# Conditional Matching Preclusion Number of Graphs 

<br>${ }^{1}$ Qinghai Normal University, Xining, Qinghai 810008, China<br>${ }^{2}$ School of Mathematics and Statistis, Qinghai Normal University, Xining, Qinghai 810008, China

Correspondence should be addressed to Shumin Zhang; zhangshumin@qhnu.edu.cn
Received 2 August 2022; Revised 5 November 2022; Accepted 15 January 2023; Published 21 February 2023
Academic Editor: Junwei Wang
Copyright © 2023 Yalan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The conditional matching preclusion number of a graph $G$, denoted by $m p_{1}(G)$, is the minimum number of edges whose deletion results in the graph with no isolated vertices that has neither perfect matching nor almost-perfect matching. In this paper, we first give some sharp upper and lower bounds of conditional matching preclusion number. Next, the graphs with large and small conditional matching preclusion numbers are characterized, respectively. In the end, we investigate some extremal problems on conditional matching preclusion number.

## 1. Introduction

All graphs are undirected, finite, and simple in this paper, refer to the book [1] for notation and terminology not described here. If a cycle contains every vertex of $G$ exactly once, then we called it is a Hamiltonian cycle of $G$ . A connected graph $G$ is Hamiltonian if it exists a Hamiltonian cycle in G. Furthermore, if there exists a Hamiltonian path between any two vertices of $G$, then $G$ is said Hamiltonian connected. Denoted $E\left(V_{1}, V_{2}\right)$ to be a edges set has one endpoint in $V_{1}$ and another in $V_{2}$. If an edge subset $F$ satisfies $G-F$ has neither perfect matching nor almost-perfect matching, then $F$ is a matching preclusion set (MP for short) of G. Denoted $m p(G)$ is the minimum number of edges of all MP set in $G$. The concept of matching preclusion was introduced in [2] and further studied in [3-18]. Some distributed algorithms require each vertex of the system to be matched by a neighbour vertex, and the matching preclusion number measures the robustness of a graph as a communications network topology. Meanwhile, matching preclusion number has a theoretical connection with conditional connectivity and "changing and unchanging of invariants." In a network, a vertex with a special matching vertex after edge failure any time implies that tasks running on a fault vertex can be
change into its matching vertex. Therefore, under this fault assumption, larger $\mathrm{mp}(G)$ signifies higher fault tolerance. However, in the network, the probability that the adjacent vertices of the same vertex fail at the same time is very small. So the question is if we delete edges, what are the basic obstructions to a perfect matching or an almost-perfect matching in the resulting graph if no isolated vertices are created. This motivates our next definition. If an edge subset $F$ satisfies $G-F$ has no isolated vertices and has neither perfect matching nor almost-perfect matching, then $F$ is a conditional matching preclusion set (CMP for short). Denoted $m p_{1}(G)$ is the minimum number of all CMP set. At present, there have been some discussions about the conditional matching preclusion number of special graphs. We mainly want to discuss the conditional matching preclusion number of general graphs. We consider the following three problems in this paper.

Problem 1. Compute the minimum integer $s(n, k)=$ $\min \{|E(G)|: G \in \psi(n, k)\}$, where $\psi(n, k)$ be the set of all graphs of order $n$ with conditional matching preclusion number $k$

Problem 2. Compute the minimum integer $f(n, k)$ such that for every connected graph $G$ of order $n$, if $|E(G)| \geq f(n, k)$, then $m p_{1}(G) \geq k$

Problem 3. Compute the maximum integer $g(n, k)$ such that for every connected graph $G$ of order $n$, if $|E(G)| \leq g(n, k)$, then $m p_{1}(G) \leq k$

A basic obstruction to a perfect matching of even graph with no isolated vertex will be the existence of a path $u$ -$w-v$ where the degrees of $u$ and $v$ are 1 . Define $v_{e}(G)=$ $\min \left\{d_{G}(u)+d_{G}(v)-2-y_{G}(u, v): u\right.$ and $v$ are distance 2 apart $\}$, if $u$ and $v$ are adjacent, then $y_{G}(u, v)=1$, and 0 otherwise.

Proposition 1 (see [7]). An even graph $G$ with $\delta(G) \geq 3$, then $m p_{1}(G) \leq v_{e}(G)$.

The basic obstruction to an almost-perfect matching of odd graph with no isolated vertex will be the existence of a three vertices of degree 1 with a common neighbour. Define $v_{0}(G)=\min \{|F|: G-F$ has no isolated vertices and has 3 leaves adjacent to the same vertex\}.

Proposition 2 (see [7]). An odd graph $G$ has $m p_{1}(G) \leq v_{0}(G)$.

For odd vertices bipartite graph $G=(U \cup V, E)$, we have $v_{0}^{\prime}(G)=\min \{|F|: G-F$ has no isolated vertices and has 2 leaves adjacent to the same vertex in $V\}$.

Proposition 3 (see [7]). Let $G$ be a bipartite graph with an odd number of vertices. Then, $m p_{1}(G) \leq v_{0}^{\prime}(G)$.

If $H$ is a spanning subgraph of $G$, we want to know whether we have $m p_{1}(H) \leq m p_{1}(G)$ holds.

Remark 1. For an even number $n(n \geq 12)$, let $G$ be a graph obtained from a $K_{3}=u_{1} v_{1} w_{1} u_{1}$ and a clique $K_{n-3}$ by adding three edges $u_{1} u_{2}, v_{1} v_{2}, w_{1} w_{2}$, where $u_{2}, v_{2}, w_{2} \in V\left(K_{n-3}\right)$. Let $H$ be a graph obtained from $G$ by deleting three edges of $K_{3}$. It is clear that $H$ is a spanning subgraph of $G$. By deleting three edges $u_{1} u_{2}, v_{1} v_{2}, w_{1} w_{2}$ in $G$, we can see that there is no perfect matching in the resulting graph; hence, $m p_{1}(G) \leq 3$. From the definition of $m p_{1}(H)$, for any $X \subseteq E(H)$, to avoid isolated vertices in $H-X$, we have $X \cap\left\{u_{1} u_{2}, v_{1} v_{2}, w_{1} w_{2}\right\}=$ $\varnothing$ and $X \subseteq E\left(K_{n-3}\right)$, so $m p_{1}(H) \geq 4>3 \geq m p_{1}(G)$.

Remark 2. For an odd number $n(n \geq 15)$, let $G$ be a graph obtained from a clique $K_{4}$ with vertex set $\left\{u_{1}, v_{1}, w_{1}, t_{1}\right\}$ and a clique $K_{n-4}$ by adding four edges $u_{1} u_{2}, v_{1} v_{2}, w_{1} w_{2}, t_{1} t_{2}$ between them, where $u_{2}, v_{2}, w_{2}, t_{2} \in V\left(K_{n-4}\right)$. Let $H$ be a graph obtained from $G$ by deleting six edges of the $K_{4}$. By deleting $\left\{u_{1} u_{2}, v_{1} v_{2}, w_{1} w_{2}, t_{1} t_{2}\right\}$ and three edges in $E\left(K_{4}\right)$, we can find there no perfect matching in the resulting graph; hence, $m p_{1}(G) \leq 7$. For any $X \subseteq E(H)$, to avoid isolated vertices in $H-X$, we have $X \cap\left\{u_{1} u_{2}, v_{1} v_{2}, w_{1} w_{2}, t_{1} t_{2}\right\}=\varnothing$ and $X \subseteq E\left(K_{n-4}\right)$, so $m p_{1}(H) \geq 8>7 \geq m p_{1}(G)$.

## 2. Sharp Bounds for CMP Number

Lemma 1 (see [2]). Let $n \geq 2$. Then, $m p\left(K_{n, n}\right)=n, K_{n, n}$ is super matched.

Lemma 2 (see [19]). Let $n \geq 3$. Then, $m p_{1}\left(K_{n, n}\right)=2 n-2$, $K_{n, n}$ is conditionally super matched.

## Theorem 1 (see [19])

(1) Let $n \geq 4$ be even, then

$$
m p_{1}\left(K_{n}\right)= \begin{cases}\frac{\left(n^{2}+2 n\right)}{8}, & \text { if } n \in\{4,6,8\}  \tag{1}\\ 2 n-5, & \text { if } n \geq 10\end{cases}
$$

(2) Let $n \geq 5$ be odd, then

$$
m p_{1}\left(K_{n}\right)= \begin{cases}\frac{\left(n^{2}+4 n+3\right)}{8}, & \text { if } n \in\{5,7,9,11,13\}  \tag{2}\\ 3 n-9, & \text { if } n \geq 15\end{cases}
$$

Proposition 4. Let $G$ be a graph with an even number of vertices and $\delta \geq 3$. Then, $m p_{1}(G) \leq \delta+\Delta-2$.

