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Aiming at the sway velocity and uncertainties such as wind, wave, and current, a state feedbackH∞ control method is proposed to
improve the dynamic and steady-state performance with line of sight (LOS) law for trajectory tracking of an unmanned surface
vehicle (USV). First, a novel LOS is proposed for trajectory tracking with the position error to obtain the references of surge
velocity and heading angle. Second, the LPVmodel is established with varying parameters of the sway velocity for the USV.Tird,
the closed-loop system for the LPV model is established by the state feedback H∞ control method to design the controller. Since
the coupling term of system coefcients in the Lyapunov stability condition is difcult to solve directly, a novel variable is
introduced to decouple the stability condition, which can be solved with MATLAB LMI tools for the controller parameters.
Finally, the simulation result shows that the proposed method has super performance on the dynamic and steady-state indices.

1. Introduction

Te trajectory tracking is a key technology to autonomously
navigate to execute various tasks for an unmanned surface
vehicle (USV) [1]. Since there are many disturbances in river
or ocean, such as wind, wave, and current, an accurate
mathematical model is too difcult to be established for the
USV to obtain an excellent performance of trajectory
tracking. In order to improve the performance of trajectory
tracking, the novel control technologies are always explored
and presented for the USV.

Te trajectory tracking technology for the USV is
classifed into two strategies of the direct and indirect
method. Te indirect method includes the guidance law and
the controller of the heading angle and velocity. For the
guidance law, the line of sight (LOS) guidance law is a useful
method in the path following and trajectory tracking felds
[2]. A modifed LOS is proposed for an adaptive sliding
mode path following of the USV to suppress unknown
constant current and other external disturbances [3]. An
improved integral LOS with time-varying look-ahead dis-
tance is proposed for a path-following control system for

USV [4]. Te look-ahead distance is a function of USV’s
cruising speed and cross tracking errors. In order to elim-
inate the tracking errors, the dynamic equation of the
tracking error is established with the time-varying current in
Serret–Frenet coordinate system, and LOS is modifed by the
adaptive law of three variables to replace the unmeasurable
current and side slip angle [5]. Tese modifed LOS laws
focus on the heading angle to reduce the following errors
with the disturbance for path following. For trajectory
tracking, LOS should simultaneously produce the surge
velocity reference and the heading angle reference [6]. Here,
a novel LOS will be presented to design the control variable
references of surge velocity and heading angle for trajectory
tracking to converge to the desired trajectory. To improve
the system performance, many research achievements on
trajectory tracking technology have been obtained in the past
decade [7]. Many advanced control technologies are pro-
posed for the trajectory tracking of USV, for example, the
PID algorithm [8], sliding mode control (SMC) [1, 9, 10],
backstepping method [11], andneural network [12]. Since
there are many disturbances in water way, such as wind and
waves, a robust control technology is always a useful method
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to achieve an excellent trajectory tracking performance in
complex environments. A μ-synthesis robust controller is
designed to suppress the uncertainties of the Nomoto model
of USV and the disturbances caused by waves [13]. Con-
sidering the infuence of varying surge velocity on heading
control, a state feedback H∞ heading control is proposed
for the LPV model with surge velocity [14]. A linear pa-
rameter varying (LPV) model was presented with varied
velocity parameters to adjust the course under diferent
velocity conditions [15]. A robust H∞ heading control
method based on convex hull is proposed to efectively
suppress the adverse efect of system uncertainty [16]. A state
feedback (SF) H∞ robust controller is proposed for the LPV
model with variable mass parameters without considerations
of USV sway velocity [17]. Due to the infuence of wind and
wave on the current surface, the roll speed of the USV almost
exists in the process of steering, which results in an in-
crement of the sway velocity [18]. So, it is very important for
the design on SF H∞ controller with the consideration of
the sway velocity to improve the system performance of
trajectory tracking.

Here, the SF H∞ method is proposed for trajectory
tracking of USV with considerations of sway velocities to
suppress the uncertainties and disturbances, including the
design on the LOS guidance law and the controller. First, the
position error model of USV’s motion is established for
trajectory tracking. Second, a novel LOS with the position
errors is proposed to produce the heading angle reference
and the surge velocity reference for trajectory tracking to
guarantee that the USV converge to the desired trajectory
quickly. Tird, the LPV model is established with diferent
sway velocities for the USV dynamic model, and the SF H∞
method is used to design the closed loop system of the LPV
model with the Lyapunov function. Since the Lyapunov
function has the coupling term of system parameter matrix
parameters, it is decoupled with the novel variable to obtain
the stability condition. Moreover, the stability condition is
a linear matrix inequality to be solved by the MATLAB LMI
toolbox for the controller parameters. Finally, the proposed
SF control method for trajectory tracking is verifed efective
to suppress the infuence of sway velocities and has a super
dynamic and stable state system performance through the
simulation comparisons.

