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Coronavirus disease 2019 (COVID-19) is an infection that can result in lung issues such as pneumonia and, in extreme situations,
the most severe acute respiratory syndrome. COVID-19 is widely investigated by researchers through mathematical models from
different aspects. Inspired from the literature, in the present paper, the generalized deterministic COVID-19 model is considered
and examined. The basic reproduction number is obtained which is a key factor in defining the nonlinear dynamics of biological
and physical obstacles in the study of mathematical models of COVID-19 disease. To better comprehend the dynamical behavior
of the continuous model, two unconditionally stable schemes, i.e., mixed Euler and nonstandard finite difference (NSFD) schemes
are developed for the continuous model. For the discrete NSFD scheme, the boundedness and positivity of solutions are discussed
in detail. The local stability of disease-free and endemic equilibria is demonstrated by constructing Jacobian matrices for NSFD
scheme; nevertheless, the global stability of aforementioned equilibria is verified by using Lyapunov functions. Numerical
simulations are also presented that demonstrate how both the schemes are effective and suitable for solving the continuous model.
Consequently, the outcomes obtained through these schemes are completely according to the solutions of the continuous model.

1. Introduction

COVID-19, caused by SARS-CoV-2 (severe acute re-
spiratory syndrome coronavirus 2), appear out of Wuhan
city of China at the end of 2019. The epidemic then expanded
quickly to more than 210 countries [1, 2] and is still causing
severe public health and socioeconomic problems in nu-
merous places throughout the world. In the battle against
COVID-19 and the shortfall of an antibody or treatment, the
more interest is in setting up equipments that outline the
guidelines of its virility and, therefore, control the spread of
the infection. To stop COVID-19 from spreading, different
governments estimated various preventive measures, in-
cluding the use of masks, maintaining a six-foot social
distance, regularly washing hands, and avoiding sick people
(3, 4].

COVID-19 [5-8] is a contagious disease that can be
passed on by direct contact with affected people as well as
droplets and aerosols. This disease is a major issue for the
human society as it has infected many individuals with
restricted assets in numerous nations. COVID-19 has been
spread quickly all over the world as it has been found to have
a higher elevated level of infection and pandemic risk than
SARS. On March 11, the WHO proclaimed the COVID-19
outbreak a global pandemic due to the sharp increase in
transmission. The symptoms of COVID-19 are fever, cough,
malign, fatigue sputum, headache, diarrhea dyspnoea, and
lymphopenia [9]. The COVID-19 incubation period can last
up to 14 days, with a mean of about 5 days [10].

By employing mathematical modeling, we may con-
centrate on how an infectious disease transmits all over
a population. In order to explain epidemic infectious
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diseases, the researchers are employing both integer or-
ders [11-15] as well as fractional orders [16-18] mathe-
matical models. These models can be used to improve all
of their sources and more effectively implement control
measures. Many authors have constructed a number of
mathematical models to assess the transmission and dy-
namical behavior of COVID-19 disease [5, 19, 20]. A
deterministic epidemic model for COVID-19 based on the
health status of the populations is proposed and analyzed
in [19]. To explain the uncertainty or variance observed in
the spread of disease, a stochastic extension of the de-
terministic model is also taken into account. In [5],
a COVID-19 mathematical model in which the resistive
compartment along with quarantine class has been con-
sidered by the authors. The resistive class together with
quarantine class makes the model unique in all respect
than the previous models existing in the literature. Some
models for COVID-19 were introduced in [20] that ad-
dress important questions about the global health care.
The authors suggested three well-known numerical
techniques, such as Euler’s and Runge-Kutta scheme of
order two (RK-2) and of order four (RK-4) for solving
such equations.

Recently, Peter et al. [21] studied the COVID-19
disease model by concentrating the real data from
Pakistan that evaluates the effect of some management
methods on the transmission of COVID-19 in a human
population. The author only determined the global
stability of disease-free equilibrium point for the con-
tinuous model. The aim of present paper is to use more
sophisticated mixed Euler and NSFD schemes to evaluate
various features of the continuous model to exhibit its
endurance and biological sustainability. Multiple ideas
and criteria are utilized to discuss the local as well as
global stability of disease-free and endemic equilibria for
the NSFD scheme. The outcomes show that both the
schemes are unconditionally stable which are not only
appropriate for the continuous model but also produces
exceptionally efficient and precise results.