Proof. Let $u$ be the minimum-degree vertex in $G$. Since $\delta(G) \geq 3$, it exists a path $u-v-w$ in G. Let $X=E\left[\{u, w\}, N_{G}(\{u, w\}) \backslash v\right]$, then $G-X$ exists a path $u-$ $v-w$ and $d_{G}(u)=d_{G}(v)=1$. By Proposition 1 , $m p_{1}(G) \leq d(u)+d(w)-2 \leq \delta+\Delta-2$.

By Lemma 2, $m p_{1}\left(K_{n, n}\right)=2 n-2, \Delta\left(K_{n, n}\right)=\delta\left(K_{n, n}\right)=n$, we get $\delta\left(K_{n, n}\right)+\Delta\left(K_{n, n}\right)-2=2 n-2$ for $n \geq 3$.

Proposition 5. Let $G$ be a graph with an odd number of vertices and $\delta \geq 4$. Then, $m p_{1}(G) \leq \delta+2 \Delta-3$.

Proof. Let $u$ be the minimum-degree vertex of $G$ and $u x \in E(G)$. Since $d(x) \geq 4$, there exist two vertices $v, w$ and two edges $x v, x w \in E(G)$. Let $X=E\left[\{u, v, w\}, N_{G}(\{u, v\right.$, $w\}) \backslash x$ ], then $G-X$ has no isolated vertices and has 3 leaves adjacent to the same vertex $x$. By Proposition 2, $m p_{1}(G) \leq d(u)+d(v)+d(w)-3 \leq \delta+2 \Delta-3$.

## 3. Graphs with Given CMP Numbers

Theorem 2 (see [20]). For a graph with order $n$, if $\delta \geq(n / 2)$, then $G$ is Hamiltonian.

Lemma 3 (see [19]). A graph G has a perfect matching if and only if $G$ satisfies Tutte's condition, that is, $o(G-S) \leq|S|$.

Lemma 4 (see [19]). A graph $G$ has an almost-perfect matching if and only if every subset vertices satisfies Berge's condition, that is, $o(G-S) \leq|S|+1$.

The graphs with $m p_{1}(G)=2 n-k(k \geq 5)$ can be characterized completely.

Proposition 6. The even graph $G$ has order of $n \geq 10$, and $\delta(G) \geq 3$. Then, $m p_{1}(G)=2 n-5$ if and only if $G \cong K_{n}$.

Proof. From Theorem 1, we know $m p_{1}(G)=2 n-5$ when $G$ is a complete graph. Conversely, if $m p_{1}(G)=2 n-5$ and
$G \not \equiv K_{n}$, then there exist $u v \notin E(G)$. If $w$ is a common neighbour vertex of $u, v$, let $X=E_{G}\left[\{u, v\}, N_{G}(\{u, v\}) \backslash\{w\}\right]$. So there exists a path $u-w-v$ in $G-X$ satisfies $d_{G}(u)=$ $d_{G}(v)=1$. Since $\delta(G) \geq 3, G-X$ has no isolated vertices and no perfect matching exist. Since $|X|=d_{G}(u)+d_{G}$ (v) $-2 \leq 2 n-6$, it means $m p_{1}(G) \leq|X| \leq 2 n-6$, which contradicts to $m p_{1}(G)=2 n-5$. If no exist a common neighbour vertex for $u$ and $v$, we choose a shortest path between $u$ and $v$, say $P:=u a_{1} a_{2} \ldots a_{s} v\left(u a_{s} \notin E(G)\right)$. Let $X=E_{G}\left[\left\{u, a_{2}\right\}, N_{G}\left(\left\{u, a_{2}\right\}\right) \backslash\left\{a_{1}\right\}\right]$, then there exists a path $u-a_{1}-a_{2}$ in $G-X$ and $d_{G}(u)=d_{G}\left(a_{2}\right)=1$. Since $|X|=$ $d(u)+d\left(a_{2}\right)-2 \leq n-3+n-2-2=2 n-7$, then $m p_{1}(G)$ $\leq|X| \leq 2 n-7$. So $G \cong K_{n}$.

Theorem 3. An even graph $G$ has order $n \geq 8 k-12$ and $\delta(G) \geq 3$. Then, $m p_{1}(G)=2 n-k$ if and only if $\delta(G)=n+$ $4-k$ and $5 \leq k \leq n+1$.

Proof. From Proposition 6, we only need to consider $6 \leq k \leq n+1$. When $m p_{1}(G)=2 n-k$, we first suppose $\delta(G) \leq n+3-k$ and choose a minimum-degree vertex $u$. Since $\delta(G) \geq 3$, there exists a path $u-v-w$ in $G$. Let $X=$ $E\left[\{u, w\}, N_{G}(\{u, w\}) \backslash\{v\}\right]$, then there exists a path $u-v-w$ in $E(G)-X$ and $d(u)=d(v)=1$. If $u w \in E(G)$, then $|X| \leq n+3-k-2+n-1-2+1=2 n-k-1$, and we have $m p_{1}(G) \leq|X| \leq 2 n-k-1$. If $u w \notin E(G)$, then $|X| \leq n+3-$ $k-1+n-1-2=2 n-k-1$, and we have $m p_{1}(G) \leq|X| \leq 2 n-k-1$. Thus, $\delta(G) \geq n+4-k$. Let $\delta(G) \geq n+4-k$, and let $\delta(G)=n+4-k+t$ and $t \geq 1$. By induction on $k$, we prove that $m p_{1}(G)=2 n-k$ if and only if $\delta(G)=n+4-k$. From Proposition 6, the result holds for $k=5$. Suppose that the argument is true for every integer $k^{\prime}\left(k^{\prime}<k\right)$, that is, $m p_{1}(G)=2 n-k^{\prime}$ if and only if $\delta(G)=$ $n+4-k^{\prime}$. Since $\delta(G)=n+4-k+t=n+4-(k-t)$ and $k-t<k$, then $m p_{1}(G)=2 n-(k-t)$, it contradicts to $m p_{1}(G)=2 n-k$. So $\delta(G)=n+4-k$.

Conversely, suppose $\delta(G)=n+4-k$. We prove that $m p_{1}(G)=2 n-k$. Let $u \in V(G)$. Since $\delta(G) \geq 3$, it follows that there exists a path $u-v-w$ in $G$. Let $X=E\left[\{u, w\}, N_{G}(\{u, w\}) \backslash v\right]$, then $E(G)-X$ exists a path $u-v-w$ and $d(u)=d(w)=1$. If $u w \in E(G)$, then $|X| \leq n+$ $4-k-2+n-1-2+1=2 n-k$, and we have $m p_{1}(G) \leq|X| \leq 2 n-k$. If $u w \notin E(G)$, then $|X| \leq n+4-k-$ $1+n-1-2=2 n-k$, and we have $m p_{1}(G) \leq|X| \leq 2 n-k$. Thus, $m p_{1}(G) \leq 2 n-k$.

Now, we prove that $m p_{1}(G) \geq 2 n-k$. Suppose $\operatorname{deg}_{G[X]}(v) \leq(n / 2)+4-k$ for every $v \in V(G), \operatorname{deg}_{G-X}(v)=$ $\operatorname{deg}_{G}(v)-\operatorname{deg}_{G[X]}(v) \geq n+4-k-(n / 2)-4+k=(n / 2)$. By Theorem 2, $G-X$ has a Hamiltonian cycle, so there is a perfect matching in $G-X$. It exists a vertex $v \in V(G)$ and $\operatorname{deg}_{G[X]}(v) \geq(n / 2)+5-k$. Since $G-X$ has no isolated vertices, there has a vertex $u \in V(G)$ and one edge $v u \in E(G \backslash X)$. Let $G_{1}=G-\{v, u\}$, then $\left|X \cap E\left(G_{1}\right)\right| \leq 2 n-$ $k-1-((n / 2)+5-k)=(3 n / 2)-6$.

If $G_{1}-X$ has an isolated vertex, say $a$, then $d_{G_{1}[X]}(a) \geq n+2-k$. Since $G-X$ has no isolated vertices, it means $a$ must adjacent to at least one of $u$ and $v$. If $a v \in E(G-X)$, let $G_{2}=G-\{v, a\}$, then $\left|X \cap E\left(G_{2}\right)\right| \leq|X|-$ $\operatorname{deg}_{G[X]}(v)-\operatorname{deg}_{G[X]}(a) \leq 2 n-k-1-((n / 2)+5-k)-$
$(n+2-k)=(n / 2)+k-8$. Clearly, $\operatorname{deg}_{G_{2}-X}(x)+\operatorname{deg}_{G_{2}-X}$ $(y) \geq 2(n+2-k)-$
$(n / 2)-k+8=(3 n / 2)-3 k+12 \geq n(n \geq 6 k-14)$ for any vertex pairs $x, y \in V\left(G_{2}\right)$, and then, $G_{2}-X$ contains a Hamiltonian cycle and a perfect matching $M$. Furthermore, $M \cup\{a v\}$ is a perfect matching of $G-X$. If $a v \notin E(G-X)$, then $a u \in E(G-X)$. If there is a vertex $b$ and $b \neq u$ such that $v b \in E(G-X)$, we let $G_{3}=G-\{v, b, u, a\}$. Clearly, $\operatorname{deg}_{G_{3}-X}(s)+\operatorname{deg}_{G_{3}-X}(t) \geq 2(n-k)-(n / 2)-k+8-1=$ $n+(n / 2)-3 k+7 \geq n+(6 k-14 / 2)-3 k+7=n$
( $n \geq 6 k-14$ ) for any vertex pairs $s, t \in V\left(G_{3}\right)$, and then, $G_{3}-$ $X$ has a Hamiltonian cycle and a perfect matching $M$ in $G_{3}-$ $X$. Furthermore, $M \cup\{v b, u a\}$ is a perfect matching of $G-X$. If there exists no vertex $b$ (except $u$ ) such that $v b \in E(G-X)$ , let $X_{1}=E\left[v, N_{G}(v) \backslash\{u\}\right] \cup E\left[a, N_{G}(a) \backslash\{u\}\right]$, we have $X_{1} \subseteq X$ and $2 n+6-2 k \leq\left|X_{1}\right| \leq 2 n-6$. So $|X|-\left|X_{1}\right| \geq 2 n-$ $k-1-2 n+6=5-k \geq 0$, it means $k \leq 5$, which contradicts to $k \geq 6$.

