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Te conditional matching preclusion number of a graph G, denoted by mp1(G), is the minimum number of edges whose deletion
results in the graph with no isolated vertices that has neither perfect matching nor almost-perfect matching. In this paper, we frst
give some sharp upper and lower bounds of conditional matching preclusion number. Next, the graphs with large and small
conditional matching preclusion numbers are characterized, respectively. In the end, we investigate some extremal problems on
conditional matching preclusion number.

1. Introduction

All graphs are undirected, fnite, and simple in this
paper, refer to the book [1] for notation and terminology
not described here. If a cycle contains every vertex of G

exactly once, then we called it is a Hamiltonian cycle of G

. A connected graph G is Hamiltonian if it exists a
Hamiltonian cycle in G. Furthermore, if there exists a
Hamiltonian path between any two vertices of G, then G

is said Hamiltonian connected. Denoted E(V1, V2) to be
a edges set has one endpoint in V1 and another in V2. If
an edge subset F satisfes G − F has neither perfect
matching nor almost-perfect matching, then F is a
matching preclusion set (MP for short) of G. Denoted
mp(G) is the minimum number of edges of all MP set in
G. Te concept of matching preclusion was introduced
in [2] and further studied in [3–18]. Some distributed
algorithms require each vertex of the system to be
matched by a neighbour vertex, and the matching
preclusion number measures the robustness of a graph
as a communications network topology. Meanwhile,
matching preclusion number has a theoretical con-
nection with conditional connectivity and “changing
and unchanging of invariants.” In a network, a vertex
with a special matching vertex after edge failure any time
implies that tasks running on a fault vertex can be

change into its matching vertex. Terefore, under this
fault assumption, larger mp (G) signifes higher fault
tolerance. However, in the network, the probability that
the adjacent vertices of the same vertex fail at the same
time is very small. So the question is if we delete edges,
what are the basic obstructions to a perfect matching or
an almost-perfect matching in the resulting graph if no
isolated vertices are created. Tis motivates our next
defnition. If an edge subset F satisfes G − F has no
isolated vertices and has neither perfect matching nor
almost-perfect matching, then F is a conditional
matching preclusion set (CMP for short). Denoted
mp1(G) is the minimum number of all CMP set. At
present, there have been some discussions about the
conditional matching preclusion number of special
graphs. We mainly want to discuss the conditional
matching preclusion number of general graphs. We
consider the following three problems in this paper.

Problem 1. Compute the minimum integer s(n, k) �

min |E(G)|: G ∈ ψ(n, k) , where ψ(n, k) be the set of
all graphs of order n with conditional matching pre-
clusion number k

Problem 2. Compute the minimum integer f(n, k)

such that for every connected graph G of order n, if
|E(G)|≥f(n, k), then mp1(G)≥ k
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Problem 3. Compute the maximum integer g(n, k)

such that for every connected graph G of order n, if
|E(G)|≤g(n, k), then mp1(G)≤ k

A basic obstruction to a perfect matching of even graph
with no isolated vertex will be the existence of a path u −

w − v where the degrees of u and v are 1. Defne ve(G) �

min dG(u) + dG(v) − 2 − yG(u, v) : u and v are distance 2
apart}, if u and v are adjacent, then yG(u, v) � 1, and 0
otherwise.

Proposition 1 (see [7]). An even graph G with δ(G)≥ 3, then
mp1(G)≤ ve(G).

Te basic obstruction to an almost-perfect matching of
odd graph with no isolated vertex will be the existence of a
three vertices of degree 1 with a common neighbour. Defne
v0(G) � min |F|: G − F{ has no isolated vertices and has 3
leaves adjacent to the same vertex}.

Proposition 2 (see [7]). An odd graph G has
mp1(G)≤ v0(G).

For odd vertices bipartite graph G � (U∪V, E), we have
v0′(G) � min |F|: G − F{ has no isolated vertices and has 2
leaves adjacent to the same vertex in V}.

Proposition 3 (see [7]). Let G be a bipartite graph with an
odd number of vertices. Ten, mp1(G)≤ v0′(G).

If H is a spanning subgraph of G, we want to know
whether we have mp1(H)≤mp1(G) holds.

Remark 1. For an even number n(n≥ 12), let G be a graph
obtained from a K3 � u1v1w1u1 and a clique Kn− 3 by adding
three edges u1u2, v1v2, w1w2, where u2, v2, w2 ∈ V(Kn− 3). Let
H be a graph obtained from G by deleting three edges of K3.
It is clear that H is a spanning subgraph of G. By deleting
three edges u1u2, v1v2, w1w2 in G, we can see that there is no
perfect matching in the resulting graph; hence, mp1(G)≤ 3.
From the defnition of mp1(H), for any X⊆E(H), to avoid
isolated vertices in H − X, we have X∩ u1u2, v1v2, w1w2  �

∅ and X⊆E(Kn− 3), so mp1(H)≥ 4> 3≥mp1(G).

Remark 2. For an odd number n(n≥ 15), let G be a graph
obtained from a clique K4 with vertex set u1, v1, w1, t1  and
a clique Kn− 4 by adding four edges u1u2, v1v2, w1w2, t1t2
between them, where u2, v2, w2, t2 ∈ V(Kn− 4). Let H be a
graph obtained from G by deleting six edges of the K4. By
deleting u1u2, v1v2, w1w2, t1t2  and three edges in E(K4),
we can fnd there no perfect matching in the resulting graph;
hence, mp1(G)≤ 7. For any X⊆E(H), to avoid isolated
vertices in H − X, we have X∩ u1u2, v1v2, w1w2, t1t2  � ∅
and X⊆E(Kn− 4), so mp1(H)≥ 8> 7≥mp1(G).

2. Sharp Bounds for CMP Number

Lemma 1 (see [2]). Let n≥ 2. Ten, mp(Kn,n) � n, Kn,n is
super matched.

Lemma 2 (see [19]). Let n≥ 3. Ten, mp1(Kn,n) � 2n − 2,
Kn,n is conditionally super matched.

Theorem 1 (see [19])

(1) Let n≥ 4 be even, then

mp1 Kn(  �

n
2

+ 2n 

8
, if n ∈ 4, 6, 8{ },

2n − 5, if n≥ 10.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

(2) Let n≥ 5 be odd, then

mp1 Kn(  �

n
2

+ 4n + 3 

8
, if n ∈ 5, 7, 9, 11, 13{ },

3n − 9, if n≥ 15.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

Proposition 4. Let G be a graph with an even number of
vertices and δ ≥ 3. Ten, mp1(G)≤ δ + ∆ − 2.