Tis paper is organized as follows. In Section 2, the USV
motion error model is established. In Section 3, an error
correction is introduced to design the LOS guidance law. In
Section 4, SF controller is designed to obtain the lateral
torque control law and longitudinal thrust control law.
Finally, the simulation result is discussed in Section 5.

2. Position Error Model of USV Motion

2.1. Kinematics Model. Since the earth is supposed as
a plane, Figure 1 shows the motion diagram of USV. (x, y) is
the center position of USV’s mass in the earth coordinate,
(xd, yd) is the position to be tracked, ψd is the desired heading
angle, ψ is the heading angle, u, v, and r are the surge ve-
locity, sway velocity, and yaw velocity of USV, respectively.

Te kinematics mathematical motion model is as follows
[19]:

_x � u cosψ − v sinψ,

_y � u sinψ + v cosψ,

_ψ � r.

⎧⎪⎪⎨

⎪⎪⎩
(1)

Usually, USV is assumed as symmetry both from front to
rear and from left to right, and the mass center is located in
the hull center. With the system parameter uncertainties, the
dynamic model is as follows [19]:

m11 _u − m22vr + d11u � τu + τuw,

m22 _v + m11ur + d22v � τvw,

m33 _r + m22 − m11( uv + d33r � τr + τrw,

⎧⎪⎪⎨

⎪⎪⎩
(2)

where, d11, d22, d33,m11,m22, andm33 are the hydrodynamic
damping coefcients and the inertial parameters including
the additional mass. τu and τr are the longitudinal thrust and
lateral steering torque, respectively; τuw, τvw, and τrw are the
interference forces and torques of the USV generated by
external wind, waves, and currents, respectively.

2.2. Position Error Model of Trajectory Tracking. In Figure 1,
along the tangent and centripetal direction through the point
(xd, yd), the position tracking errors of tangent error xe and
centripetal error ye are defned as follows:

xe

ye

  �
cosψd sinψd

−sinψd cosψd

 
x − xd

y − yd

 , (3)

where ψd ∈ [-π, π], and ψd is as follows:

ψd � atan 2 _yd, _xd( , (4)

where atan2 is the arctangent function.
In Figure 1, the speed Ud on desired trajectory is as

follows [6]:

Ud � _xd cosψd + _yd sinψd �

�������

_x
2
d + _y

2
d



. (5)
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Figure 1: Trajectory tracking diagram.
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With equations (1) and (5), the derivative of equation (3)
is as follows:

_xe � _x cosψd + _y sinψd − _xd cosψd + _yd sinψd(  + _ψd − x − xd( sinψd + y − yd( cosψd( 

� u cosψ cosψd + u sinψ sinψd − v sinψ cosψd − v cosψ sinψd(  − Ud + _ψdye

� U cos β cos ψ − ψd(  − U sin β sin ψ − ψd(  + _ψdye − Ud

� U cos ψ − ψd + β(  + _ψdye − Ud,

(6)

_ye � _y cosψd − _x sinψd + _xd sinψd − _yd cosψd(  − _ψd x − xd( cosψd + y − yd( sinψd( 

� u sinψ cosψd − u cosψ sinψd + v cosψ cosψd +v sinψ sinψd − Ud − _ψdxe

� U cos β sin ψ − ψd(  + U sin β cos ψ − ψd(  − _ψdxe

� U sin ψ − ψd + β(  − _ψdxe,

(7)

where U �
������
u2 + v2

√
is the combined speed of USV, and

β� atan2(v, u) ∈ [−π, π] is the sideslip angle, produced by the
sway velocity v. Equations (6) and (7) are the dynamic
models with position error for USV trajectory tracking.

3. LOS with Position Errors for
Trajectory Tracking

For trajectory tracking, LOS should produce both the ref-
erence of heading angle and the reference of surge velocity.