If $G_{1}-X$ has no isolated vertices, suppose $g_{G_{1}[X]}(x) \leq(n / 2)+2-k$ for every vertex $x \in V\left(G_{1}\right)$, then $\operatorname{deg}_{G_{1}-X}(x)=\operatorname{deg}_{G_{1}}(x)-\operatorname{deg}_{G_{1}[X]}(x) \geq n+2-k-(n / 2)-$ $2+k=(n / 2)$. Then, $G_{1}-X$ contains a Hamiltonian cycle, so a perfect matching $M$ in $G_{1}-X$, and then, $M \cup\{u v\}$ is a perfect matching in $G-X$. Suppose that there exist two vertices $x, y \in V\left(G_{1}\right)$ with $\operatorname{deg}_{G_{1}[X]}(x) \geq(n / 2)+3-k$ such that $\quad x y \notin X$. Let $G_{3}=G-\{v, u, x, y\}$, then $\left|E\left(G_{3}\right) \cap X\right| \leq(3 n / 2)-6-(n / 2)-3+k=n+k-9$. Since $d_{G_{3}-X}(a) \geq n-k-n-k+9=9>1$ for each vertex $a \in V\left(G_{3}\right), G_{3}-X$ has no isolated vertices. Suppose $\operatorname{deg}_{G_{3}[X]}\left(x^{\prime}\right) \leq(n / 2)-k$ for every vertex $x^{\prime} \in V\left(G_{3}\right)$, then $\operatorname{deg}_{G_{3}-X}\left(x^{\prime}\right)=\operatorname{deg}_{G_{3}}\left(x^{\prime}\right)-\operatorname{deg}_{G_{3}[X]}\left(x^{\prime}\right) \geq n-k-(n / 2)+$
$k=(n / 2)$. By Theorem 2, $G_{3}-X$ contains a Hamiltonian cycle and a matching $M$ in $G_{3}-X$, so $M \cup\{u v, x y\}$ is a perfect matching in $G-X$. Suppose that there exists a vertex $x^{\prime} \in V\left(G_{3}\right)$ and $\operatorname{deg}_{G_{3}[X]}\left(x^{\prime}\right) \geq(n / 2)+1-k$ and $x^{\prime} y^{\prime} \notin X$. Let $\quad G_{4}=G-\left\{v, u, x, y, x^{\prime}, y^{\prime}\right\} . \quad\left|E\left(G_{4}\right) \cap X\right| \leq n+k$ $-9-(n / 2)-1+k=(n / 2)+2 k-10$. It follows that for any vertex pair $s, t \in V\left(G_{4}\right), \operatorname{deg}_{G_{4}-X}(s)+\operatorname{deg}_{G_{4}-X}(t) \geq 2(n-2-$ $k)-(n / 2)+10-2 k=(3 n / 2)-4 k+6 \geq n$. $(n \geq 8 k-12)$. So $G_{4}-X$ contains a Hamiltonian cycle, and hence, there is a perfect matching $M$ in $G_{4}-X$. Clearly, $M \cup\left\{u v, x y, x^{\prime} y^{\prime}\right\}$ is a perfect matching of $G-X$. From the above argument, we get $m p_{1}(G)=2 n-k$.

Next, we characterize the odd graphs with $m p_{1}(G)=$ $3 n-9,3 n-10,3 n-11$, respectively.

Proposition 7. Let $G$ be an order $n \geq 15$ and $\delta(G) \geq 4$. Then, $m p_{1}(G)=3 n-9$ if and only if $G$ is $K_{n}$.

Proof. Suppose $m p_{1}(G)=3 n-9$, but $G \neq K_{n}$. It exists two vertices $u$ and $v$ such that $u v \notin E(G)$. If they have a common neighbourhood $w$, then there is a vertex $a$ such that $w a \in E(G) \quad$ by $\quad \delta(G) \geq 4$. Let $\quad X=E\left[\{u, v, a\}, N_{G}\right.$ $(\{u, v, a\}) \backslash\{w\}]$, then $|X| \leq n-2-2+n-2-2+n-1-3+$ $2=3 n-10$ and $u, v, a$ are three vertices of degree 1 with common neighbour $w$ in $E(G)-X$. From $\delta(G) \geq 4$, that $G-$ $X$ has no isolated vertices, and $X$ is a basic obstruction set to an almost-perfect matching of $G$. Thus, $m p_{1}(G) \leq|X| \leq 3 n-$ 10 , and it contradicts to $m p_{1}(G)=3 n-9$. If $u$ and $v$ no
common neighbourhood, choose a shortest path $p=u a_{1} a_{2}$. $\cdots a_{s} v\left(u a_{s} \notin E(G)\right)$ between $u$ and $v$. By $\delta(G) \geq 4$, there exists another vertex $b_{1}$ such that $a_{1} b_{1} \in E(G)$. Let $X=E\left[\left\{u, a_{2}, b_{1}\right\}, N_{G}\left(\left\{u, a_{2}, b_{1}\right\}\right) \backslash\left\{a_{1}\right\}\right]$, then $|X| \leq n-2-$ $2+n-2-2+n-1-3+2=3 n-10$ and $u, a_{2}, b_{1}$ are three vertices of degree 1 with the common neighbour $a_{1}$ in $E(G)-X$. Thus, $m p_{1}(G) \leq|X| \leq 3 n-10$, which contradicts to $m p_{1}(G)=3 n-9$.

Proposition 8. Let $G$ be an odd graph of order $n \geq 15$ and $\delta(G) \geq 4$. Then, $m p_{1}(G)=3 n-10$ if and only if $G=K_{n}-e$, where $e \in E\left(K_{n}\right)$.

Proof. If $G=K_{n}-e, e=u v \notin E(G)$. Choosing another two vertices $x, y$ from $V(G)$, we know $u x, v x, y x \in E(G)$. Let $X=E\left[\{u, v, y\}, N_{G}(\{u, v, y\}) \backslash\{x\}\right]$, then $|X| \leq 2(n-2)-4+$ $n-1-3+2=3 n-10$ and $u, v, y$ are three vertices of degree 1 with a common neighbour $x$ in $E(G)-X$. It means that $m p_{1}(G) \leq 3 n-10$. For every $X \subseteq E(G)$ with $|X|=3 n-11$, $G-X=K_{n}-e-X=K_{n}-(X \cup\{e\})$ is the graph which is obtained from $K_{n}$ by deleting at most $3 n-10$ edges. By Proposition 7, $G-X$ has an almost-perfect matching, so $m p_{1}(G) \geq 3 n-10$. By above argument, $m p_{1}(G)=3 n-10$.

Conversely, it shows that $G=K_{n}-e$ when $m p_{1}(G)=$ $3 n-10$. If $G \neq K_{n}-e$, then $\bar{G}$ contains a path $P_{3}=u v w$ or two independent edges $x y, u v$ as its subgraph. For the former case, if $u, v, w$ have a common neighbour $a$, let $X=$ $E\left[\{u, v, w\}, N_{G}(\{u, v, w\}) \backslash\{a\}\right]$, we have $|X| \leq 2(n-2-2)+$ $n-1-3+1=3 n-11$ and $u, v, w$ are three vertices of degree 1 in $E(G)-X$, and $G-X$ has no isolated vertices since $\delta(G) \geq 4$. It follows that $m p_{1}(G) \leq|X| \leq 3 n-11$. If $u, v, w$ have no common neighbour, it means that $\operatorname{deg}_{G}(x) \leq n-2$ for any vertex $x \in V(G) \backslash\{u, v, w\}$. Since $\delta(G) \geq 4$, there exists a vertex $a \notin\{u, w\}$ such that $v a \in E(G)$; furthermore, there are two vertices $b_{1}, b_{2}$ such that $a b_{1}, a b_{2} \in E(G)$. Let $X=E\left[\left\{v, b_{1}, b_{2}\right\}, N_{G}\left(\left\{v, b_{1}, b_{2}\right\}\right) \backslash\{a\}\right]$, then $|X| \leq n-3-3+$ $2(n-2-3)+3=3 n-13$ and $v, b_{1}, b_{2}$ are three vertices of degree 1 with common neighbour $a$ in $G-X$. From $\delta(G) \geq 4$ , we know $G-X$ has no isolated vertices. Thus, $m p_{1}(G) \leq|X| \leq 3 n-13$, a contradiction.