Proof. Let u be the minimum-degree vertex in G. Since
δ(G)≥ 3, it exists a path u − v − w in G. Let
X � E[ u, w{ }, NG( u, w{ })∖v], then G − X exists a path u −

v − w and dG(u) � dG(v) � 1. By Proposition 1,
mp1(G)≤d(u) + d(w) − 2≤ δ + ∆ − 2.

By Lemma 2,mp1(Kn,n) � 2n − 2,∆(Kn,n) � δ(Kn,n) � n,
we get δ(Kn,n) + ∆(Kn,n) − 2 � 2n − 2 for n≥ 3. □

Proposition 5. Let G be a graph with an odd number of
vertices and δ ≥ 4. Ten, mp1(G)≤ δ + 2∆ − 3.

Proof. Let u be the minimum-degree vertex of G and
ux ∈ E(G). Since d(x)≥ 4, there exist two vertices v, w and
two edges xv, xw ∈ E(G). Let X � E[ u, v, w{ }, NG( u, v,{

w})∖x], then G − X has no isolated vertices and has 3 leaves
adjacent to the same vertex x. By Proposition 2,
mp1(G)≤d(u) + d(v) + d(w) − 3≤ δ + 2∆ − 3. □

3. Graphs with Given CMP Numbers

Theorem 2 (see [20]). For a graph with order n, if δ ≥ (n/2),
then G is Hamiltonian.

Lemma 3 (see [19]). A graph G has a perfect matching if and
only if G satisfes Tutte’s condition, that is, o(G − S)≤ |S|.

Lemma 4 (see [19]). A graph G has an almost-perfect
matching if and only if every subset vertices satisfes Berge’s
condition, that is, o(G − S)≤ |S| + 1.

Te graphs with mp1(G) � 2n − k(k≥ 5) can be char-
acterized completely.

Proposition 6. Te even graph G has order of n≥ 10, and
δ(G)≥ 3. Ten, mp1(G) � 2n − 5 if and only if G � Kn.

Proof. FromTeorem 1, we know mp1(G) � 2n − 5 when G

is a complete graph. Conversely, if mp1(G) � 2n − 5 and
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G≇Kn, then there exist uv ∉ E(G). If w is a common
neighbour vertex of u, v, let X � EG[ u, v{ }, NG( u, v{ })∖ w{ }].
So there exists a path u − w − v in G − X satisfes dG(u) �

dG(v) � 1. Since δ(G)≥ 3, G − X has no isolated vertices and
no perfect matching exist. Since |X| � dG(u) + dG

(v) − 2≤ 2n − 6, it means mp1(G)≤ |X|≤ 2n − 6, which
contradicts to mp1(G) � 2n − 5. If no exist a common
neighbour vertex for u and v, we choose a shortest path
between u and v, say P: � ua1a2 . . . asv(uas ∉ E(G)). Let
X � EG[ u, a2 , NG( u, a2 )∖ a1 ], then there exists a path
u − a1 − a2 in G − X and dG(u) � dG(a2) � 1. Since |X| �

d(u) + d(a2) − 2≤ n − 3 + n − 2 − 2 � 2n − 7, then mp1(G)

≤ |X|≤ 2n − 7. So G � Kn. □

Theorem 3. An even graph G has order n≥ 8k − 12 and
δ(G)≥ 3. Ten, mp1(G) � 2n − k if and only if δ(G) � n +

4 − k and 5≤ k≤ n + 1.

Proof. From Proposition 6, we only need to consider
6≤ k≤ n + 1. When mp1(G) � 2n − k, we frst suppose
δ(G)≤ n + 3 − k and choose a minimum-degree vertex u.
Since δ(G)≥ 3, there exists a path u − v − w in G. Let X �

E[ u, w{ }, NG( u, w{ })∖ v{ }], then there exists a path u − v − w

in E(G) − X and d(u) � d(v) � 1. If uw ∈ E(G), then
|X|≤ n + 3 − k − 2 + n − 1 − 2 + 1 � 2n − k − 1, and we have
mp1(G)≤ |X|≤ 2n − k − 1. If uw ∉ E(G), then |X|≤ n + 3 −

k − 1 + n − 1 − 2 � 2n − k − 1, and we have
mp1(G)≤ |X|≤ 2n − k − 1. Tus, δ(G)≥ n + 4 − k. Let
δ(G)≥ n + 4 − k, and let δ(G) � n + 4 − k + t and t≥ 1. By
induction on k, we prove that mp1(G) � 2n − k if and only if
δ(G) � n + 4 − k. From Proposition 6, the result holds for
k � 5. Suppose that the argument is true for every integer
k′(k′ < k), that is, mp1(G) � 2n − k′ if and only if δ(G) �

n + 4 − k′. Since δ(G) � n + 4 − k + t � n + 4 − (k − t) and
k − t< k, then mp1(G) � 2n − (k − t), it contradicts to
mp1(G) � 2n − k. So δ(G) � n + 4 − k.

Conversely, suppose δ(G) � n + 4 − k. We prove that
mp1(G) � 2n − k. Let u ∈ V(G). Since δ(G)≥ 3, it follows
that there exists a path u − v − w in G. Let
X � E[ u, w{ }, NG( u, w{ })∖v], then E(G) − X exists a path
u − v − w and d(u) � d(w) � 1. If uw ∈ E(G), then |X|≤ n +

4 − k − 2 + n − 1 − 2 + 1 � 2n − k, and we have
mp1(G)≤ |X|≤ 2n − k. If uw ∉ E(G), then |X|≤ n + 4 − k −

1 + n − 1 − 2 � 2n − k, and we have mp1(G)≤ |X|≤ 2n − k.
Tus, mp1(G)≤ 2n − k.