3.1. LOS for the Heading Angle. Te Lyapunov function V is
defned as follows:

V �
1
2

x
2
e + y

2
e . (8)

Te derivative of equation (8) is as follows:

_V � xe _xe + ye _ye

� xe U cos ψ − ψd + β(  + _ψdye − Ud(  + ye U sin ψ − ψd + β(  − _ψdxe( 

� xeU cos ψ − ψd + β(  + xeUd + yeU sin ψ − ψd + β( .

(9)

In Figure 1, (xΔ, yΔ) is the position in the tangential
direction and Δ is the distance between (xd, yd) and (xΔ, yΔ).
In order to regulate the USV’s heading angle to (xΔ, yΔ), LOS
for the heading angle is designed as follows:

ψr � ψd − β − arctan
ye

Δ − xe

 , (10)

where ψr is the reference heading angle by LOS.

3.2. LOS for Surge Velocity. If the control system of the
heading angle has an excellent performance, which is sup-
posed as ψ �ψr, equation (9) is as follows:

_V � xeU cos −arctan
ye

Δ − xe

   + xeUd + yeU sin −arctan
ye

Δ − xe

  

� xe

Δ − xe������������

y
2
e + Δ − xe( 

2
 U − Ud

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ −
y
2
e������������

y
2
e + Δ − xe( 

2
 U.

(11)

Te reference speed Ur of USV is designed as follows:
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Ur �
Ud − kxe( 

������������

y
2
e + Δ − xe( 

2


Δ − xe

, (12)

where k> 0.
If U�Ur, equation (11) is as follows:

_V � −
Uy

2
e������������

y
2
e + Δ − xe( 

2
 − kx2e < 0. (13)

SinceU and k> 0, _V< 0 always holds for any xe and ye. In
order to assure xe and ye converge to zero to track the desired
trajectory for USV, the longitudinal thrust control law and
the lateral torque control law should be designed forU and ψ
to converge to Ur and ψr.

Since USV is an underactuated system without lateral
driving force, the lateral torque is usually small to prevent
accidents. If the sway velocity is assumed to be small, the
reference surge velocity ur is equal toUr in equation (12), i.e.,

ur ≈ Ur, (14)

where ur is the surge velocity by LOS.
When the actual heading angle ψ and the surge velocity u

of USV can track ψr and ur, xe and ye can converge to zero,
which means the USV can track the desired trajectory. So, it
is important to design longitudinal thrust controller and the
lateral torque controller to ensure U and ψ converge to Ur
and ψr quickly.

4. SF Control for the LPV System

4.1. LPV Systemwith SwayVelocity. Te heading angle error
ψe is defned as follows:

ψe � ψr − ψ, (15)

where ψr is assumed to be constant in a sampling cycle, the
derivative of equation (15) is as follows:

_ψe � − _ψ � −r. (16)

Surge velocity error ue is defned as follows:

ue � ur − u, (17)

where ur is also assumed to be constant in a sampling cycle.
With equation (17), equation (2) is as follows:

− _ue �
1

m11
−d11 ur − ue(  + m22vr + τu + τuw ,

_r �
1

m33
m11 − m22(  ur − ue( v − d33r + τr + τrw .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)

Te novel variables are designed as follows:

τu � d11ur − τu,

τr � m11 − m22( vur + τr.
(19)

Te state variable is ξ � [ue, r, ψe]T, and the system
measurement output y is the heading angle error ψe. Te
system state equations with equation (16) and (18) are as
follows:

_ξ � A(v)ξ + B1w + B2τ,

y � C2ξ,

z � C1ξ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

where z is the modulated output and A(v) is the system
coefcient matrix with the relation of the sway velocity v, i.e.,

A(v) �

−
d11

m11
−

m22v

m11
0

m22 − m11( v

m33
−

d33

m33
0

0 −1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B1 �

1
m11

0

0
1

m33

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B2 �

−1
m11

0

0
1

m33

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C1 �
1 0 0

0 0 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

C2 � 0 0 1 ,

τ � τu τr 
T
,

w � τuw τrw 
T
,

(21)

where B1, B2, C1, C2 are the system constant coefcients, τ is
the torque control variable, and w is the disturbance vector.
Equation (20) is the LPV system with sway velocity v and the
uncertainty w for USV.