The paper is arranged as follows: The mathematical
model is presented and its parameters are thoroughly
discussed in Section 2. In Section 3, the equilibria and
basic reproduction number are provided for the model.
The reproduction number is the most significant
threshold measure used to describe the local and global
stability of equilibria. The unconditionally stable mixed
Euler and NSFD schemes are developed in Section 4 and
Section 5, respectively, which preserve important char-
acteristics of the continuous model. For the NSFD
scheme, the Schur-Cohn and Routh-Hurwitz criteria are
utilized to assess the local stability of disease-free and
endemic equilibria, respectively. However, the global
stability of aforementioned equilibria is discussed using
Lyapunov functions. To support the analytical outcomes,
numerical simulations are illustrated at each step. The
conclusions are provided in the final section to summarize
the whole article.
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2. Mathematical Model and Its Detail
Description

The COVID-19 dynamical system [21] including five dif-
ferential equations is provided as follows. The total pop-
ulation denoted by N (t) is separated into five classes, i.e.,
susceptible S(t), exposed E(t), infected I(t), quarantined
Q(t), and recovered R(t) where N (t) =S(t)+E(t)+
I(t)+Q(t) +R(2).

s, 8, (1-8)(-y)(E+DS

E—/j N —GS+ZR,
dE_5.(1-&)(1-y)(E+DS

=" N (60 + a)E,
ﬂ:(xE—(6+;1+1//+Q)I, (D
dt

dQ

n =yl -(0+n+¢Q,

% =9Q+QI-(Z+ R

2.1. Parameters and Their Explanations. Following is a de-
scription of the parameters that compose the recently
suggested COVID-19 model (1).

B Rate of recruitment into susceptible persons

0 Natural morality rate

n The death rate due to COVID-19

o The rate
infectious class

of evolution from exposed into

% Rate of immunity loss

Q Treatment rate for infectious persons

¢ Treatment rate for quarantine persons

& The rate of individuals that preserve social distancing
y A part of the population uses hand sanitizer and
face masks.

y The rate of recovery from infection

8. The rate of transmission efficiency.

The state variables and other parameters of proposed
model (1) are thoroughly explained in Figure 1, where the
force of infection (8.(1— &) (1 —y)(E +1I)S/N) is denoted
by I'. In addition, it is assumed that each parameter in model
(1) is a constant positive value.

3. Equilibria of Model and Basic
Reproduction Number

3.1. Equilibria of Model. By equating the right hand side of
model (1) to zero, we get the state known as disease-free
equilibrium (DFE) point. If we denote DFE by
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FiGUure 1: Flowchart for COVID-19 mathematical model (1).

Ey= (8% E% 1°,Q°% R?), then for model (1), it can easily be
obtained that E, = ($/6,0,0,0,0).

In order to determine the disease endemic equilibrium
(DEE) point, the suggested model (1) is simultaneously
solved for the state variables S, E, I,Q, and R. If the DEE

=,8—6E(1—%)(1—y)(E*+I*)S"+2R* E

point be denoted by E* (S*, E*, I*, Q*, R*), then from model
(1), we get

*=Q41—%ﬂ1—yxE*+13§

s’ , ,
N ()6 N(#) (6 +a)
(2)
I aE" Q' - 7 . 9Q + QI
O+t +Q) T O+t (Z+0)
Y py-v ©)
3.2. Basic Reproduction Number (R,). The quantity R, [22] is dx (x) =V (x),
an epidemiological estimate that represents the total number
of associated disease results of a single infected individual in where
a completely exposed community during disease period. To
obtain R, we use transmission F(x) and translation V (x)
matrices, respectively. Let x = (E, I, Q), then it follows from
system (1) that
0.(1-8)A-y)(E+DS
N (6+ a)E
F(x) = 0 WVx)=[-aE+(O+n+y+Q)I | (4)
-vI+(0+n+9)Q
0

Simple calculations yields
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(-8 (1-y) L1-B)1-p
N N
F=1o 0 ol
L0 0 0 (5)
r(0+a) O 0
V=|-a B+n+y+Q) 0
L0 -y 0+n+9)
After putting DFE point E® = (( p10),0,0,0,0), we obtain It can easily be shown that
’85(1—%)(1—)/)[_3 8C(1—%)(1—y)/_3 0‘
N 0 N 0
F=1o 0 0l
L0 0 0l (6)
r(0+a) 0O 0
V=|-a B+n+v+Q) 0
L0 -y (B+n+9)
! 0 o |
0+ )
vl “ e — 0 7
O+a)(0+n+y+Q) O+n+y+Q) ‘ ()
ay ay 1
L (0+)(0+n+y+Q)O+n+¢9) (O+)(0+n+y+Q)O+n+¢) (0+n+0¢)l
Also, therefore,
(B, (1-&)1-)O+n+y+Q+a) L6.(1-8)(1-7y) 0“
ONO+a)(O+n+v+Q) ONO+n+yv+Q)
-1 _
FV = 0 0 ol (8)
L0 0 0.