Now, we prove that mp1(G)≥ 2n − k. Suppose
degG[X](v)≤ (n/2) + 4 − k for every v ∈ V(G), degG− X(v) �

degG(v) − degG[X](v)≥ n + 4 − k − (n/2) − 4 + k � (n/2). By
Teorem 2, G − X has a Hamiltonian cycle, so there is a
perfect matching in G − X. It exists a vertex v ∈ V(G) and
degG[X](v)≥ (n/2) + 5 − k. Since G − X has no isolated
vertices, there has a vertex u ∈ V(G) and one edge
vu ∈ E(G\X). Let G1 � G − v, u{ }, then |X∩E(G1)|≤ 2n −

k − 1 − ((n/2) + 5 − k) � (3n/2) − 6.
If G1 − X has an isolated vertex, say a, then

dG1[X](a)≥ n + 2 − k. Since G − X has no isolated vertices, it
means a must adjacent to at least one of u and v. If
av ∈ E(G − X), let G2 � G − v, a{ }, then |X∩E(G2)|≤ |X| −

degG[X](v) − degG[X](a)≤ 2n − k − 1 − ((n/2) + 5 − k)−

(n + 2 − k) � (n/2) + k − 8. Clearly, degG2− X(x)+ degG2− X

(y)≥ 2(n + 2 − k)−

(n/2) − k + 8 � (3n/2) − 3k + 12≥ n(n≥ 6k − 14) for any
vertex pairs x, y ∈ V(G2), and then, G2 − X contains a
Hamiltonian cycle and a perfect matching M. Furthermore,
M∪ av{ } is a perfect matching of G − X. If av ∉ E(G − X),
then au ∈ E(G − X). If there is a vertex b and b≠ u such that
vb ∈ E(G − X), we let G3 � G − v, b, u, a{ }. Clearly,
degG3− X(s) + degG3− X(t)≥ 2(n − k) − (n/2) − k + 8 − 1 �

n + (n/2) − 3k + 7≥ n + (6k − 14/2) − 3k + 7 � n

(n≥ 6k − 14) for any vertex pairs s, t ∈ V(G3), and then,G3 −

X has a Hamiltonian cycle and a perfect matching M in G3 −

X. Furthermore, M∪ vb, ua{ } is a perfect matching of G − X.
If there exists no vertex b (except u) such that vb ∈ E(G − X)

, let X1 � E [v, NG(v)∖ u{ }]∪E[a, NG(a)∖ u{ }], we have
X1 ⊆X and 2n + 6 − 2k≤ |X1|≤ 2n − 6. So |X| − |X1|≥ 2n −

k − 1 − 2n + 6 � 5 − k≥ 0, it means k≤ 5, which contradicts
to k≥ 6.

If G1 − X has no isolated vertices, suppose
gG1[X](x)≤ (n/2) + 2 − k for every vertex x ∈ V(G1), then
degG1− X(x) � degG1

(x) − degG1[X](x)≥ n + 2 − k − (n/2) −

2 + k � (n/2).Ten, G1 − X contains a Hamiltonian cycle, so
a perfect matching M in G1 − X, and then, M∪ uv{ } is a
perfect matching in G − X. Suppose that there exist two
vertices x, y ∈ V(G1) with degG1[X](x)≥ (n/2) + 3 − k such
that xy ∉ X. Let G3 � G − v, u, x, y , then
|E(G3)∩X|≤ (3n/2) − 6 − (n/2) − 3 + k � n + k − 9. Since
dG3− X(a)≥ n − k − n − k + 9 � 9> 1 for each vertex
a ∈ V(G3), G3 − X has no isolated vertices. Suppose
degG3[X](x′)≤ (n/2) − k for every vertex x′ ∈ V(G3), then
degG3− X(x′) � degG3

(x′) − degG3[X](x′)≥ n − k − (n/2) +

k � (n/2). By Teorem 2, G3 − X contains a Hamiltonian
cycle and a matching M in G3 − X, so M∪ uv, xy  is a
perfect matching in G − X. Suppose that there exists a vertex
x′ ∈ V(G3) and degG3[X](x′)≥ (n/2) + 1 − k and x′y′ ∉ X.
Let G4 � G − v, u, x, y, x′, y′ . |E(G4)∩X|≤ n + k

− 9 − (n/2) − 1 + k � (n/2) + 2k − 10. It follows that for any
vertex pair s, t ∈ V(G4), degG4− X(s) + degG4− X(t)≥ 2(n − 2 −

k) − (n/2) + 10 − 2k � (3n/2) − 4k + 6≥ n. (n≥ 8k − 12). So
G4 − X contains a Hamiltonian cycle, and hence, there is a
perfect matching M in G4 − X. Clearly, M∪ uv, xy, x′y′  is
a perfect matching of G − X. From the above argument, we
get mp1(G) � 2n − k.

Next, we characterize the odd graphs with mp1(G) �

3n − 9, 3n − 10, 3n − 11, respectively. □

Proposition 7. Let G be an order n≥ 15 and δ(G)≥ 4. Ten,
mp1(G) � 3n − 9 if and only if G is Kn.

Proof. Suppose mp1(G) � 3n − 9, but G≠Kn. It exists two
vertices u and v such that uv ∉ E(G). If they have a common
neighbourhood w, then there is a vertex a such that
wa ∈ E(G) by δ(G)≥ 4. Let X � E[ u, v, a{ }, NG

( u, v, a{ })∖ w{ }], then |X|≤ n − 2 − 2 + n − 2 − 2 + n− 1 − 3 +

2 � 3n − 10 and u, v, a are three vertices of degree 1 with
common neighbour w in E(G) − X. From δ(G)≥ 4, that G −

X has no isolated vertices, and X is a basic obstruction set to
an almost-perfect matching of G. Tus, mp1(G)≤ |X|≤ 3n −

10, and it contradicts to mp1(G) � 3n − 9. If u and v no
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common neighbourhood, choose a shortest path p � ua1a2 ·

· · asv (uas ∉ E(G)) between u and v. By δ(G)≥ 4, there
exists another vertex b1 such that a1b1 ∈ E(G). Let
X � E[ u, a2, b1 , NG( u, a2, b1 )∖ a1 ], then |X|≤ n − 2−

2 + n − 2 − 2 + n − 1 − 3 + 2 � 3n − 10 and u, a2, b1 are three
vertices of degree 1 with the common neighbour a1 in
E(G) − X. Tus, mp1(G)≤ |X|≤ 3n − 10, which contradicts
to mp1(G) � 3n − 9. □

Proposition 8. Let G be an odd graph of order n≥ 15 and
δ(G)≥ 4. Ten, mp1(G) � 3n − 10 if and only if G � Kn − e,
where e ∈ E(Kn).

Proof. If G � Kn − e, e � uv ∉ E(G). Choosing another two
vertices x, y from V(G), we know ux, vx, yx ∈ E(G). Let
X � E[ u, v, y , NG( u, v, y )∖ x{ }], then |X|≤ 2(n − 2)− 4 +

n − 1 − 3 + 2 � 3n − 10 and u, v, y are three vertices of degree
1 with a common neighbour x in E(G) − X. It means that
mp1(G)≤ 3n − 10. For every X⊆E(G) with |X| � 3n − 11,
G − X � Kn − e − X � Kn − (X∪ e{ }) is the graph which is
obtained from Kn by deleting at most 3n − 10 edges. By
Proposition 7, G − X has an almost-perfect matching, so
mp1(G)≥ 3n − 10. By above argument, mp1(G) � 3n − 10.

