by
periodic coupling at the microscopic scale.

In summary, we have studied the generalized model with
periodic coupling in which the coupling strength is changing
periodically with time. We theoretically and numerically
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Figure 5: (Color online) for the neural network of the nematodeC. elegans of ∆ � 0.1 andω0 � 0, the bifurcation trees ofN � 297 oscillators
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verify that the critical coupling strength is irrelevant to the
periodic coupling. Te bifurcation trees have revealed that
the system can exhibit rich clustering features in a system of
fnite size. Te synchronization and desynchronization are
characterized by the bifurcation tree, and the suppressed
synchronization is attributed to the formation of clusters. In
addition, these analyses can be generalized to realistic
networks. Te fndings extend our knowledge on the dy-
namical responses of a complex network to external per-
turbations, and provide lights on the mechanism of
suppressed synchronization in periodically coupled oscil-
lators. Future studies could apply this model to study these
periodically coupled biological, physical, social, and tech-
nological systems and to better understand their associated
behaviors.
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