As Ry = p(FV~1), hence from above, we obtain

P (1-E)(1-p)(O+n+y+Q+a)
o ON(O+a)(0+n+y+Q) '

)

4. The Mixed Euler Scheme

The mixed Euler scheme [23] is a technique used for cal-
culating numerical solutions to the system of differential
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equations. The mixed Euler scheme is a combination of both
backward and forward Euler schemes. For system (1), it can
be developed as follows:

Sn+1_sn _ _85(1_%)(1_Y)(En+1n)sn+l

. 5 1 -0S,., +ZR,,
E,,—E 1= &) A= y) (B +1
n+1h no_ d.( 2l );\)]( et ")Sn+1 -(0+a)E,,,
In+1 B In (10)
" = Ay — (Ot Y+ O,
Qn+1h_ Q" — wInJrl — (0 + n + ¢)Qn+1’
Rn+1 -R

= ¢Qn+1 + QIn+1 - (Z + G)Rn+1‘

From above, the mixed Euler scheme for system (1)
becomes

1- 1-y)(E,+1
S =S, + h(ﬁ A 21 I\y,)( nt 1St _gg ZRn>,
En+1 — En +h<8c(1 -&)(1 - }I/\)](En+l +In)sn+l _ (9+ “)Enﬂ)’

(11)
In+1 = In + h((xEnJrl - (6+ n+y+ Q)In+1)’

Qui = Qn + h(V/InJrl - (0+ n+ (P)Qn+1)’

Rn+1: Rn +h (¢Qn+1 + QIn+1 - (Z + G)Rn+1)'

all step sizes. Whenever R, <1, the solutions of the mixed
Euler scheme (12) converge to DFE point, as shown in
Figures 2(a)-2(c). The solutions of the mixed Euler scheme
(12) diverge from the DFE point and converge to DEE point
when R, surpasses one, as shown in Figure 2(d).

The above equations can further be simplified as

o Nh(B+3R,) + NS,
" (N+h(5,(1-8)(1 -y)(E, +1,) + NO))’

E _ NEn+h(8c(1_Cg)(l_y)(lnsnﬂ))
LN+ h(0+ ) -h(8,(1-8)(1-9)S,.1)’

5. The NSFD Scheme

The NSFD scheme is introduced by Mickens in 1994 [24].
(12) One of the important aspects of the discrete-time epidemic
models created by the Mickens method is that they share the
same traits as the original continuous-time models. The

_ In+h(‘XEn+1)
" k(@ nry+ Q)

I

h(yl,.,)+Q,
Qui = %> upcoming subsections will demonstrate how the discrete
e NSED scheme maintains all the dynamical characteristics of
the associated continuous model (1), independent of ste
R _ Rn + h((PQnH + QInH) size h ( ) P P
n+l — . .
1+h(Z+0)

The numerical solutions offered in Figures 2(a)-2(d)
shows that the qualitative properties, such as stability and
positivity, are observed by the mixed Euler scheme (12) for

5.1. Construction of the NSFD Scheme. For model (1), we
denote S, E,,,I,,Q,, and R, as the numerical estimations of
S(¢), E(t), I(t),Q(t), and R(t) at t = nh, where n is a non-
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FIGURE 2: Numerical simulation for model (1) by using mixed Euler scheme with (a) h = 0.1, (b) h =1, (c). h = 0.1, and (d) k = 0.5. (a—c)
Stable DFE point with y = 1.01, §. = 0.814715-01. (d) Stable DEE point y = 0.07, 8. = 2.814715. Other parameters remain fixed as
B=1,0=1,71n=0.05 % =0.104874e — 01, Q = 10.270934,, ¢ = 0.584931e — 03, N = 1,& = 0.999373e — 01, o = 4.7, y = 4.0786530e — O1.

negative integer and h symbolizes the time step size which
should also be non-negative [25]. Model (1) then allows us to
write the following equation:

- 6. (1- 1-y)(E,+1
Sn+1h Sn — ﬁ_ c( %)( Z3/])( n + n)sn+1 _ esnﬂ +2Rn’
E ., -E 1- 1-y)(E,+1
n+l no_ 6c( (g)( V)( nt n)sn+1 _ (9+0‘)En+1’
h N
% =aE,,, - (O+n+y+Q),,,, (13)
Qn+ _Qn
lh = l!]In+1 - (0+ n+ ¢)Qn+1>
Rn+1 -R

= (PQn+1 + QIn+1 - (2 + B)Rn+1'
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5.2. Positivity and Boundedness of the NSFD Scheme. We
assume that the initial values of discrete SEIQR scheme (13)
are non-negative, i.e., S, >0, E, > 0,1,>0,Q, > 0,and R, >0.
These variables have estimated quantities which are also
non-negative due to the assumptions: S,>0,E, >0,
>0,Q,,=20,R,>0. Therefore, solutions of the NSFD
scheme (13) imply the positivity of scheme (13), ie,
Sn+1 >0, En+1 =0, In+1 =0, Qn+1 =0, Rn+1 20.
In order to discuss the boundedness of the solutions of
the discrete system (13), we consider P, =S, +E, + I+
Q, + R, Then,

hp
Pras et

(1+h9)

By using Gronwall’s inequality [26-28], if 0 < P (0) < 3/,
then

7
P - P
20 P, (14)
ie.,
(1+hO)P,,, =hB+P, (15)

Therefore, we get

j 1 "
ﬂ?( he>) 2o 7a) (16)