4.2. SFH∞ControllerDesign. Te SFH∞ control method is
proposed for the LPV system of equation (20). Te control
variable τ is as follows:

τ � Kξ, (22)
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where K is the controller parameter to be solved. With the
control variable τ, the closed-loop system satisfes the fol-
lowing properties [20]: (1) the closed-loop system is internal
stable, which means all the eigenvalues of the state matrix in
the closed-loop system are in the left half open complex
plane and (2) the H∞ norm of the closed-loop transfer
function Twz(s) from the disturbance w to the output z is less
than c, i.e, ||Twz(s)||∞< c. Te H∞ constraint condition J is
as follows:

J � 
∞

0
z

T
z − cw

T
w dt< 0. (23)

With equation (22), the closed-loop system from
equation (20) is as follows:

_ξ � Aclξ + B1w,

z � C1ξ,

⎧⎨

⎩ (24)

where Acl is coefcient matrix, Acl �A+B2K.

Theorem 1. For equation (24), there exist symmetric positive
defnite matrices X and matrices S, Y. If the matrix Π satisfes

Π �

he AS + B2Y(  B1 L S
T
C

T
1

∗ −c
2
I −λ B1( 

T 0

∗ ∗ λhe(S) 0

∗ ∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (25)

X> 0, (26)

where K�YS−1, L�X− S− λ(AS +B2Y)T, the given scalars
are c> 0, λ< 0, and he is the equation he(X)�X+XT, and the
closed-loop system of equation (24) is asymptotically stable
and satisfes the H∞ constraint condition of equation (23).

Proof. Te Lyapunov function is constructed as follows:

V(ξ) � ξT
Pξ ≥ 0, (27)

where P is a symmetric positive defnite matrix.
For the constant matrix Tj(j� 1, 2) with appropriate

dimension, it can be obtained from equation (23) as follows
[21]:

ξT
T

T
1 + _ξ

T
T

T
2  _ξ − Aclξ − B1w  � 0. (28)

With equation (20), the derivation of the Lyapunov
function in equation (27) is as follows:

_V(ξ) � _ξ
T

Pξ + ξT
P _ξ + 2 ξT

T
T
1 + _ξ

T
T

T
2  _ξ − Aclξ − B1w 

�

ξ

w

_ξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T −he T
T
1 Acl  −T

T
1 B1 J

∗ 0 − T
T
2 B1 

T

∗ ∗ he T2( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ

w

_ξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(29)

where J� P+T1T − (T2
TAcl)T.

With equation (27), equation (23) is as follows:

J � 
∞

0
z

T
z − cw

T
w + _V dt − V< 0

� 
∞

0
ηTΛη dt − V< 0,

(30)

where ηT � [ξT wT _ξ
T
]T, and

Λ �

C
T
cl

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ccl 0 0  +

−he T
T
1 Acl  −T

T
1 B1 J

∗ −c
2
I − T

T
2 B1 

T

∗ ∗ he T2( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(31)

where I is the unit matrix.
Since V(x)> 0, equation (30) is true when Λ< 0.

According to Schur lemma [20], Λ< 0 can be equivalent to
the matrix, i.e.,

Φ �

−he T
T
1 Acl  −T

T
1 B1 J C

T
1

∗ −cI
2

− T
T
2 B1 

T
0

∗ ∗ he T2(  0

∗ ∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (32)

In fact, Φ< 0 can satisfy the bounded real lemma [21].
Tat is,

he PAcl(  PB1 C
T
1

∗ −c
2
I 0

∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0. (33)

Tematrix is selected such that Ξ �

I 0 0 0
0 I 0 0

Acl B1 I 0
0 0 0 I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

it follows

ΞTΦΞ �

he PAcl(  PB1 Q C
T
1

∗ −c
2
I B

T
1 T2 0

∗ ∗ he T2(  0

∗ ∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

So, ΞTΦΞ < 0 is equivalent toΦ< 0. In fact, it can be seen
that equation (33) is a submatrix of equation (34). Obvi-
ously, if ΞTΦΞ < 0 has a feasible solution, this solution must
be the feasible solution of equation (33). So, equation (34)
can satisfy the bounded real lemma.

In order to satisfy the Inequality 31, T2 is selected
a negative defnite matrix, T� −T1, and λT�T2< 0. In-
equality 31 is as follows:

Ψ �

he T
T
Acl  T

T
B1 P − T

T
− λ T

T
Acl 

T
C

T
1

∗ −c
2
I −λ T

T
B1 

T
0

∗ ∗ λhe(T) 0

∗ ∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.

(35)

With Acl �A+B2K, equation (35) is as follows:
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Ψ �

he T
T

A + B2K(   T
T

B1 D C
T
1

∗ −c
2
I −λ T

T
B1 

T
0

∗ ∗ λhe(T) 0

∗ ∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(36)

where D � P − TT − λ(TT(A + B2K))T.