Conversely, it shows that G � Kn − e when mp1(G) �

3n − 10. If G≠Kn − e, then G contains a path P3 � uvw or
two independent edges xy, uv as its subgraph. For the
former case, if u, v, w have a common neighbour a, let X �

E[ u, v, w{ }, NG( u, v, w{ })∖ a{ }], we have |X|≤ 2(n − 2 − 2) +

n − 1 − 3 + 1 � 3n − 11 and u, v, w are three vertices of de-
gree 1 in E(G) − X, and G − X has no isolated vertices since
δ(G)≥ 4. It follows that mp1(G)≤ |X|≤ 3n − 11. If u, v, w

have no common neighbour, it means that degG(x)≤ n − 2
for any vertex x ∈ V(G)∖ u, v, w{ }. Since δ(G)≥ 4, there
exists a vertex a ∉ u, w{ } such that va ∈ E(G); furthermore,
there are two vertices b1, b2 such that ab1, ab2 ∈ E(G). Let
X � E[ v, b1, b2 , NG( v, b1, b2 )∖ a{ }], then |X|≤ n − 3 − 3 +

2(n − 2 − 3) + 3 � 3n − 13 and v, b1, b2 are three vertices of
degree 1 with common neighbour a in G − X. From δ(G)≥ 4
, we know G − X has no isolated vertices. Tus,
mp1(G)≤ |X|≤ 3n − 13, a contradiction.

For the case of two independent edges xy, uv ∈ E(G),
there are three situations to be considered. If there are three
vertices in x, y, u, v  with a common neighbour a, without
loss of generality, they are x, y, u have a common neighbour.
Let X � E[ x, y, u , NG( x, y, u )∖ a{ }], then |X|≤ n−

2 − 3 + 2(n − 2 − 2) + 2 � 3n − 11 and v, y, u are three ver-
tices of degree 1 in G − X. If there are two vertices in
x, y, u, v  with a common neighbour a, then there is a
vertex a′(a′ ≠ x, y) such that aa′ ∈ E(G). Clearly, a′ is
connected to at most two of vertices in x, y, u, v; thus,
degG(a′)≤ n − 3. Let X � E[ x, y, a′ , NG( x, y, a′ )∖ a{ }],
so x, y, a′ are three vertices of degree 1 with common
neighbour a in G − X and |X|≤ n − 3 − 3 + 2(n − 2 − 2) +

2 � 3n − 12. If any two vertices of x, y, u, v have no common
neighbour, it means for every vertex a ∈ V(G)∖ x, y, u, v  is
connected to at most one of vertices in x, y, u, v, so
degG(a)≤ n − 4. Choose a vertex a (a≠y) and xa ∈ E(G),
then a must has two other adjacent vertices a1, a2. Let X �

E[ x, a1, a2 , NG( x, a1, a2 )∖ a{ }], then |X|≤ n − 2 − 3 + 2

(n − 4 − 3) + 3 � 3n − 16 and x, a1, a2 are three vertices of
degree 1 in G − X. It is a contradiction. Together with the
above argument, we can fnd G � Kn − e. □

Proposition 9. Let G has n≥ 25 and δ(G)≥ 4. Ten,
mp1(G) � 3n − 11 if and only if one of the following con-
ditions holds.

(1) δ(G) � n − 2 and G≠Kn − e

(2) G � Kn − E(P3)

Proof. Suppose mp1(G) � 3n − 11. Ten, we claim
δ(G)≥ n − 3. Assume, on the contrary, that δ(G)≤ n − 4.
Ten, there exists a vertex u in G such that dG(u)≤ n − 4.
Choose v ∈ NG(u) and a, b{ } ∈ NG(v), since δ(G)≥ 4. Let
X � E[ u, a, b{ }, NG( u, a, b{ })∖ v{ }], so u, a, b are three ver-
tices of degree 1 with common neighbour v in G − X and
|X|≤ n − 4 − 3 + 2(n − 1 − 3) + 3 � 3n − 12. Tus, mp1(G)

≤ |X|≤ 3n − 12, which contradicts mp1(G) � 3n − 11. By
Propositions 7 and 8 and δ(G)≥ n − 3, we have δ(G) � n − 2
and G≠Kn − e or δ(G) � n − 3.

When δ(G) � n − 3, we need to show G � Kn − E(P3).
Assume degG(u) � n − 3. It means there exist two vertices
v, w such that uv, uw ∉ E(G) and ux ∈ E(G) for every vertex
x ∈ V(G)∖ w, v{ }. Assume, on the contrary, that G≠Kn −

E(P3). Except uv, uw ∉ E(G), there exists two vertices x, y

in V(G) and xy ∉ E(G). If x � v, then degG(v) � n − 3.
Choose va ∈ E(G) and ab ∈ E(G); clearly, ua ∈ E(G). Let
X � E[ u, v, b{ }, NG( u, v, b{ })∖ a{ }], so u, v, b are three verti-
ces of degree 1 with common neighbour a in G − X and
|X|≤ n − 1 − 3 + 2(n − 3 − 2) + 2 � 3n − 12. mp1(G)≤ |X|

≤ 3n − 12, So x, y ∉ v, w{ }. Since δ(G)≥ 4, choose
xa, ab ∈ E(G) and ux, ua, ub{ }⊆E(G). Let
X � E[ u, x, b{ }, NG( u, x, b{ })∖ a{ }], so u, x, b are three ver-
tices of degree 1 with common neighbour a in G − X and
|X|≤ n − 3 − 3 + n − 2 − 3 + n − 1 − 3 + 3 � 3n − 12. mp1
(G)≤ |X|≤ 3n − 12, which is a contradiction. In summary,
we have G � Kn − E(P3), or δ(G) � n − 2 and G≠Kn − e, as
required.