8o ) ) ()
Pasg\ " eney) P Po\Tme) Tt \Pome)\ine) - (17)
Since (1/1+h6)"<1, so we obtain P, — (f/60) as
n — co. This shows that the solutions of system (13) are
bounded and the feasible region becomes
B :{(Sn +E,+1,+Q,+R,):0<S,+E,+1,+Q, +Rns§}». (18)
From (13), one can obtain the explicit discrete form of N(h(B+ZR,)+S,)

the NSFD scheme (13) as follows:

N(h(B+2R,)+S,)

St = (N+h(0.(1-8)(1-y)(E,+1,)+ N6))’

_ NEn +h(6c(l - g)(l _Y)(En +In)Sn+l)
NA+h(0+a)) ’

n+l =

In +h ((XE,,+1)

= 1
L 1+h(@+n+y+Q)° (19)
Q — h(lllIn+l)+Qn
"1+ h (04 + )
R — Rn + h(¢Qn+1 + QIn+1)
nl 1+h(Z+6) :

In the following, we now discuss the conditions under
which the DFE and DEE points of the discrete NSFD scheme
(19) are stable or unstable. To achieve this goal, we first verify
the local stability of DFE point, and we consider

TN+ h(S,(1-€)(1-y)(E, +1,) + NO)) =fu

_NE,+h(6,(1-8)(1-y)(E, +1,)S,.1)

E - >
i N(1+h(0+a) =f2
I In+h(aEn+l) _f
"Ll h(@+n+y+Q) Y
_ h(w1n+l)+Qn _
Qi —m—ﬂp
_ Rn + h(¢Qn+l + QIn+1) _
Ry = 1+h(Z+0) = fs

(20)

5.3. Local Stability of Equilibria for NSFD Scheme. We will
apply the Schur-Cohn criterion [29, 30] given in the fol-
lowing lemma to demonstrate the local stability of the
DFE point.
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Lemma 1. The roots of T?>-TA+D=0 assure  where T denotes trace and D indicates determinant of the
[Ajl <1fori = 1,2, if and only if the following requirements  Jacobian matrix.
are fulfilled:

(1) D<1, Theorem 2. If R, <1, then DFE point for the NSFD model

2)1+T+D>0,

(19) is locally asymptotically stable for all h> 0.

3)1-T+D>0, Proof. based on above informations, the Jacobian matrix

can be written as
[0f1 9fy Ofy 9fi Ofi]
oS OE o0 0Q OR

ofs 9fs 9fy 9fs 9fs
3 9E o 9Q oR

JSELOR =|% o6 9fs 9fs 0fs

, (21)
oS OE oI 0Q OR
0fs Ofs 0fs 0fs Of4
oS OE oI 0Q OR
ofs 0fs 9fs 9fs Ofs
LoS OE oI 0Q OR
where f, f,, f5, f4, and f5 are provided in (20). We first
find out all the derivatives employed in (21) as follows:
of _ N of _ -N(h(B+ZR,) +S)hd (1 -&)(1-7)
S  (N+h(6,(1-&)(1-y)(E+)+NO)) 0E (N +h(5,(1 - &)(1-7y)(E, +1,) + NO))*
of 1 _ -N(h(B+ZR,) +S)hs,(1-&)(1-y) of L _ 90f1 _ hNX
ol (N+h(8,(1-8)(1-y)(E,+1,)+N6) " 0Q ~OR (N+h(5.(1-&)(1-y)(E+I)+N0))
of, _hS.(1-8)(A-y)(E+D) df, N+h(5.(1-&)(1-y)S,,) 0f, _h(6.(1-&)(1-y)S,.)
0S N(l+h(0+a) ’OE N1 +h(6+a)) > oI N1 +h(6+a))
0fs _o0fs_(9fs_(9fs_ . 9fs _ 1 Ofs _ g 9fs_o9fa_,0h_,
0Q OR oS "0E 1+h(0+n+y+Q) ol 1+h(0+n+y+Q)0oQ ~OR ~ 0S ) S
i by 0f 1 f_of_(ofs
ol 1+h(0+n+¢)0Q 1+h(B@+n+¢)0OR 085S ~OE
ofs M ofs _ hp ofs 1
ol 1+h(Z+60)0Q 1+h(Z+60)0R 1+h(ZT+6)
(22)

Putting all the above derivatives in (21), we obtain
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N

-N(h(B+3R,) +S)hS (1-&)(1-y)

-N(h(B+ZR,)+S)hé.(1-&)(1-y)

hN (%)

(N+h(8.(1-&)(1-y)(E+I)+Nb))

h(O.0 -8y (E+ D)
N1 +h(6+a)

(N +h(8.(1-8)(1-y)(E, +1,) + N6))*

N+h(8.(1-&)(1-y)S)

N +h(0+a)

ha
1+h(@+n+y+Q)

0

(N +h(8.(1-8)(1-y)(E, +I,) + N6))*

h(3.(1-8)(1-y)S)

N(1+h(6+a)

1
1+h(@+n+y+Q)

L
1+h(0+n+¢)

1
1+h(0+n+9¢)