Te variables are selected such that S�T−1, Θ �

S

I

S

I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and it follows

Π � ΘTΨΘ

�

he AS + B2KS(  B1 E S
T
C

T
1

∗ −c
2
I −λB

T
1 0

∗ ∗ λhe(S) 0

∗ ∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
(37)

where E � STPS − S − λ(AS + B2KS)T.
When the variables are selected, Y�KS and X � STPS,

Inequality 36 is as follows:

Π �

he AS + B2Y(  B1 L S
T
C

T
1

∗ −c
2
I −λB

T
1 0

∗ ∗ λhe(S) 0

∗ ∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (38)

Inequality 37 is equal to equation (25). For the LPV
system of equation (20), the Lyapunov stability condition of
the SF H∞ system is equation (25). Te proof is over. □

5. Simulation Analysis

A small USV is used as the analysis object with the parameters
[22] m11� 1.956, m22� 2.405, m33� 0.043, d11� 2.436,
d22�12.992, and d33� 0.0564. Te external disturbance is
τuw� τrw� rand(). Figure 2 is the control block diagram of the
USV. Te LOS law consists of equations (10) and (12) to
produce the reference ψr and ur, respectively. Equation (22) is
the SFH∞ controller to produce τu and τr.Te parameterK of
the SF H∞ controller in equation (22) can be obtained by the
LMI toolbox for the solution of Inequality 25 and Inequality 26.

To keep smooth sailing for the USV, the reference surge
velocity ur should be limited as follows:

ur �

3, ur >
3m

s
,

ur, 0.75Ud ≤ ur ≤
3m

s
,

0.75Ud, ur < 0.75Ud.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

Te variable de is the trajectory error defned as
de � ((xd)2 + (yd)2)0.5 − (x2 + y2)0.5. In order to verify the SF
H∞ control system performance, the ESO method [6] was
used to control trajectory tracking for the USV by replacing
with equation (22).

5.1. Circular Trajectory Tracking. Te given reference tra-
jectory is a circle with the function of xd(t) � 10sin(0. 1t)
and yd(t) � 10cos(0. 1t). Te reference trajectory is a circle
with the radius of 10m, the reference speed of 1m/s, and the
initial reference input (xd(0), yd(0))� (0, 10). Te initial
position and heading angle of the USV are x(0) � 0m,
y(0) � 1.5m, and ψ(0) � 0 rad; the initial velocities of the
USV are set as u(0) � 0m/s and r(0) � 0 rad/s. To demon-
strate the suppression of sway velocity by the SF H∞
method, the sway velocity v is 0.2m/s, 0.5m/s, and 1.0m/s
for simulations.

Figure 3 shows the circular trajectory tracking with
v � 0.5m/s. Te two curves are the trajectories by the SF H∞
control method and the ESO method, respectively. Te SF
method has not overshoots and can track circular trajec-
tories more smoothly. Moreover, it has a smaller tracking
error than the ESO method in the steady state.

Figures 4–6 are circular trajectory response of de, u, and
ψe with diferent values of v. When v � 0.2m/s, 0.5m/s, and
1.0m/s, the errors de of the SF H∞ method have no
overshoots but those of the ESO method have overshoots of
3.4%, 7.1%, and 9.9%, as shown in Figure 4. System response
of the surge velocity u by the SF H∞method has overshoots
of 3.4%, 7.1%, and 9.9% but those by the ESO method have
overshoots of 17.4%, 18.9%, and 28.8%, as shown in Figure 5. In
Figure 6, system response ψe by the SF H∞ method has
overshoots of 16.2%, 24.2%, and 30.3% but those by the ESO
method have 56.1%, 64.4%, and 83.3%, respectively. Moreover,
the steady-state error between the surge velocity u and the
reference ur increases when v increases, but the error increment
by the SF H∞ method is smaller than the ESO method, as
shown in Figure 5. So, whatever the value of v, thr SF H∞
method has the better performance on dynamic and stable
indices than those by the ESO method in circular trajectory.
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5.2. Straight Trajectory Tracking. Te reference input is
a straight trajectory of xd �

�
2

√
/2t and yd �

�
2

√
/2t with the

initial position (xd(0), yd(0))� (0, 0). Te initial position and
heading angle of the USV are set as follows: x(0)� 0m,
y(0)� 1.5m, and ψ(0)� 0 rad; USV initial velocities are set as
follows: u(0)� 0m/s and r(0)� 0 rad/s. To demonstrate the

suppression of the sway velocity by the SF H∞method, v are
set as v � 0.2m/s, 0.5m/s, and 1.0m/s in simulations.