Conversely, by Propositions 7 and 8, we have
mp1(G)≤ 3n − 11. We show mp1(G)≥ 3n − 11. If G � Kn −

E(P3), for every X⊆E(G) with |X|≤ 3n − 12, it follows that
G − X � Kn − (X∪E(P3)) is a graph obtained from Kn by
deleting at most 3n − 10 edges. By Proposition 7, G − X has
an almost-perfect matching, as desired. If δ(G) � n − 2 and
G≠Kn − e, then G � Kn − L, where L is a matching of Kn of
size at least 2. It sufces to prove that G − X has an almost-
perfect matching for every X⊆E(G) with |X|≤ 3n − 12 such
that G − X has no isolated vertices. Suppose any vertex
v ∈ V(G) has degG[X](v)≤ (n − 5/2), then degG− X(v)

� degG(v) − degG[X](v)≥ n − 2 − (n − 5/2) � (n + 1/2)>
(n/2). ByTeorem 2,G − X contains a Hamiltonian cycle. So
an almost-perfect matching in G − X, a contradiction. Now,
we suppose that there exists a vertex v ∈ V(G) and
degG[X](v)≥ (n − 3/2). Since G − X has no isolated vertices,
it follows that there exists a vertex u ∈ V(G) and vu ∈ E(G −

X). Let G1 � G − v, u{ }, then |X∩E(G1)|≤ 3n − 12−

(n − 3/2) � (5n − 21/2).
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If G1 − X has no isolated vertices, suppose every vertex
x ∈ V(G1) has degG[X](x)≤ (n − 9/2). Ten, degG1− X(x) �

degG1
(x) − degG1[X](x)≥ n − 4 − (n − 9/2) � (n + 1/2). By

Teorem 2, G1 − X contains a Hamiltonian cycle. So an
almost-perfect matching M′ in G1 − X and M′ ∪ uv{ } is an
almost-perfect matching in G − X, a contradiction.

We suppose that there exists a vertex x ∈ V(G1) and
degG1[X](x)≥ (n − 7/2) and xy ∉ X. LetG2 � G − v, u, x, y ,
then |E(G2)∩X|≤ (5n − 21/2) − (n − 7/2) � (4n − 14/2).
Recall that G � Kn − L, where L is a matching of Kn of size at
least 2; thus, G2 � Kn − L − u, v, x, y  � Kn− 4 − L. It means
removing up to (n − 5/2) edges from Kn− 4. Since n≥ 25, (n −

5/2) + (4n − 14/2) � (5n − 19/2)< 3(n − 4) − 9. By Proposi-
tion 7, G2 − X has an almost-perfect matching M′, and
M′ ∪ uv, xy  is an almost-perfect matching of G − X.

If G1 − X has two isolated vertices a and b, then 3n −

12 − deg[X](v) − deg[X](a) − deg[X](b)≤ 3n − 12 − (n −

3/2) − 2(n − 4) � (n − 5/2). Since G − X has no isolated
vertices, the vertices a and b must be at least adjacent to one
of u, v{ }, respectively. Since δ � n − 2, we can assume
au ∈ E(G) and bv ∈ E(G). Let G2 � G − u, v, a, b{ } � Kn −

L − u, v, a, b{ }. Since (n − 5/2) + (n − 5/2) � n − 5,
mp1(Kn− 4) � 3(n − 4) − 9 � 3n − 21 and n − 5< 3n − 21. So
G2 − X has an almost-perfect matching M′, and
M′ ∪ au, bv{ } is an almost-perfect matching of G − X.

If G1 − X has one isolated vertex a, then degG[X](a)≥ n −

4. Let G2 � G − u, v, a{ }, clearly, |E(G2)∩X|

≤ 3n − 12 − (n − 3/2) − n + 4 � (3n − 13/2). Suppose that
every vertices b ∈ V(G2) have degG2[X](b)≤ (n − 9/2), then
degG2− X(b) � degG2

(b) − degG2[X](b)≥ n − 5 − (n − 9/2)>
(n − 3/2). By Teorem 2, G2 − X contains a Hamiltonian
cycle. So there is a perfect matching M in G2 − X, and
M∪ uv{ } is an almost-perfect matching in G − X missing a.
We suppose that there exists a vertex b ∈ V(G2) and
degG2[X](b)≥ (n − 7/2). Since G1 − X has only one isolated
vertex a, it follows that there exists one vertex b′ and bb′ ∉ X.
Let G3 � G − v, u, a, b, b′ , then |E(G3)∩X|≤ (3n − 13/2) −

(n − 7/2) � n − 3. Clearly, G3 � Kn − L − v, u, a, b, b′  and
|V(G3)| � n − 5 is even, and we have mp1(Kn− 5) � 2n − 15.
Since Kn− 5 − L means from Kn− 5 remove at most (n − 5/2)

edges and (n − 5/2) + n − 3 � (3n − 11/2)< 2n − 15 (n≥ 25),
G3 − X has a perfect matching M, and M∪ uv, bb′  is an
almost-perfect matching of G − X missing a, a contradic-
tion. Tus, mp1(G) � 3n − 11. □

4. Extremal Problems on CMP Number

Consider the three extremal problems in the introduction.

Lemma 5. Let n, k be two positive integers and n≥ 3 be odd.
Ten,

(1) s(n, 0) � 0
(2) s(n, 1) � (n + 5/2)

(3) s(n, 2) � (n + 7/2)

Proof

(1) Let G be a no edges with order n graph. Clearly,
mp1(G) � 0. So s(n, 0) � 0.

(2) Let H � (n − 5/2)P2 ∪ S+
5 , where S+

5 is a graph ob-
tained from a star K1,4 by adding one edge between
two leaves. Clearly, mp1(H) � 1 and H has (n + 5/2)

edges. Ten, s(n, 1)≤ (n + 5/2). Conversely, assume
that s(n, 1)≤ (n + 3/2), it means exists an odd graph
G of order n with s(n, 1)≤ (n + 3/2) thus mp1(G) �

1. Assume that C1, C2, · · ·, Ct are the connected
components in G. If two of C1, C2, · · ·, Ct are odd
components in G, then mp1(G) � 0. So there is
exactly one odd component inG, suppose it is Ct. We
may assume |V(C1)|≥ |V(C2)|≥ · · · ≥ |V(Ct− 1)|. If
|V(C2)|≥ 4, then |E(G)|≥ 2(4 − 1) + (n − 8 − 3/2) +

3 − 1 � (n + 5/2), it contradicts with |E(G)|

� s(n, 1)≤ (n + 3/2). Ten, |V(C1)|≥ 4 and
|V(C2)| � |V(C3) � · · · � |V(Ct− 1)| � 2. If |V(C1)|