(N+h(8.(1-8)(1-y)(E+]) +N6))

0

hQ heg 1
1° 0 T+h(E+0) T+h(z+0) T+h(E+0)
(23)
At DFE point E; = (($/6),0,0,0,0), the matrix (23)
becomes
1 ~((NHB -+ (BIODHS. (1= ) (1-y))  ~(NHB+(BIODHS. (1-B)(1-y) ()
1+ h(0) (N + N6)* (N + N6y 1+(6)
. N +h(8.(1-&)(1-7))(B/6) h(8.(1-&)(1-7y))(BI6) . .
N1 +h(0+a) N((1+h(0+a))
ha 1
J(Eq) =)0 1+h(0+n+y+Q) 1+h(@+n+y+Q) 0 0
0 0 7}”// 71 0
1+h(0+7n+9) 1+h(@+n+¢)
0 0 hQ heo 1
1+h(Z+0) 1+h(Z+0) 1+h(Z+0)]
(24)
To discuss the eigenvalues, we suppose ie.,
|7 (Ep) = M| =0, (25)
1 2 ~((NhB + (BIO)hS. (1-&)(1-y)) —((NhB+ (B/0)hd.(1-&)(1~-1y)) 0 h(X)
1+h(6) (N + N6) (N + No)* 1+h(6)
0 N+(<§C(1—‘£§)(1—)/))(/3/(9)7)L h(8.(1-8&)(1-17))(B/0) 0 0
N1 +h(0+a) N +h(0+a)
ha 1
0 1+h(@+n+y+Q) 1+h(9+;7+1//+Q)_/1 0 0 =0
hy 1
0 0 1+h(0+7+9) 1+h(9+;1+<p)_’1 0
hQ he 1
0 0 1+h(Z+6) 1+h(Z+06) 1+h(2+0)_)L

(26)
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After simple calculations, from (26), we obtain

N+h(5,(1-8)(1-7y))(BlO) Y
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h(6.(1-&)(1-19))(B/0)

1 1 1
<1+h(6)_l><1+h(2+6)_/\><1+h(9+f1+fp)_l>

N{1+h(0+a) N{1+h(0+a)

Equation (27) gives A= 1/1+h(0)<1,
AL=0Q1+h(E+0)<L,A=(1/1+h(@+n+¢)<1l. To
find the remaining two eigenvalues, we take

N+h(5.(1-5)(1-1)(Bl6)

N +h(0+a)

=0.
ha 1 Y
1+h(@+n+y+Q) 1+h(@+n+y+Q)
(27)
h(6.(1-&)(1-1y))(B/6)
N1 +h(6+w)
=0. (28)

ha
1+h(@+n+y+Q)

ie.,

! )
1+h(@+n+y+Q)

Yo N+h(6,(1-&)(1-y))(p/0) . 1
N1 +h(0+a) 1+h(0+n+yv+Q)

. N+h(8.(1-&)(1-v)(p/0) 1 B ha h(6.(1=&)(1-7v))(p/I6) o
N(1+h(0+a) 1+h(0+n+y+Q) 1+h(@+n+yv+Q) N1 +h(0+a) o

Comparing (29) with A —TA+D=0,we getT=N+h
6. (1-8)A-p)(PIO/INA+h(O+a)+ (1/1+h(0+n+
y+Q))and D= (N+h(5.(1-&)(1-y)(B/0)) (N((1+
h+a)(1+h(B+n+y+Q)—-hd, QA-&)(1-yp)p/
(NOAQ+h(0+a)Q+h0+n+y+Q))). If R, <1, ie,
. (1-8)A-O+n+y+Q+a)f<0(0+a)(0+n+y
+ Q) then.

() D=(N+h(6,(1-&)(1-p)BO)(N((1+h(0+
a)1+h(@+n+y+Q))— (WS, (1-&)(1-7y)p)
I((IN(OAQ+h(@+a)(1+h(O+n+v+Q))) <L

2)1+T+D=1+N+h(6.(1-&)(1-y)(p/0)/ (N
(1+h(0+a))+ (1/1+ h(0+n+v+Q)+ (N

(29)

+h(6,(1-&)(1-p)(B/O)/IN (1+h(0+a)(1+h
(O+n+y+Q)))- (h(6.(1=&)(1-p)B)/ (N
OBA+h@+a)(1+h(0+ n+v+Q))))>0.
3)1-T+D=1-N+h(5.(1-8&)(1-y)(p/0))/(N
(1+h(6+ @) - (U/1+h(@+n+v+Q))+ (N
+h(6,(1-&)(1-p) B/ (N(1+h(0+a))(1+h
O+n+y+))- (h(6.(1-&)(1-y)B)/ (N6
(1+h(@+a)(1+h(0+n+y+ Q))))>0.

As aresult, whenever R, < 1, then all the requirements of
Schur-Cohn criterion mentioned in Lemma 1 are satisfied.
Therefore, provided that R, <1, the DFE point E; of the
discrete NSFD scheme (19) is locally asymptotically stable.
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In order to discuss the local stability of DEE point, we
replace R, by (/0) - S, — E,, — I, — Q, in the first equation
of system (13). Then, obviously the system (13) reduced to
following four dimensional model.