For the case of two independent edges $x y, u v \in E(\bar{G})$, there are three situations to be considered. If there are three vertices in $\{x, y, u, v\}$ with a common neighbour $a$, without loss of generality, they are $x, y, u$ have a common neighbour. Let $X=E\left[\{x, y, u\}, N_{G}(\{x, y, u\}) \backslash\{a\}\right]$, then $|X| \leq n-$ $2-3+2(n-2-2)+2=3 n-11$ and $v, y, u$ are three vertices of degree 1 in $G-X$. If there are two vertices in $\{x, y, u, v\}$ with a common neighbour $a$, then there is a vertex $a^{\prime}\left(a^{\prime} \neq x, y\right)$ such that $a a^{\prime} \in E(G)$. Clearly, $a^{\prime}$ is connected to at most two of vertices in $x, y, u, v$; thus, $\operatorname{deg}_{G}\left(a^{\prime}\right) \leq n-3$. Let $X=E\left[\left\{x, y, a^{\prime}\right\}, N_{G}\left(\left\{x, y, a^{\prime}\right\}\right) \backslash\{a\}\right]$, so $x, y, a^{\prime}$ are three vertices of degree 1 with common neighbour $a$ in $G-X$ and $|X| \leq n-3-3+2(n-2-2)+$ $2=3 n-12$. If any two vertices of $x, y, u, v$ have no common neighbour, it means for every vertex $a \in V(G) \backslash\{x, y, u, v\}$ is connected to at most one of vertices in $x, y, u, v$, so $\operatorname{deg}_{G}(a) \leq n-4$. Choose a vertex $a(a \neq y)$ and $x a \in E(G)$, then $a$ must has two other adjacent vertices $a_{1}, a_{2}$. Let $X=$ $E\left[\left\{x, a_{1}, a_{2}\right\}, N_{G}\left(\left\{x, a_{1}, a_{2}\right\}\right) \backslash\{a\}\right]$, then $|X| \leq n-2-3+2$
$(n-4-3)+3=3 n-16$ and $x, a_{1}, a_{2}$ are three vertices of degree 1 in $G-X$. It is a contradiction. Together with the above argument, we can find $G=K_{n}-e$.

Proposition 9. Let $G$ has $n \geq 25$ and $\delta(G) \geq 4$. Then, $m p_{1}(G)=3 n-11$ if and only if one of the following conditions holds.
(1) $\delta(G)=n-2$ and $G \neq K_{n}-e$
(2) $G=K_{n}-E\left(P_{3}\right)$

Proof. Suppose $m p_{1}(G)=3 n-11$. Then, we claim $\delta(G) \geq n-3$. Assume, on the contrary, that $\delta(G) \leq n-4$. Then, there exists a vertex $u$ in $G$ such that $d_{G}(u) \leq n-4$. Choose $v \in N_{G}(u)$ and $\{a, b\} \in N_{G}(v)$, since $\delta(G) \geq 4$. Let $X=E\left[\{u, a, b\}, N_{G}(\{u, a, b\}) \backslash\{v\}\right]$, so $u, a, b$ are three vertices of degree 1 with common neighbour $v$ in $G-X$ and $|X| \leq n-4-3+2(n-1-3)+3=3 n-12$. Thus, $m p_{1}(G)$ $\leq|X| \leq 3 n-12$, which contradicts $m p_{1}(G)=3 n-11$. By Propositions 7 and 8 and $\delta(G) \geq n-3$, we have $\delta(G)=n-2$ and $G \neq K_{n}-e$ or $\delta(G)=n-3$.

When $\delta(G)=n-3$, we need to show $G=K_{n}-E\left(P_{3}\right)$. Assume $\operatorname{deg}_{G}(u)=n-3$. It means there exist two vertices $v, w$ such that $u v, u w \notin E(G)$ and $u x \in E(G)$ for every vertex $x \in V(G) \backslash\{w, v\}$. Assume, on the contrary, that $G \neq K_{n}-$ $E\left(P_{3}\right)$. Except $u v, u w \notin E(G)$, there exists two vertices $x, y$ in $V(G)$ and $x y \notin E(G)$. If $x=v$, then $\operatorname{deg}_{G}(v)=n-3$. Choose $v a \in E(G)$ and $a b \in E(G)$; clearly, $u a \in E(G)$. Let $X=E\left[\{u, v, b\}, N_{G}(\{u, v, b\}) \backslash\{a\}\right]$, so $u, v, b$ are three vertices of degree 1 with common neighbour $a$ in $G-X$ and $|X| \leq n-1-3+2(n-3-2)+2=3 n-12 . \quad m p_{1}(G) \leq|X|$ $\leq 3 n-12$, So $x, y \notin\{v, w\}$. Since $\delta(G) \geq 4$, choose $x a, a b \in E(G) \quad$ and $\quad\{u x, u a, u b\} \subseteq E(G)$. Let $X=E\left[\{u, x, b\}, N_{G}(\{u, x, b\}) \backslash\{a\}\right]$, so $u, x, b$ are three vertices of degree 1 with common neighbour $a$ in $G-X$ and $|X| \leq n-3-3+n-2-3+n-1-3+3=3 n-12$. $m p_{1}$ $(G) \leq|X| \leq 3 n-12$, which is a contradiction. In summary, we have $G=K_{n}-E\left(P_{3}\right)$, or $\delta(G)=n-2$ and $G \neq K_{n}-e$, as required.

Conversely, by Propositions 7 and 8, we have $m p_{1}(G) \leq 3 n-11$. We show $m p_{1}(G) \geq 3 n-11$. If $G=K_{n}-$ $E\left(P_{3}\right)$, for every $X \subseteq E(G)$ with $|X| \leq 3 n-12$, it follows that $G-X=K_{n}-\left(X \cup E\left(P_{3}\right)\right)$ is a graph obtained from $K_{n}$ by deleting at most $3 n-10$ edges. By Proposition 7, $G-X$ has an almost-perfect matching, as desired. If $\delta(G)=n-2$ and $G \neq K_{n}-e$, then $G=K_{n}-L$, where $L$ is a matching of $K_{n}$ of size at least 2. It suffices to prove that $G-X$ has an almostperfect matching for every $X \subseteq E(G)$ with $|X| \leq 3 n-12$ such that $G-X$ has no isolated vertices. Suppose any vertex $v \in V(G)$ has $\operatorname{deg}_{G[X]}(v) \leq(n-5 / 2)$, then $\operatorname{deg}_{G-X}(v)$ $=\operatorname{deg}_{G}(v)-\operatorname{deg}_{G[X]}(v) \geq n-2-(n-5 / 2)=(n+1 / 2)>$ ( $n / 2$ ). By Theorem 2, $G-X$ contains a Hamiltonian cycle. So an almost-perfect matching in $G-X$, a contradiction. Now, we suppose that there exists a vertex $v \in V(G)$ and $\operatorname{deg}_{G[X]}(v) \geq(n-3 / 2)$. Since $G-X$ has no isolated vertices, it follows that there exists a vertex $u \in V(G)$ and $v u \in E(G-$ $X)$. Let $G_{1}=G-\{v, u\}$, then $\left|X \cap E\left(G_{1}\right)\right| \leq 3 n-12-$ $(n-3 / 2)=(5 n-21 / 2)$.

If $G_{1}-X$ has no isolated vertices, suppose every vertex $x \in V\left(G_{1}\right)$ has $\operatorname{deg}_{G[X]}(x) \leq(n-9 / 2)$. Then, $\operatorname{deg}_{G_{1}-X}(x)=$ $\operatorname{deg}_{G_{1}}(x)-\operatorname{deg}_{G_{1}[X]}(x) \geq n-4-(n-9 / 2)=(n+1 / 2)$. By Theorem 2, $G_{1}-X$ contains a Hamiltonian cycle. So an almost-perfect matching $M^{\prime}$ in $G_{1}-X$ and $M^{\prime} \cup\{u v\}$ is an almost-perfect matching in $G-X$, a contradiction.