≥ 6, then |E(G)|≥ 6 − 1 + (n − 6 − 3/2) + 3−

1 � (n + 5/2), a contradiction. So |V(C1)| � 4 or
|V(C1)| � 2. If |V(C1)| � 4, we claim |V(Ct)| � 3.
Otherwise, |V(Ct)|≥ 5 and |E(G)|≥ 4 − 1 + (n − 4 −

5/2) + 5 − 1 � (n + 5/2). We have (n − 7/2)P2 in G,
and |E(C1)| + |E(Ct)|≤ (n + 3/2) − (n − 7/2) � 5. So
G � (n − 7/2)P2 ∪P3 ∪P4 or G � (n − 7/2)P2
∪P3 ∪ S4. For two cases, we know mp1(G) � 0. If
|V(C1)| � 2, we claim |V(Ct)| � 5. Otherwise,
|V(Ct)| � 3 or |V(Ct)|≥ 7. If |V(Ct)| � 3, then
|E(Ct)|≤ (n − 3/2) − (n − 3/2) � 3 and |E(Ct)|≥ 2.
So G � (n − 3/2)P2 ∪C3 or G � (n − 3/2)P2 ∪P3.
For two cases, we know mp1(G) � 0. If |V(Ct)|≥ 7,
then |E(G)|≥ 6 + (n − 7/2) � (n + 5/2), which is a
contradiction. So |V(Ct)| � 5, and |E(Ct)|≤ (n+

3/2) − (n − 5/2) � 4. Tus, G � (n − 5/2)P2 ∪P5 or
G � (n − 5/2)P2 ∪ S5. For two cases, we know
mp1(G) � 0. So s(n, 1) � (n + 5/2).

(3) Let H � (n − 7/2)P2 ∪P3 ∪K4 − e{ }. Clearly,
mp1(H) � 2 and H has (n + 7/2) edges. Ten,
s(n, 2)≤ (n + 7/2). Since s(n, 1) � (n + 5/2), it fol-
lows that (n + 5/2)≤ s(n, 1)≤ s(n, 2)≤ (n + 7/2).
Now, we prove s(n, 2)≥ (n + 7/2). If we assume that
s(n, 2) � (n + 5/2), then it exists an odd graph G of
order n with s(n, 2) � (n + 5/2) such that mp1(G) �

2. So G is not connected. Let C1, C2, · · ·, Ct be the
connected components in G. If two of C1, C2, · · ·, Ct

are odd components, then mp1(G) � 0. So there is
exactly one odd component in G, and we can assume
that |V(Ct)| is odd and |V(Ci)| is even for 1≤ i≤ t −

1. Assume |V(C1)|≥ |V(C2)|≥ · · · ≥ |V(Ct− 1)|. If
|V(Ct)|≥ 9, then |E(G)|≥ |V(Ct)| − 1 + (n − |V

(Ct)|/2) � (|V(Ct)| + n − 2/2)≥ (n + 7/2), but
|E(G)| � (n + 5/2). So 3≤ |V(Ct)|≤ 7. Now, we
consider three cases of the number of |V(Ct)|. First
assume |V(Ct)| � 7, if |V(C1)|≥ 4, then |E(G)|≥ 6 +

3 + (n − 7 − 4/2) � (n + 7/2), a contradiction. All
even components are P2, and |E(Ct)| � (n − 5/2) −

(n − 7/2) � 6. By |V(Ct)| � 7 and |E(Ct)| � 6, the
structure of Ct must be P7 or P6 add one pendant
edge or P5 add two pendant edges. For above three
structure of Ct, we have mp1(G) � 0 or mp1(G) � 1.
Next assume |V(Ct)| � 5, if |V(C1)|≥ 4, then
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|E(G)|≥ 4 + 3 + (n − 9/2) � (n + 5/2). Since |E(G)|

� (n + 5/2), So |V(C1)| � 4 and |V(C2)| � |V(C3)| �

· · · � |V(Ct− 1)| � 2. Since Ct has an almost-perfect
matching, so Ct must be P5 or P4 add one pendant
edge. For any structure of Ct, mp1(G) � 0. At last,
|V(Ct)| � 3 If |V(C2)|≥ 4, then |E(G)|≥ 2 + 2(4 −

1) + (n − 8 − 3/2) � (n + 5/2). Since |E(G)| � (n

+5/2). So G � (n − 11/2)P2 ∪ 2P4 and mp1(G) � 0.
So only have |V(C1)|≥ 4, other even components are
P2. If |V(C1)|≥ 6, then |E(G)|≥ 5 + 2 + (n−

6 − 3/2) � (n + 5/2). Since |E(G)| � (n + 5/2). It
follows that Ct � P3, so C1 must be P6 or P5 add one
pendant edge or P4 add two pendant edges. For
above structure of Ct, mp1(G) � 0 or mp1(G) � 1. If
|V(C1)| � 4, then |E(C1 ∪Ct)| � (n + 5/2)−

(n + 7/2) � 6. So |E(C1)| � 2 and |E(Ct)| � 4, or
|E(C1)| � 3 and |E(Ct)| � 3. It follows that G � (n −

7/2)P2 ∪P3 ∪C4 or G � (n − 7/2)P2 ∪P3 ∪ S+
3 or G �

(n − 7/2)P2 ∪C3 ∪P4. For any case, we know
mp1(G) � 0 or mp1(G) � 1. So s(n, 2) � (n + 7/2)

. □

Theorem 4. Let n≥ 5 be an odd integer, 3≤ k≤ 3n − 9. Ten,

(1) If ⌈(k − 3/3)⌉ is odd, then

s(n, k)≤
⌈(k − 3/3)⌉

2
+ n + 2 + 2k

2
. (3)

(2) If ⌈(k − 3/3)⌉ is even, then

s(n, k)≤
⌈(k − 3/3)⌉

2
+ 2⌈(k − 3/3)⌉ + 2k + 3 + n

2
. (4)

Proof

(1) Let H1 be a graph obtained from u, K3, K⌈(k− 3/3)⌉, by
arbitrarily adding k − 3 edges between K3 and
K⌈(k− 3/3)⌉, and making the join graphs: u{ }∨K3 and
u{ }∨K⌈(k− 3/3)⌉. Let H � H1 ∪ (n − 4 − ⌈(k−

3/3)⌉/2)P2. Suppose v1, v2, v3 are three vertices in K3,
the degree of v1, v2, v3 in H1 is less than or equal to
the degree of other vertices in V(H1\ v1, v2, v3 ).
Clearly, we delete k − 3 edges between K3 and
K⌈(k− 3/3)⌉ and three edges in K3 of H, and then,
v1, v2, v3 are three vertices of degree 1 with the
common neighbour u and the rests of H have no
isolated vertices. And |E(H)| � 3 + ⌈(k − 3/3)⌉ + k +