St — S, 0. (1-&) A -y)(E,+1L,)S,..
1T:ﬁ_ 13}]( ) 1_68n+1+z g_an_En_In_Qn >
En+1 _En _ 6c(1 - %)(1 _y)(En +In)sn+1 _ (9+ (X)E
- n+1>
h N (30)
I.,-1
n+1h == aE,,. - 0+ n+y+ Q‘)Inﬂ’
Qn _Qn
% = ll]In+l - (0 +n+ gD)QrH-l'
Therefore, the stability of DEE point for system (30)
implies the stability of DEE point for system (19). From (30),
we obtain
S _ N(Sn+h(/3+z(ﬁ/6)_ZEn_ZIn_ZQn)) _
TN+ h(5,(1- &) (1-y) (B, +1,)) + NO+ Nz)) IV
E — (NEn+h(8c(1_%)(1_)/)(En+1n)sn+l)):g
e N1 +h(0+a) »
(31)
I _ In + ]’l((XEn+1) _
LTl h(0++y + Q) = 9»
_ hwlnﬂ +Qn _
Qu1 = Txh@+n+9) 9s-
O

Theorem 3. IfR, > 1, then DEE point for NSFD model (30)is ~ Proof. The Jacobian matrix becomes
locally asymptotically stable for all h> 0.

991 991 99, 94,
oS oE ol oQ

99, 09, 99, 99,
oS OE ol  dQ
J(S,E1,Q) = : (32)
99; 995 995 0gs
oS OE oI 0Q

995 09y 09y 09,

aS OE oI 0Q

where g,, g,, g5, and g, are provided in (31). We first find
out all the derivatives employed in (32) as follows:
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09, N

S (N+h(6,(1-%8)(1-y)(E, +1,) + N0+ NZ))

9g;  ~(N+h(8.(1- &) (1-y)(E,+1,) + N6+ NX)))NKE -~ N(S, + h(B + Z(B/6) - E, - 51, - $Q,))h8. (1 - &) (1 - y)

OE (N +h(5.(1-8)(1-y)(E, +]1,)) + N6 + N%)))*

3g;  ~(N+h(8.(1-&)(1-y)(E,+1,) + N)f+NI)))NhE - N(S, + h(B +Z(BI) - XE, - X1, - 2Q,))hd, (1 - &) (1 - y)
ol (N+h(5,(1-8)(1-y)(E,+1,) + N0+ N))) ’
g, _ ~-hNY 99, _ (h(6.(1-%)(1-y)(E+D)

0Q ((N+h(8.(1-& (1 -y)(E,+1I,)+NO+N2))) aS N(1+h(0+a)

%_ (N+h(8c(1 _%)(1 _V)Snﬂ) %_ (h(ac(l _%)(1 _Y)Snﬂ) %_ 0 %_0 %_ ha

OE N1 +h(6+a) 9 N(+h(@+a) "0Q ~0S ~OE 1+h(@+n+y+Q)

093 B 1 %_ % % 09, hy %_ 1

Al 1+h(@+n+y+Q)aQ a5 =% =% T 1+h(@+n+9)0Q 1+h(0+n+¢)

(33)

By replacing DEE point E* in above derivatives, we get

dg, N
3S (N+h(6,(1-8)(1-y)(E, +1I))+ NO+NZ))

99, ~(N+h(5.(1-8)(1 -)(E, +1))+NO+NZX)))NhZ-N(S, + h(B+Z(B/0) - ZE, - 21, - 2Q;,))hd, (1 - &) (1 -y)
OE (N+h(8,(1-8)(1-y)(E: + 1)) + N+ N£)))’ '
99, _ ~((N+h(5,(1-&)(1-y)(E; +1I,)) + NO + NX)))NKZ - N (S, + h(B+ Z(B/6) - SE,, - I, - 2Q}))hd, (1 - &) (1 - y)
ol (N+h(8.(1-8)(1-y)(E. +I)))+ NO+NX)))’ ’
99 _ —-hNZ 3g, _ (h(8.(1-8)(1-p)(E" +1"))

0Q ((N+h(6,(1-&)(1-y)(E; +1I.))+ N6+ Nx)))” 9S N (1 +h(6+a)) ’

99, N+h(0.(1-8)(1-y)S") 9g, _ (h(3.(1-&)(1-y)S) 9g, _ 0 9g; _ 0

OE N1 +h(0+a) 01 NQQ+hB+a) ‘0Q 038

99 _ ha 99 _ ! %9 _
OE 1+h(@+n+y+Q) 0l 1+h(@+n+y+Q)oQ

% _ % _%____hv  99:_ !
oS ) > oI 1+h(9+11+(p)’8Q 1+h(0+n+¢)

(34)

Let
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N
TN+ R(.(1-€)(1-p)(E +10) + NO+ N2