We suppose that there exists a vertex $x \in V\left(G_{1}\right)$ and $\operatorname{deg}_{G_{1}[X]}(x) \geq(n-7 / 2)$ and $x y \notin X$. Let $G_{2}=G-\{v, u, x, y\}$, then $\left|E\left(G_{2}\right) \cap X\right| \leq(5 n-21 / 2)-(n-7 / 2)=(4 n-14 / 2)$. Recall that $G=K_{n}-L$, where $L$ is a matching of $K_{n}$ of size at least 2; thus, $G_{2}=K_{n}-L-\{u, v, x, y\}=K_{n-4}-L$. It means removing up to ( $n-5 / 2$ ) edges from $K_{n-4}$. Since $n \geq 25$, $(n-$ $5 / 2)+(4 n-14 / 2)=(5 n-19 / 2)<3(n-4)-9$. By Proposition $7, G_{2}-X$ has an almost-perfect matching $M^{\prime}$, and $M^{\prime} \cup\{u v, x y\}$ is an almost-perfect matching of $G-X$.

If $G_{1}-X$ has two isolated vertices $a$ and $b$, then $3 n-$ $12-\operatorname{deg}_{[X]}(v)-\operatorname{deg}_{[X]}(a)-\operatorname{deg}_{[X]}(b) \leq 3 n-12-(n-$ $3 / 2)-2(n-4)=(n-5 / 2)$. Since $G-X$ has no isolated vertices, the vertices $a$ and $b$ must be at least adjacent to one of $\{u, v\}$, respectively. Since $\delta=n-2$, we can assume $a u \in E(G)$ and $b v \in E(G)$. Let $G_{2}=G-\{u, v, a, b\}=K_{n}-$ $L-\{u, v, a, b\}$. Since $\quad(n-5 / 2)+(n-5 / 2)=n-5$, $m p_{1}\left(K_{n-4}\right)=3(n-4)-9=3 n-21$ and $n-5<3 n-21$. So $G_{2,}-X$ has an almost-perfect matching $M^{\prime}$, and $M^{\prime} \cup\{a u, b v\}$ is an almost-perfect matching of $G-X$.

If $G_{1}-X$ has one isolated vertex $a$, then $\operatorname{deg}_{G[X]}(a) \geq n-$ 4. Let $G_{2}=G-\{u, v, a\}, \quad$ clearly, $\quad\left|E\left(G_{2}\right) \cap X\right|$ $\leq 3 n-12-(n-3 / 2)-n+4=(3 n-13 / 2)$. Suppose that every vertices $b \in V\left(G_{2}\right)$ have $\operatorname{deg}_{G_{2}[X]}(b) \leq(n-9 / 2)$, then $\operatorname{deg}_{G_{2}-X}(b)=\operatorname{deg}_{G_{2}}(b)-\operatorname{deg}_{G_{2}[X]}(b) \geq n-5-(n-9 / 2)>$
$(n-3 / 2)$. By Theorem 2, $G_{2}-X$ contains a Hamiltonian cycle. So there is a perfect matching $M$ in $G_{2}-X$, and $M \cup\{u v\}$ is an almost-perfect matching in $G-X$ missing $a$. We suppose that there exists a vertex $b \in V\left(G_{2}\right)$ and $\operatorname{deg}_{G_{2}[X]}(b) \geq(n-7 / 2)$. Since $G_{1}-X$ has only one isolated vertex $a$, it follows that there exists one vertex $b^{\prime}$ and $b b^{\prime} \notin X$. Let $G_{3}=G-\left\{v, u, a, b, b^{\prime}\right\}$, then $\left|E\left(G_{3}\right) \cap X\right| \leq(3 n-13 / 2)-$ $(n-7 / 2)=n-3$. Clearly, $G_{3}=K_{n}-L-\left\{v, u, a, b, b^{\prime}\right\}$ and $\left|V\left(G_{3}\right)\right|=n-5$ is even, and we have $m p_{1}\left(K_{n-5}\right)=2 n-15$. Since $K_{n-5}-L$ means from $K_{n-5}$ remove at most $(n-5 / 2)$ edges and $(n-5 / 2)+n-3=(3 n-11 / 2)<2 n-15(n \geq 25)$, $G_{3}-X$ has a perfect matching $M$, and $M \cup\left\{u v, b b^{\prime}\right\}$ is an almost-perfect matching of $G-X$ missing $a$, a contradiction. Thus, $m p_{1}(G)=3 n-11$.

## 4. Extremal Problems on CMP Number

Consider the three extremal problems in the introduction.
Lemma 5. Let $n, k$ be two positive integers and $n \geq 3$ be odd. Then,
(1) $s(n, 0)=0$
(2) $s(n, 1)=(n+5 / 2)$
(3) $s(n, 2)=(n+7 / 2)$