Figure 7 is straight trajectory tracking by the SF H∞
method and the ESO method with v � 0.5m/s. Te SF H∞
method can track straight trajectory earlier and faster than
the ESO method, which is also refected with the trajectory

Equation10
Equation12

u

–
–

–

+
Equation22

Equation1
Equation2

xd, yd

x, y

xe, ye

τuueur

ψeψr τr

ψ

Figure 2: Control block diagram.
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Figure 4: Circular trajectory error de with v. (a) SF H∞ method. (b) ESO method.
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error de in Figure 8. Moreover, de overshoots by the SF H∞
method are 0.0%, 5.1%, and 21.3% while for the ESOmethod
are 3.9%, 13.5% ,and 38.7% with v � 0.2m/s, 0.5m/s, and
1.0m/s. Te overshoot de increases when v increases, but the

corresponding overshoot by the SF H∞ method is smaller
than that by the ESO method. Figures 9(a) and 10 are the
system responses u and ψ. When v increases, the adjust time
for u and ψ increases, especially for the ESO method. When

ur
v =0.2

0 5 10 15 20 25
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Figure 5: Circular trajectory system response u. (a) SF H∞ method. (b) ESO method.
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Figure 6: Circular trajectory system response ψe. (a) SF H∞ method. (b) ESO method.
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v � 0.2m/s, 0.5m/s, and 1.0m/s, the system response u by
the SF H∞method has overshoots of 0.4%, 5.8%, and 31.7%
while the ESO method has overshoots of 4.1%, 17.6%, and
55.3%. Te system response ψ by the SF H∞ method has
overshoots of 0.0%, 3.8% and 18.2% while the ESO method

has overshoots of 4.8%, 12.7% and 30.3%, respectively.
Moreover, the steady-state error of ψ is larger when v in-
creases. So, the SF H∞ method has the better performance
on dynamic and stable indices than those by the ESO
method for straight trajectory tracking.
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Figure 8: Straight trajectory error de with v. (a) SF H∞ method. (b) ESO method.
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Figure 9: Straight trajectory system response u. (a) SF H∞ method. (b) ESO method.
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5.3. Robustness Analysis. In order to analyze the system
robustness, the uncertainties are imposed as
τuw � τrw � κ(rand()) with κ� 1, 2, and 4, respectively. Te
larger the κ, the larger the uncertainties are. Te steady-state
errors ue and ψe are used to evaluate the system robustness to
suppress the uncertainties with the diferent κ. Figures 11
and 12 are the steady-state errors ue and ψe with κ� 2. When
κ� 1, 2, and 4, the ranges of the steady-state error ue are
±0.008m/s, ±0.012m/s, and ±0.015m/s by the SF H∞
method and ±0.012m/s, ±0.016m/s, and ±0.022m/s by the
ESO method. Te ranges of the steady-state error ψe are
±0.021 rad, ±0.032 rad, and ±0.044 rad by the SF H∞
method and ±0.028 rad, ±0.037 rad, and ±0.051 rad by the
ESO method. Moreover, the steady-state errors ue and ψe of
the SF H∞ control system have smaller increment than the
ESO system, which indicates the SF H∞ control system has
the stronger robustness than the ESO system.

6. Conclusions

With consideration of the sway velocity and the un-
certainties and the disturbance of wind, wave, and currentW
the SF H∞ control method is proposed for trajectory
tracking of the USV to improve the system performance.
First, the position error mode of trajectory tracking is
established to design the LOS law to produce the reference
heading angle and surge velocity. Second, the LPV system
with sway velocity is established to design the SF H∞
controller for the heading angle and the surge velocity. Te

Lyapunov function is constructed to obtain the asymptotical
stability for the LPV since the asymptotical stability has
coupling terms of the variable parameter v and can be di-
rectly solved by the novel variable replacement method.
Moreover, the parameters of the SF H∞ controller are
obtained by the LMI tool. Finally, the simulation results
show that (1) the LOS guidance law can produce the ref-
erence heading angle and the reference surge velocity for
trajectory tracking and (2) the SF H∞method has the better
system performance on dynamic, steady-state indices for
circular and straight trajectory tracking than the ESO
method to suppress the sway velocity and also on system
robustness. In this work, the proposed method does not
consider the convergence of LOS.
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