13

(N+h(6.(1-&)(1—-p)(E; +1)))+ N0+ NX)))NhZ-N(S, + h(B+Z(B/6) - ZE, — =1, - 2Q;))hé.(1-&)(1-y)

"= (N+h(8.(1-8)(1-)(E. + 1)) + NO+ N%)))°
o (N +R(8.(1- &) (1 - y) (B} + I,)+)N6 + NX)))Nh = N (S, + h (B + 2 (BI6) - XE, — 21, — 2Q;))hd (1 - &) (1 - y)
i (N+h(3.(1-%)(1-y)(E. +I)) + N6+ N5)))’ ’
. ~hN* (B+2(B/0) - E; —I) (h(8.(1-%B)(1 —y)(E* +1%))
4 — 5

 N+h(5.(1-%8)(1-y)S") 3

(N+h(.(1- &)1 - (E, + 1))+ NO+ N2)Y

(h(6,(1=&)(1-9)S)

N({1+h(0+a)

ha 1

Mo = TN+ h(O+a) T

N 1) B
U1+ h@+q+9) M T 1+h(B+n+9).

NQA+h(0+a)

By replacing the above quantities in (32), we obtain
m, m, m; my
J(E") = ms Mg My 0 . (36)
0 mg my 0
0 0 myy, my,
To discuss the eigenvalues, we take

[T(E") - Al| =0, (37)

ie.,

U, = m+mg + mg + my; >0,

U2 =m;mg + M;Mqy + MMy + MyMsg + Mg + Mgt + MyMg + Mghiy > 0,

m8:1+h(6+;1+u/+0)’m9:1+h(9+;1+1//+0)’

(35)
m;—A m, M, my
m mg—A m 0
> 6 ¢ = 0. (38)
0 mg My — A 0
0 0 mn my, — A

After simplifications, we get the following characteristic
equation:

M+UN +UN +U; L+ U, =0, (39)

where

(40)

U3 = My M5, + MMy Mg + M5 Mg+1M Mgy + M i + g + 11 Mg + 1 11,11g — M3 1g > 0,

U4 = mMMgMgM | + M Mg, My + MyMsMyi | + My MgMgh(—s 3 Mghtl ;) > 0.

It is clear that
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G, =U;>0,
G, =U,U, - U, = m*m, + m>mq + mym>, + mym,m« + m,memq + m,;mem
2 =U1Uy 3 = MyMg + Mg + MMy + MM, s + 1 Mgty + 1 Mgty
2
+ MM, Mg + M Mgy + g + M Mgy + M Mgy | + MLt
2 2 2
+ Mgy + My M + Mg, Mg + Mgy + M Mgy + 1, 1
2 2
+ My Mg+, M5y + Mgy + MMty | + My Mgy + Mgy
2 2 2
+ My Mg+ Mgty + My MY, + MyMsiy g + Mgy + Mgy + MyMghy + Moy, (41)
T M3 —My sty — M,y — M ;g

— My Mgy — MMMy — 1 MgMg — My Mgy — My M;1Mg >0,

U, U, O,

G,=|1 U, U,|=-U>+UU,U;-U’U,=U,G,-U,’U,>0,
0 U, U,

G, =U,G,>0.

So, by employing Routh-Hurwitz criterion [31, 32], all ~ global stability, we define the function H (x) >0 such that
the eigenvalues of (39) must have negative real parts  H(x)=x-Inx -1, and, therefore, Inx<x - 1.
whenever R, > 1. Consequently, the DEE point E* of the
discrete NSFD scheme (19) is locally asymptotically = Theorem 4. If R, <1, then DFE point for the NSFD model
stable. O (19) is globally asymptotically stable for all h> 0.

5.4. Global Stability of Equilibria for the NSFD Scheme. Proof. Construct a discrete Lyapunov function
We shall describe the global stability of equilibria by con-
structing the Lyapunov function in the same manner as
developed by Elaiw and Alshaikh in [33]. To discuss the

T,(S0E»I,QuR,) = SOH(E_Z) +$E, + 0, + ¢:Q, + ¢, (E+OR,, (42)

) . AT, =T, - T, (43)
where ¢, >0 for all [ii] = 1,2, 3,4 which can be chosen later.
Hence, T, >0 for all S,>0,E,>0,1,>0,Q,>0,R,>0. In ie,
addition, T,, = O ifand only if S, = S°, E,, = E°, I, = I°,Q,, =
Q% and R, = R,
Let us consider

AT, = SOH<S;31> + 1By + G2l + 03Qu0 + ¢4 (2 +O)R,,,, _<SOH(%> + ¢ B, + ¢y, +¢:Q, + ¢, (2 + G)Rn)
(44)

Sn+ Sn Sn
= SO( S()1 - ? + IHS> + ¢1 (En+l - En) + ¢2 (1n+1 - In) + ¢3 (Qn+1 - Qn) + ¢4 (Z + 9) (Rn+1 - Rn)'
n+1