## Proof

(1) Let $G$ be a no edges with order $n$ graph. Clearly, $m p_{1}(G)=0$. So $s(n, 0)=0$.
(2) Let $H=(n-5 / 2) P_{2} \cup S_{5}^{+}$, where $S_{5}^{+}$is a graph obtained from a star $K_{1,4}$ by adding one edge between two leaves. Clearly, $m p_{1}(H)=1$ and $H$ has $(n+5 / 2)$ edges. Then, $s(n, 1) \leq(n+5 / 2)$. Conversely, assume that $s(n, 1) \leq(n+3 / 2)$, it means exists an odd graph $G$ of order $n$ with $s(n, 1) \leq(n+3 / 2)$ thus $m p_{1}(G)=$ 1. Assume that $C_{1}, C_{2}, \cdots, C_{t}$ are the connected components in $G$. If two of $C_{1}, C_{2}, \cdots, C_{t}$ are odd components in $G$, then $m p_{1}(G)=0$. So there is exactly one odd component in $G$, suppose it is $C_{t}$. We may assume $\left|V\left(C_{1}\right)\right| \geq\left|V\left(C_{2}\right)\right| \geq \cdots \geq\left|V\left(C_{t-1}\right)\right|$. If $\left|V\left(C_{2}\right)\right| \geq 4$, then $|E(G)| \geq 2(4-1)+(n-8-3 / 2)+$ $3-1=(n+5 / 2), \quad$ it contradicts with $\quad|E(G)|$ $=s(n, 1) \leq(n+3 / 2)$. Then, $\quad\left|V\left(C_{1}\right)\right| \geq 4 \quad$ and $\left|V\left(C_{2}\right)\right|=\left|V\left(C_{3}\right)=\cdots=\left|V\left(C_{t-1}\right)\right|=2\right.$. If $| V\left(C_{1}\right) \mid$ $\geq 6$, then $|E(G)| \geq 6-1+(n-6-3 / 2)+3-$ $1=(n+5 / 2)$, a contradiction. So $\left|V\left(C_{1}\right)\right|=4$ or $\left|V\left(C_{1}\right)\right|=2$. If $\left|V\left(C_{1}\right)\right|=4$, we claim $\left|V\left(C_{t}\right)\right|=3$. Otherwise, $\left|V\left(C_{t}\right)\right| \geq 5$ and $|E(G)| \geq 4-1+(n-4-$ $5 / 2)+5-1=(n+5 / 2)$. We have $(n-7 / 2) P_{2}$ in $G$, and $\left|E\left(C_{1}\right)\right|+\left|E\left(C_{t}\right)\right| \leq(n+3 / 2)-(n-7 / 2)=5$. So $G=(n-7 / 2) P_{2} \cup P_{3} \cup P_{4} \quad$ or $\quad G=(n-7 / 2) P_{2}$ $\cup P_{3} \cup S_{4}$. For two cases, we know $m p_{1}(G)=0$. If $\left|V\left(C_{1}\right)\right|=2$, we claim $\left|V\left(C_{t}\right)\right|=5$. Otherwise, $\left|V\left(C_{t}\right)\right|=3$ or $\left|V\left(C_{t}\right)\right| \geq 7$. If $\left|V\left(C_{t}\right)\right|=3$, then $\left|E\left(C_{t}\right)\right| \leq(n-3 / 2)-(n-3 / 2)=3$ and $\left|E\left(C_{t}\right)\right| \geq 2$. So $G=(n-3 / 2) P_{2} \cup C_{3}$ or $G=(n-3 / 2) P_{2} \cup P_{3}$. For two cases, we know $m p_{1}(G)=0$. If $\left|V\left(C_{t}\right)\right| \geq 7$, then $|E(G)| \geq 6+(n-7 / 2)=(n+5 / 2)$, which is a contradiction. So $\left|V\left(C_{t}\right)\right|=5$, and $\left|E\left(C_{t}\right)\right| \leq(n+$ $3 / 2)-(n-5 / 2)=4$. Thus, $G=(n-5 / 2) P_{2} \cup P_{5}$ or $G=(n-5 / 2) P_{2} \cup S_{5}$. For two cases, we know $m p_{1}(G)=0$. So $s(n, 1)=(n+5 / 2)$.
(3) Let $H=(n-7 / 2) P_{2} \cup P_{3} \cup K_{4}-\{e\}$. Clearly, $m p_{1}(H)=2$ and $H$ has $(n+7 / 2)$ edges. Then, $s(n, 2) \leq(n+7 / 2)$. Since $s(n, 1)=(n+5 / 2)$, it follows that $(n+5 / 2) \leq s(n, 1) \leq s(n, 2) \leq(n+7 / 2)$. Now, we prove $s(n, 2) \geq(n+7 / 2)$. If we assume that $s(n, 2)=(n+5 / 2)$, then it exists an odd graph $G$ of order $n$ with $s(n, 2)=(n+5 / 2)$ such that $m p_{1}(G)=$ 2. So $G$ is not connected. Let $C_{1}, C_{2}, \cdots, C_{t}$ be the connected components in $G$. If two of $C_{1}, C_{2}, \cdots, C_{t}$ are odd components, then $m p_{1}(G)=0$. So there is exactly one odd component in $G$, and we can assume that $\left|V\left(C_{t}\right)\right|$ is odd and $\left|V\left(C_{i}\right)\right|$ is even for $1 \leq i \leq t-$ 1. Assume $\left|V\left(C_{1}\right)\right| \geq\left|V\left(C_{2}\right)\right| \geq \cdots \geq\left|V\left(C_{t-1}\right)\right|$. If $\left|V\left(C_{t}\right)\right| \geq 9$, then $|E(G)| \geq\left|V\left(C_{t}\right)\right|-1+(n-\mid V$ $\left.\left(C_{t}\right) \mid / 2\right)=\left(\left|V\left(C_{t}\right)\right|+n-2 / 2\right) \geq(n+7 / 2)$, but $|E(G)|=(n+5 / 2)$. So $3 \leq\left|V\left(C_{t}\right)\right| \leq 7$. Now, we consider three cases of the number of $\left|V\left(C_{t}\right)\right|$. First assume $\left|V\left(C_{t}\right)\right|=7$, if $\left|V\left(C_{1}\right)\right| \geq 4$, then $|E(G)| \geq 6+$ $3+(n-7-4 / 2)=(n+7 / 2)$, a contradiction. All even components are $P_{2}$, and $\left|E\left(C_{t}\right)\right|=(n-5 / 2)-$ $(n-7 / 2)=6$. By $\left|V\left(C_{t}\right)\right|=7$ and $\left|E\left(C_{t}\right)\right|=6$, the structure of $C_{t}$ must be $P_{7}$ or $P_{6}$ add one pendant edge or $P_{5}$ add two pendant edges. For above three structure of $C_{t}$, we have $m p_{1}(G)=0$ or $m p_{1}(G)=1$. Next assume $\left|V\left(C_{t}\right)\right|=5$, if $\left|V\left(C_{1}\right)\right| \geq 4$, then
$|E(G)| \geq 4+3+(n-9 / 2)=(n+5 / 2)$. Since $|E(G)|$ $=(n+5 / 2)$, So $\left|V\left(C_{1}\right)\right|=4$ and $\left|V\left(C_{2}\right)\right|=\left|V\left(C_{3}\right)\right|=$ $\cdots=\left|V\left(C_{t-1}\right)\right|=2$. Since $C_{t}$ has an almost-perfect matching, so $C_{t}$ must be $P_{5}$ or $P_{4}$ add one pendant edge. For any structure of $C_{t}, m p_{1}(G)=0$. At last, $\left|V\left(C_{t}\right)\right|=3$ If $\left|V\left(C_{2}\right)\right| \geq 4$, then $|E(G)| \geq 2+2(4-$ $1)+(n-8-3 / 2)=(n+5 / 2)$. Since $|E(G)|=(n$ $+5 / 2)$. So $G=(n-11 / 2) P_{2} \cup 2 P_{4}$ and $m p_{1}(G)=0$. So only have $\left|V\left(C_{1}\right)\right| \geq 4$, other even components are $P_{2}$. If $\left|V\left(C_{1}\right)\right| \geq 6$, then $|E(G)| \geq 5+2+(n-$ $6-3 / 2)=(n+5 / 2)$. Since $|E(G)|=(n+5 / 2)$. It follows that $C_{t}=P_{3}$, so $C_{1}$ must be $P_{6}$ or $P_{5}$ add one pendant edge or $P_{4}$ add two pendant edges. For above structure of $C_{t}, m p_{1}(G)=0$ or $m p_{1}(G)=1$. If $\left|V\left(C_{1}\right)\right|=4, \quad$ then $\quad\left|E\left(C_{1} \cup C_{t}\right)\right|=(n+5 / 2)-$ $(n+7 / 2)=6$. So $\left|E\left(C_{1}\right)\right|=2$ and $\left|E\left(C_{t}\right)\right|=4$, or $\left|E\left(C_{1}\right)\right|=3$ and $\left|E\left(C_{t}\right)\right|=3$. It follows that $G=(n-$ $7 / 2) P_{2} \cup P_{3} \cup C_{4}$ or $G=(n-7 / 2) P_{2} \cup P_{3} \cup S_{3}^{+}$or $G=$ $(n-7 / 2) P_{2} \cup C_{3} \cup P_{4}$. For any case, we know $m p_{1}(G)=0$ or $m p_{1}(G)=1$. So $s(n, 2)=(n+7 / 2)$

Theorem 4. Let $n \geq 5$ be an odd integer, $3 \leq k \leq 3 n-9$. Then,
(1) If $\lceil(k-3 / 3)\rceil$ is odd, then

$$
\begin{equation*}
s(n, k) \leq \frac{\lceil(k-3 / 3)\rceil^{2}+n+2+2 k}{2} \tag{3}
\end{equation*}
$$

(2) If $\lceil(k-3 / 3)\rceil$ is even, then

$$
\begin{equation*}
s(n, k) \leq \frac{\lceil(k-3 / 3)\rceil^{2}+2\lceil(k-3 / 3)\rceil+2 k+3+n}{2} \tag{4}
\end{equation*}
$$

Proof
(1) Let $H_{1}$ be a graph obtained from $u, K_{3}, K_{\lceil(k-3 / 3)\rceil}$, by arbitrarily adding $k-3$ edges between $K_{3}$ and $K_{\lceil(k-3 / 3)]}$, and making the join graphs: $\{u\} \vee K_{3}$ and $\{u\} \vee K_{\lceil(k-3 / 3)\rceil}$. Let $H=H_{1} \cup(n-4-\lceil(k-$ $3 / 3)\rceil / 2) P_{2}$. Suppose $v_{1}, v_{2}, v_{3}$ are three vertices in $K_{3}$, the degree of $v_{1}, v_{2}, v_{3}$ in $H_{1}$ is less than or equal to the degree of other vertices in $V\left(H_{1} \backslash\left\{v_{1}, v_{2}, v_{3}\right\}\right)$. Clearly, we delete $k-3$ edges between $K_{3}$ and $K_{\lceil(k-3 / 3)\rceil}$ and three edges in $K_{3}$ of $H$, and then, $v_{1}, v_{2}, v_{3}$ are three vertices of degree 1 with the common neighbour $u$ and the rests of $H$ have no isolated vertices. And $|E(H)|=3+\lceil(k-3 / 3)\rceil+k+$ $(\lceil(k-3 / 3)\rceil / 2)+(n-4-\lceil(k-3 / 3)\rceil / 2)=(\lceil(k-$ $\left.3 / 3)\rceil^{2}+n+2+2 k / 2\right)$, so $s(n, k) \leq\left(\lceil(k-3 / 3)\rceil^{2}+n\right.$ $+2+2 k / 2$ ).
(2) Let $H_{1}$ be a graph obtained from tree cliques $u, K_{3}$, $K_{\lceil(k-3 / 3)\rceil+1}$. By arbitrarily adding $k-3$ edges between $K_{3}$ and $K_{\lceil(k-3 / 3)\rceil+1}$, then make the join graphs: $\{u\} \vee K_{3}$ and $\{u\} \vee K_{\lceil(k-3 / 3)\rceil+1}$. Let $H=H_{1} \cup(n-5-$ $\lceil(k-3 / 3)\rceil / 2) P_{2}$. The degree of three vertices $v_{1}, v_{2}, v_{3}$ in $K_{3}$ is less than or equal to the degree of other vertices in $V\left(H_{1} \backslash K_{3}\right)$. Clearly, when we delete
$k-3$ edges between $K_{3}$ and $K_{\lceil(k-3 / 3)\rceil}$ and three edges in $K_{3}$, then $v_{1}, v_{2}, v_{3}$ are three vertices of degree 1 with common neighbour $u$, and the rest of graphs have no isolated vertices. This just deletes the $k$ edges from $H$ and no almost-perfect matching in result graph. $|E(H)|=3+\lceil(k-3 / 3)\rceil+1+k+$

$$
\begin{aligned}
& \binom{\lceil(k-3 / 3)\rceil+1}{2}+(n-5-\lceil(k-3 / 3)\rceil / 2)=(\lceil(k \\
& \left.-3 / 3)\rceil^{2}+2\lceil(k-3 / 3)\rceil+2 k+3+n / 2\right), \quad \text { so } \quad s(n, k) \\
& \leq\left(\lceil(k-3 / 3)\rceil^{2}+2\lceil(k-3 / 3)\rceil+2 k+3+n / 2\right) .
\end{aligned}
$$