(⌈(k − 3/3)⌉/2) + (n − 4 − ⌈(k − 3/3)⌉/2) � (⌈(k−

3/3)⌉2 + n + 2 + 2k/2), so s(n, k)≤ (⌈(k − 3/3)⌉2 + n

+2 + 2k/2).
(2) Let H1 be a graph obtained from tree cliques u, K3,

K⌈(k− 3/3)⌉+1. By arbitrarily adding k − 3 edges be-
tween K3 and K⌈(k− 3/3)⌉+1, then make the join graphs:
u{ }∨K3 and u{ }∨K⌈(k− 3/3)⌉+1. Let H � H1 ∪ (n − 5 −

⌈(k − 3/3)⌉/2)P2. Te degree of three vertices
v1, v2, v3 in K3 is less than or equal to the degree of
other vertices in V(H1\K3). Clearly, when we delete

k − 3 edges between K3 and K⌈(k− 3/3)⌉ and three
edges in K3, then v1, v2, v3 are three vertices of degree
1 with common neighbour u, and the rest of graphs
have no isolated vertices. Tis just deletes the k edges
from H and no almost-perfect matching in result
graph.|E(H)| � 3 + ⌈(k − 3/3)⌉ + 1 + k+

⌈(k − 3/3)⌉ + 1
2  + (n − 5 − ⌈(k − 3/3)⌉/2) � (⌈(k

− 3/3)⌉2 + 2⌈(k − 3/3)⌉ + 2k + 3 + n/2), so s(n, k)

≤ (⌈(k − 3/3)⌉2 + 2⌈(k − 3/3)⌉ + 2k + 3 + n/2). □

Lemma 6. Let n, k be two positive integers and n≥ 4 be even.
Ten,

(1) s(n, 0) � 0
(2) s(n, 1) � (n/2) + 2
(3) s(n, 2) � (n/2) + 3
(4) s(n, 3) � (n/2) + 4

Proof

(1) Let G be the graph of order n with no edges. Clearly,
mp1(G) � 0. So s(n, 0) � 0.

(2) Let H � (n − 4/2)P2 ∪ S+
4 . S+

4 is a star of order 4 and
add one edge between two of pendent vertices.
Clearly, mp1(H) � 1 and H has (n/2) + 2 edges.
Ten, s(n, 1)≤ (n/2) + 2. Conversely, assume that
s(n, 1)≤ (n/2) + 1. Ten, there exists an even graph
G of order n with s(n, 1)≤ (n/2) + 1 edges such that
mp1(G) � 1. Because G exists a perfect matching, so
|E(G)|≥ (n/2). If |E(G)| � (n/2), then G � (n/2)P2
and mp1(G) � 0. If |E(G)| � (n/2) + 1, then
G � (n − 4/2)P2 ∪P4 and mp1(G) � 0. So s(n, 1) �

(n/2) + 2.
(3) Let H � (K4 − e{ })∪ (n − 4/2)P2. Clearly,

mp1(H) � 2 and H has (n/2) + 3 edges. Ten,
s(n, 2)≤ (n/2) + 3. Since s(n, 1) � (n/2) + 2, it fol-
lows (n/2) + 2 � s(n, 1)≤ s(n, 2)≤ (n/2) + 3. As-
sume that s(n, 2) � (n/2) + 2. Ten, there exists an
even graph G of order n with s(n, 2) � (n/2) + 2
edges such that mp1(G) � 2. Because G has a perfect
matching, so |E(G)|≥ (n/2), now G is a graph of add
two edges to a perfect match of size (n/2). So G has
the following situations: G � C4 ∪ (n − 4/2)P2, G �

P6 ∪ (n − 6/2)P2, G � 2P4 ∪ (n − 8/2)P2, G � K+
3

∪ (n − 4/2)P2, G � (n − 6/2)P2 ∪ (P5 add one pen-
dant edge on the middle vertex), and for any of the
above, we have mp1(G) � 0 or mp1(G) � 1. So
s(n, 2) � (n/2) + 3.

(4) Let H � K4 ∪ (n − 4/2)P2. Clearly, mp1(H) � 3 and
H has (n/2) + 4 edges. Ten, s(n, 3)≤ (n/2) + 4.
Since s(n, 2) � (n/2) + 3, it follows that (n/2) + 3 �

s(n, 2)≤ s(n, 3)≤ (n/2) + 4. Assume that s(n, 3)

� (n/2) + 3. Ten, there exists an even graph G of
order n with s(n, 3) � (n/2) + 3 edges such that
mp1(G) � 2. SinceG has a perfect matching, soG is a
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graph of add three edges to a perfect match of size
(n/2). All possible structures of G are shown as
follows (Figure 1). For any structure, we have
mp1(G) � 0 or mp1(G) � 1 or mp1(G) � 2. So
s(n, 3) � (n/2) + 4. □

Theorem 5. Let n, k be two positive integers and n≥ 6 be even
and 4≤ k≤ 2n − 5. Ten,

(1) If ⌈(k − 1/2)⌉ is odd, then s(n, k)≤ (⌈(k

− 1/2)⌉2 + n + 2k + 1/2)

(2) If ⌈(k − 1/2)⌉ is even, then s(n, k)≤ (⌈(k − 1/2)⌉2 + 2
⌈(k − 1/2)⌉ + n + 2k + 2/2)

Proof

(1) Let H1 be a graph obtained from K3 � u1u2u3 and
K⌈(k− 1/2)⌉. add k − 1 edges between {u2, u3} and
K⌈(k− 1/2)⌉, then make the join graph: u1 ∨K⌈(k− 1/2)⌉.
Let H � H1 ∪ (n − 3 − ⌈(k − 1/2)⌉/2)P2. And the
degree of three vertices u2, u3 in K3 is less than or
equal to the degree of other vertices in
V(H1\ u2, u3 ). Clearly, when we delete edge u2u3 

and k − 1 edges between {u2, u3} and K⌈(k− 1/2)⌉, then
u2, u3 are two vertices of degree 1 with common
neighbour u1, and the rest of the graphs have no
isolated vertices. Tis just deletes the k edges from H

and no perfect matching in result graph. |E(H)| �

2 + ⌈(k − 1/2)⌉ + k +
⌈(k − 1/2)⌉

2  + (n − 3 − ⌈(k

− 1/2)⌉/2) � (⌈(k − 1/2)⌉2 + n + 1 + 2k/2), so s(n, k)