Lemma 6. Let $n, k$ be two positive integers and $n \geq 4$ be even. Then,
(1) $s(n, 0)=0$
(2) $s(n, 1)=(n / 2)+2$
(3) $s(n, 2)=(n / 2)+3$
(4) $s(n, 3)=(n / 2)+4$

## Proof

(1) Let $G$ be the graph of order $n$ with no edges. Clearly, $m p_{1}(G)=0$. So $s(n, 0)=0$.
(2) Let $H=(n-4 / 2) P_{2} \cup S_{4}^{+} . S_{4}^{+}$is a star of order 4 and add one edge between two of pendent vertices. Clearly, $m p_{1}(H)=1$ and $H$ has $(n / 2)+2$ edges. Then, $s(n, 1) \leq(n / 2)+2$. Conversely, assume that $s(n, 1) \leq(n / 2)+1$. Then, there exists an even graph $G$ of order $n$ with $s(n, 1) \leq(n / 2)+1$ edges such that $m p_{1}(G)=1$. Because $G$ exists a perfect matching, so $|E(G)| \geq(n / 2)$. If $|E(G)|=(n / 2)$, then $G=(n / 2) P_{2}$ and $m p_{1}(G)=0$. If $|E(G)|=(n / 2)+1$, then $G=(n-4 / 2) P_{2} \cup P_{4}$ and $m p_{1}(G)=0$. So $s(n, 1)=$ $(n / 2)+2$.
(3) Let $H=\left(K_{4}-\{e\}\right) \cup(n-4 / 2) P_{2}$. Clearly, $m p_{1}(H)=2$ and $H$ has $(n / 2)+3$ edges. Then, $s(n, 2) \leq(n / 2)+3$. Since $s(n, 1)=(n / 2)+2$, it follows $(n / 2)+2=s(n, 1) \leq s(n, 2) \leq(n / 2)+3$. Assume that $s(n, 2)=(n / 2)+2$. Then, there exists an even graph $G$ of order $n$ with $s(n, 2)=(n / 2)+2$ edges such that $m p_{1}(G)=2$. Because $G$ has a perfect matching, so $|E(G)| \geq(n / 2)$, now $G$ is a graph of add two edges to a perfect match of size $(n / 2)$. So $G$ has the following situations: $G=C_{4} \cup(n-4 / 2) P_{2}, G=$ $P_{6} \cup(n-6 / 2) P_{2}, \quad G=2 P_{4} \cup(n-8 / 2) P_{2}, \quad G=K_{3}^{+}$ $\cup(n-4 / 2) P_{2}, G=(n-6 / 2) P_{2} \cup\left(P_{5}\right.$ add one pendant edge on the middle vertex), and for any of the above, we have $m p_{1}(G)=0$ or $m p_{1}(G)=1$. So $s(n, 2)=(n / 2)+3$.
(4) Let $H=K_{4} \cup(n-4 / 2) P_{2}$. Clearly, $m p_{1}(H)=3$ and $H$ has $(n / 2)+4$ edges. Then, $s(n, 3) \leq(n / 2)+4$. Since $s(n, 2)=(n / 2)+3$, it follows that $(n / 2)+3=$ $s(n, 2) \leq s(n, 3) \leq(n / 2)+4$. Assume that $s(n, 3)$ $=(n / 2)+3$. Then, there exists an even graph $G$ of order $n$ with $s(n, 3)=(n / 2)+3$ edges such that $m p_{1}(G)=2$. Since $G$ has a perfect matching, so $G$ is a
graph of add three edges to a perfect match of size $(n / 2)$. All possible structures of $G$ are shown as follows (Figure 1). For any structure, we have $m p_{1}(G)=0$ or $m p_{1}(G)=1$ or $m p_{1}(G)=2$. So $s(n, 3)=(n / 2)+4$.

Theorem 5. Let $n, k$ be two positive integers and $n \geq 6$ be even and $4 \leq k \leq 2 n-5$. Then,
(1) If $\lceil(k-1 / 2)\rceil$ is odd, then $s(n, k) \leq(\lceil(k$ $\left.-1 / 2)\rceil^{2}+n+2 k+1 / 2\right)$
(2) If $\lceil(k-1 / 2)\rceil$ is even, then $s(n, k) \leq\left(\lceil(k-1 / 2)\rceil^{2}+2\right.$ $\lceil(k-1 / 2)\rceil+n+2 k+2 / 2)$

Proof
(1) Let $H_{1}$ be a graph obtained from $K_{3}=u_{1} u_{2} u_{3}$ and $K_{\lceil(k-1 / 2)\rceil}$. add $k-1$ edges between $\left\{u_{2}, u_{3}\right\}$ and $K_{\lceil(k-1 / 2)\rceil}$, then make the join graph: $\left\{u_{1}\right\} \vee K_{\lceil(k-1 / 2)\rceil}$. Let $H=H_{1} \cup(n-3-\lceil(k-1 / 2)\rceil / 2) P_{2}$. And the degree of three vertices $u_{2}, u_{3}$ in $K_{3}$ is less than or equal to the degree of other vertices in $V\left(H_{1} \backslash\left\{u_{2}, u_{3}\right\}\right)$. Clearly, when we delete edge $\left\{u_{2} u_{3}\right\}$ and $k-1$ edges between $\left\{u_{2}, u_{3}\right\}$ and $K_{\lceil(k-1 / 2)\rceil}$, then $u_{2}, u_{3}$ are two vertices of degree 1 with common neighbour $u_{1}$, and the rest of the graphs have no isolated vertices. This just deletes the $k$ edges from $H$ and no perfect matching in result graph. $|E(H)|=$ $2+\lceil(k-1 / 2)\rceil+k+\binom{\lceil(k-1 / 2)\rceil}{ 2}+(n-3-\lceil(k$ $-1 / 2)\rceil / 2)=\left(\lceil(k-1 / 2)\rceil^{2}+n+1+2 k / 2\right)$, so $s(n, k)$ $\leq\left(\lceil(k-1 / 2)\rceil^{2}+n+1+2 k / 2\right)$.
(2) Let $H_{1}$ be a graph obtained from $K_{3}=u_{1} u_{2} u_{3}$ and $K_{\lceil(k-1 / 2)\rceil+1}$. Arbitrarily add $k-1$ edges between $\left\{u_{2}, u_{3}\right\}$ and $K_{\Gamma(k-1 / 2)]+1}$, then make the join graph: $\left\{u_{1}\right\} \vee K_{\lceil(k-1 / 2)\rceil+1}$. Let $H=H_{1} \cup(n-4-\lceil(k$ $-1 / 2)\rceil / 2) P_{2}$. From the construction of graph $H_{1}$, the degree of three vertices $u_{2}, u_{3}$ in $K_{3}$ is less than or equal to the degree of other vertices in $V\left(H_{1} \backslash\left\{u_{2}, u_{3}\right\}\right)$. Clearly, when we delete edge $\left\{u_{2} u_{3}\right\}$ and $k-1$ edges between $\left\{u_{2}, u_{3}\right\}$ and $K_{\Gamma(k-1 / 2)\rceil+1}$, then $u_{2}, u_{3}$ are two vertices of degree 1 with common neighbour $u_{1}$, and the rest of the graphs have no isolated vertices. This just deletes the $k$ edges from $H$ and no perfect matching in result graph. $|E(H)|=$
$3+\lceil(k-1 / 2)\rceil+k+\binom{\lceil(k-1 / 2)\rceil+1}{2}+(n-4-$ $\lceil(k-1 / 2)\rceil / 2)=\left(\left[\begin{array}{ll}k & -1 / 2)\rceil^{2}+2\lceil(k-1 / 2)\rceil+n+ \\ \hline\end{array}\right.\right.$ $2+2 k / 2)$, so $s(n, k) \leq\left(\lceil(k-1 / 2)\rceil^{2}+2\lceil(k-1 / 2)\rceil+\right.$ $n+2+2 k / 2)$.

Observation 1. $g(n, k)=s(n, k+1)-1, n, k$ be two positive integers.

Corollary 1. Let $n, k$ be two positive integers and $n \geq 5$ be odd, $3 \leq k \leq 3 n-9$. Then,
(1) If $\lceil(k-3 / 3)\rceil$ is odd, then $g(n, k) \leq\left(\lceil(k-2 / 3)\rceil^{2}+n+2 k+2 / 2\right)$
(2) If $\lceil(k-3 / 3)\rceil$ is even, then $g(n, k) \leq\left(\lceil(k-2 / 3)\rceil^{2}+2\right.$ $\lceil(k-2 / 3)\rceil+2 k+3+n / 2)$

Corollary 2. Let $n \geq 6,4 \leq k \leq 2 n-5$ be two positive integers and be even. Then,
(1) If $\lceil(k-1 / 2)\rceil$ is odd, then $g(n, k) \leq\left(\lceil(k / 2)\rceil^{2}+n+2 k+1 / 2\right)$
(2) If $\lceil(k-3 / 3)\rceil$ is even, then $g(n, k) \leq\left(\lceil(k / 2)\rceil^{2}+2\lceil(k / 2)\rceil+n+2 k+2 / 2\right)$

Theorem 6. Let $n, k$ be two positive integers. Then,
(1) If $n \geq 10$ is even and $1 \leq k \leq 2 n-5$, then $f(n, k)=\left(\begin{array}{c}n-3 \\ 2 \\ \text { is }\end{array}\right)+k+n-1$
If $n \geq 15$ and $f(n, k)=\binom{n-4}{2}+k+n-1$

Proof
(1) First show $f(n, k) \geq\binom{ n-3}{2}+k+n-1$, we construct $H$ as follows, give three components $H_{1}=P_{3}=$ $v_{1} v_{2} v_{3}, \quad H_{2}=K_{\lceil(k-1 / 2)\rceil}, \quad H_{3}=K_{n-3-\lceil(k-1 / 2)\rceil}$. $k-1$ edges are connected between $\left\{v_{1}, v_{3}\right\}$ and $H_{2},\left\{v_{2}\right\}$ adjacents to all vertices in $\mathrm{H}_{2}$ and $\mathrm{H}_{3}$, and then make a join between $\mathrm{H}_{2}$ and $\mathrm{H}_{3}$. Clearly, H is a connected graph on $n$ vertices, $E(H)=2+k-1+n-3+$ $\binom{n-3}{2}=\binom{n-3}{2}+k+n-2$, and $m p_{1}(H)=k-$ $1<k$. So $f(n, k) \geq\binom{ n-3}{2}+k+n-1$. Now to show $f(n, k) \leq\binom{ n-3}{2}+k+n-1$, let $G$ be a graph with $n$ vertices such $|E(G)| \geq\binom{ n-3}{2}+n+k-1$. For any $X \subseteq E(G),|X|=k-1$, so $|E(G-X)| \geq\binom{ n-3}{2}+n$ and $\left\lvert\, E(\overline{G-X}) \leq\binom{ n}{2}-\binom{n-3}{2}-n=2 n-6\right.$. Since $m p_{1}\left(K_{n}\right)=2 n-5$ by Theorem 1, thus $G-X$ has a perfect matching, and hence, $m p_{1}(H) \geq k$. So $f(n, k)=\binom{n-3}{2}+k+n-1$.


Figure 1: All possible structures of $G$.
(2) First prove $f(n, k) \geq\binom{ n-4}{2}+k+n-1$, we construct $H$ as follows: give three components $H_{1}, H_{2}, H_{3}$. $H_{1}$ is a star graph with central vertex $u$ and three pendant vertices $v_{1}, v_{2}, v_{3} . \quad H_{2}=K_{\lceil(k-1 / 3)]}$, $H_{3}=K_{n-4-\lceil(k-1 / 3)\rceil} . k-1$ edges are connected between $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $H_{2},\{u\}$ adjacent to all vertices in $\mathrm{H}_{2}$ and $\mathrm{H}_{3}$ and then make a join between $\mathrm{H}_{2}$ and $\mathrm{H}_{3}$. Clearly, $H$ is a connected graph on $n$ vertices, $E(H)=$ $3+k-1+n-4+\binom{n-4}{2}=\binom{n-4}{2}+k+n-2$, and $m p_{1}(H)=k-1<k$. So $f(n, k) \geq\binom{ n-4}{2}+k+$ $n-1$. Now to show $f(n, k) \leq\binom{ n-4}{2}+k+n-1$, let $G$ be a graph with $n$ vertices such $|E(G)| \geq\binom{ n-4}{2}+$ $n+k-1$. For any $X \subseteq E(G),|X|=k-1$, so $\mid E(G-$ $X) \left\lvert\, \geq\binom{ n-4}{2}+n\right.$ and $|E(\overline{G-X})| \leq\binom{ n}{2}-\quad(n-$ 42) $-n=3 n-10$. Since $m p_{1}\left(K_{n}\right)=3 n-9$, tt follows that $G-X$ has an almost-perfect matching, and hence, $m p_{1}(H) \geq k$. So $f(n, k)=\binom{n-4}{2}+k+n-1$.

## 5. Conclusion

The concept of matching preclusion was introduced in [2]. The matching preclusion number measures the robustness of a graph as a communications network topology. In a network, a vertex with a special matching vertex after edge failure any time implies that tasks running on a fault vertex can be change into its matching vertex. Larger $m p(G)$ signifies higher fault tolerance. However, the probability that the adjacent vertices of the same vertex fail at the same time is very small. In the paper, we mainly want to discuss the conditional matching preclusion number of general graphs. First of all, we want to discuss the bound of the conditional matching preclusion number of a general graph. It is necessary to discuss the bounds of reaching the number of
conditional matches according to the parity of the number of vertices of the graph. Next, we will draw a graph from the conditional matching preclusion number. When the number of conditional matches is a special value, what property does the obtained graph satisfy. From the perspective of graph description, this is very meaningful. Finally, we discussed three extreme value problems. It is actually an extension of the two problems discussed previously, but it is more difficult to solve than the previous problems.

## Data Availability

No data are used in this article.

## Conflicts of Interest

The authors declare that they have no conflicts of interest.

## Acknowledgments

This work was supported by the National Natural Science Foundation of China $(12201335,12261074)$ and the Science Found of Qinghai Province (Nos. 2021-ZJ-703).

## References

[1] J. Bondy and U. S. R. Murty, Graph Theory, GTM 244, Springer, Berlin, Germany, 2008.
[2] R. C. Birgham, F. Harry, E. C. Biolin, and J. Yellon, "Perfect matching preclusion, Congress," Numer, vol. 174, pp. 185193, 2005.
[3] P. Cull and S. M. Larson, "The Möbius cubes," IEEE Transactions on Computers, vol. 44, no. 5, pp. 647-659, 1995.
[4] E. Cheng and O. Siddiqui, "Strong matching perclusion of arrangement graphs," JOIN, vol. 16, no. 2, Article ID 165004, 2016.
[5] E. Cheng, R. Connolly, and C. Melekian, "Matching preclusion and conditional matching preclusion problems for the folded Petersen cube," Theoretical Computer Science, vol. 576, pp. 30-44, 2015.
[6] E. Cheng and L. Lipt, "Matching preclusion for some interconnection networks," Networks, vol. 50, no. 2, pp. 173-180, 2007.
[7] E. Cheng, M. J. Lipman, L. Lipt, D. Sherman, and D. Sherman, "Conditional matching preclusion for the arrangement graphs," Theoretical Computer Science, vol. 412, no. 45, pp. 6279-6289, 2011.
[8] E. Cheng, L. Lipták, L. Lipt, M. Toeniskoetter, and M. Toeniskoetter, "Conditional matching preclusion for the alternating group graphs and split-stars," International Journal of Computer Mathematics, vol. 88, no. 6, pp. 11201136, 2011.
[9] Y. Liu and W. Liu, "Fractional matching preclusion of graphs," J. Comb. Optim., vol. 34, no. 2, pp. 522-533, 2016.
[10] S. M. J. Raja and A. Xavier, "Conditional matching perclusion number for Butterfly Derived network," Inter. J. Pure Appl. Math., vol. 109, no. 7, pp. 17-25, 2016.
[11] J. H. Park, "Matching preclusion problem in restricted HLgraphs and recursive circulant," Journal of KIISE, vol. 35, pp. 60-65, 2008.
[12] J.-H. Park and I. Ihm, "Strong matching preclusion under the conditional fault model," Discrete Applied Mathematics, vol. 161, no. 7-8, pp. 1093-1105, 2013.
[13] J.-H. Park and S. H. Son, "Conditional matching preclusin for hypercube-like interconnection networks," Theoretical Computer Science, vol. 401, pp. 2362-2640, 2009.
[14] J.-H. Park and I. Ihm, "Strong matching preclusion," Theoretical Computer Science, vol. 412, no. 45, pp. 6409-6419, 2011.
[15] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graph, John Wiley, New York, NY,USA, 2009.
[16] C.-H. Tsai and Y.-C. Lai, "Conditional edge-fault-tolerant edge-bipancyclicity of hypercubes," Information Sciences, vol. 177, no. 24, pp. 5590-5597, 2007.
[17] S. Wang, K. Feng, G. Zhang, and J. Li, "Strong matching preclusion for k-ary n-cubesk-ary n-cubes," Discrete Applied Mathematics, vol. 161, no. 18, pp. 3054-3062, 2013.
[18] Z. Wang, C. Melekian, E. Cheng, and Y. Mao, "Matching preclusion number in product graphs," Theoretical Computer Science, vol. 755, pp. 38-47, 2019.
[19] E. Cheng, L. Lesniak, M. J. Lipman, and L. Lipták, "Conditional matching preclusion sets," Information Sciences, vol. 179, no. 8, pp. 1092-1101, 2009.
[20] Y. Mao, Z. Wang, E. Cheng, and C. Melekian, "Strong matching preclusion number of graphs," Theoretical Computer Science, vol. 713, pp. 11-20, 2018.