≤ (⌈(k − 1/2)⌉2 + n + 1 + 2k/2).
(2) Let H1 be a graph obtained from K3 � u1u2u3 and

K⌈(k− 1/2)⌉+1. Arbitrarily add k − 1 edges between
{u2, u3} and K⌈(k− 1/2)⌉+1, then make the join graph:
u1 ∨K⌈(k− 1/2)⌉+1. Let H � H1 ∪ (n − 4 − ⌈(k

− 1/2)⌉/2)P2. From the construction of graph H1, the
degree of three vertices u2, u3 in K3 is less than or
equal to the degree of other vertices in
V(H1\ u2, u3 ). Clearly, when we delete edge u2u3 

and k − 1 edges between {u2, u3} and K⌈(k− 1/2)⌉+1,
then u2, u3 are two vertices of degree 1 with common
neighbour u1, and the rest of the graphs have no
isolated vertices. Tis just deletes the k edges fromH

and no perfect matching in result graph. |E(H)| �

3 + ⌈(k − 1/2)⌉ + k +
⌈(k − 1/2)⌉ + 1

2  + (n − 4 −

⌈(k − 1/2)⌉/2) � (⌈(k − 1/2)⌉2 + 2⌈(k − 1/2)⌉ + n+

2 + 2k/2), so s(n, k)≤ (⌈(k − 1/2)⌉2 + 2⌈(k − 1/2)⌉ +

n + 2 + 2k/2). □

Observation 1. g(n, k) � s(n, k + 1) − 1, n, k be two positive
integers.

Corollary 1. Let n, k be two positive integers and n≥ 5 be
odd, 3≤ k≤ 3n − 9. Ten,

(1) If ⌈(k − 3/3)⌉ is odd, then
g(n, k)≤ (⌈(k − 2/3)⌉2 + n + 2k + 2/2)

(2) If ⌈(k − 3/3)⌉ is even, then g(n, k)≤ (⌈(k − 2/3)⌉2 + 2
⌈(k − 2/3)⌉ + 2k + 3 + n/2)

Corollary 2. Let n≥ 6, 4≤ k≤ 2n − 5 be two positive integers
and be even. Ten,

(1) If ⌈(k − 1/2)⌉ is odd, then
g(n, k)≤ (⌈(k/2)⌉2 + n + 2k + 1/2)

(2) If ⌈(k − 3/3)⌉ is even, then
g(n, k)≤ (⌈(k/2)⌉2 + 2⌈(k/2)⌉ + n + 2k + 2/2)

Theorem 6. Let n, k be two positive integers. Ten,

(1) If n≥ 10 is even and 1≤ k≤ 2n − 5, then

f(n, k) �
n − 3
2  + k + n − 1

(2) If n≥ 15 is odd and 1≤ k≤ 3n − 9, then

f(n, k) �
n − 4
2  + k + n − 1

Proof

(1) First show f(n, k)≥ n − 3
2  + k + n − 1, we con-

struct H as follows, give three components H1 � P3 �

v1v2v3, H2 � K⌈(k− 1/2)⌉, H3 � Kn− 3− ⌈(k− 1/2)⌉.

k − 1edges are connected between v1, v3  andH2, v2 

adjacents to all vertices in H2 and H3, and thenmake a
join between H2 and H3. Clearly, H is a connected
graph on n vertices, E(H) � 2 + k− 1 + n− 3+

n − 3
2  �

n − 3
2  + k + n − 2, andmp1(H) � k −

1< k. So f(n, k)≥ n − 3
2  + k + n − 1. Now to show

f(n, k)≤ n − 3
2  + k + n − 1, letG be a graph with n

vertices such |E(G)|≥ n − 3
2  + n + k − 1. For any

X⊆E(G), |X| � k − 1, so |E(G − X)|≥ n − 3
2  + n

and |E(G − X)≤ n

2 −
n − 3
2 − n � 2n − 6. Since

mp1(Kn) � 2n − 5 by Teorem 1, thus G − X has a
perfect matching, and hence, mp1(H)≥ k. So

f(n, k) �
n − 3
2  + k + n − 1.

Discrete Dynamics in Nature and Society 7



(2) First prove f(n, k)≥ n − 4
2  + k + n − 1, we con-

structH as follows: give three componentsH1, H2, H3.
H1is a star graph with central vertex u and three
pendant vertices v1, v2, v3. H2 � K⌈(k− 1/3)⌉,
H3 � Kn− 4− ⌈(k− 1/3)⌉. k − 1 edges are connected be-
tween v1, v2, v3  and H2, u{ } adjacent to all vertices in
H2 and H3 and then make a join between H2 and H3.
Clearly, H is a connected graph on n vertices, E(H) �

3 + k − 1 + n − 4 +
n − 4
2  �

n − 4
2  + k + n − 2,

andmp1(H) � k − 1< k. Sof(n, k)≥ n − 4
2  + k +

n − 1. Now to showf(n, k)≤ n − 4
2  + k + n − 1, let

G be a graph with n vertices such |E(G)|≥ n − 4
2  +

n + k − 1. For any X⊆E(G), |X| � k − 1, so |E(G −

X)|≥ n − 4
2  + n and |E(G − X)|≤ n

2 − n−(

42) − n � 3n − 10. Since mp1(Kn) � 3n − 9, tt follows
that G − X has an almost-perfect matching, and hence,

mp1(H)≥ k. So f(n, k) �
n − 4
2  + k + n − 1. □

5. Conclusion

Te concept of matching preclusion was introduced in [2].
Te matching preclusion number measures the robustness
of a graph as a communications network topology. In a
network, a vertex with a special matching vertex after edge
failure any time implies that tasks running on a fault vertex
can be change into its matching vertex. Larger mp(G)

signifes higher fault tolerance. However, the probability that
the adjacent vertices of the same vertex fail at the same time
is very small. In the paper, we mainly want to discuss the
conditional matching preclusion number of general graphs.
First of all, we want to discuss the bound of the conditional
matching preclusion number of a general graph. It is nec-
essary to discuss the bounds of reaching the number of

conditional matches according to the parity of the number of
vertices of the graph. Next, we will draw a graph from the
conditional matching preclusion number.When the number
of conditional matches is a special value, what property does
the obtained graph satisfy. From the perspective of graph
description, this is very meaningful. Finally, we discussed
three extreme value problems. It is actually an extension of
the two problems discussed previously, but it is more dif-
fcult to solve than the previous problems.
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