Using the inequality In x <x — 1, we obtain

S
ATn = Sn+1 - Sn + SO<SH - 1) + (/)1 (En+1 - En) + ¢2 (In+1 - In) + (/)3 (Qnﬂ - Qn) + ¢4 (2 + 6) (Rn+1 - Rn)’ (45)

n+1
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ie.,

0
= (1 - S) (Sn+1 - Sn) + ¢1 (En+1 - En) + ¢2 (In+1 - In) + ¢3 (Qn+1 - Qn) + ¢4 (Z + 6) (Rn+1 - Rn)'

By employing (13), (46) becomes

0
ATnS<1—S—><ﬁ—8C(1 g)(1 y)(En+In)Sn+1_GSn+1+ZRn)
Sn+1 N

+ ¢1(6c(1 - %)(1 - )I)\)](Enﬂ + In)sn+1

+ ¢3 (V/In+1 - (6 tn+ ¢)Qn+l) + ¢4 (¢Qn+1 + QIrH—l - (Z + G)Rn+l) + (/54 (Z + 9) (Rn+1 - Rn)'

Let ¢, for i = 1,2, 3,4 be chosen such that

85(1 - g)(1 - y)(En +In)sn+1 _ ¢ ((Sc(l ~ %)(1 - Y)(Enn +In)sn+1
!

5 N ),¢1(9+a>

=0, (0+n+v) =30, 6, A=, Q, 650 +1+9) = dy0.

By replacing the values from (48) into (47), we get

0
AT,,S <1 _SS_><B_ ¢16c(1 g)(1 )Z}\)](Enﬂ +In)sn+1 _ 95n+1 + ZRH)

n+1

6. (1-8)(A —y)(Eps +1,)Ss
+ ¢1< )I/\]( : L2 - </>20€En+1) + (20 1 — 3Ly — ¢4 QL,ryy)

+ ¢3 (V/Inﬂ - ¢4¢Qn+1) + ¢4 ((/)Qnﬂ + QInH - (2 + e)RnH) + ¢4 (Z + 6) (Rn+1 - Rn)'

Simple calculations yields

0
ATnS (1 _Ss—)ﬂ_(/sl(SC(l %)(1 )I/\)](Enﬂ +In)sn+l _ 63n+1 + ZRn)

n+1

+¢18£(1 B %)(1 B Y) (En+1 + In)Sn+l

N = $,aE, +$aE, ;1 — G3yl,q — Gy QL + Gy,

= 0490Qu1 + $49Qu 1ty Ly — ¢y (Z+ R,y + ¢, (Z+OR,,; — ¢y (Z+0O)R,)

< (1 - SSO )(ﬁ - esn+l) - Z((/54 - 1>Rn - ¢46Rn'

n+l

-(0+a)E,,, )+¢2 (@B = 0+ + ), - QL)

15

(46)

(47)

(48)

(49)

(50)
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As we know from DFE point that $° = (B/6) which
implies $°0 = B. By replacing B in (50), we obtain

S
ar,=(1-
S

n+l
-0

= —(Sn+1 - 30)2 -2 (¢4 -

Sn+1

0

)(S"e = 0S,41) — Z(¢s — 1R, — $,6R,

R, - ¢,0R,,.
(51)

From the value of ¢,, it is clear that ¢, >1 whenever
R, < 1. Hence, if R < 1 then from (51), we can write AT, <0
for all n>0. Consequently, T, is a nonincreasing sequence
Therefore, there exists a constant T such that lim T, =

T which implies that lim,,_ . (T,,,; = T,) = 0. From system

T ( n’ n’Qn’R)

where ¢, >0, [ii] = 1,2,3,4 which we will chose later. It is

clear that T,(S,,E,I,Q,R,)>0 for al §,>0,

E,>0,1,>0,Q,>0,R,>0and T, (S*,E*,I*,Q*,R*) =0.
By considering

n+l In+1

AT, = s*H<S
S

>+</>1E H(EE )+</>21 H(

sH(3) s o5 () (k) + 6.0 H(Q

)+</>3Q H(

[s H(g )+¢1E H<E ) 6,1 H< >+¢3Q H<8 )+(2+6)</>4R H

Discrete Dynamics in Nature and Society

S, = S°. For the
E =

(13) and lim,,_
case Ry <1, we have lim

AT, =0, wehavelim,
S, =S and lim, |, E,
0,lim, , . I,=0. From system (13), we obtain
lim, , E,=0,lim, I, =0and hmnﬁoan = 0. For the
case Ry = 1, we havelim,__,S,,; = S°. Consequently, from
system  (13), we obtain lim, , R, =0,lim
Q,=0,lim, , E,=0 and lim, I, =0. Hence,

globally asymptotically stable.

n—=o0

n—0~00
E, is
O

Theorem 5. If R, > 1, then DEE point for NSFD model (19) is
globally asymptotically stable for all h> 0.

Proof. Let us define

Qs (52)

) £ (S +0)¢,R" H(ﬁ )

AT, =T, -T, (53)

n+l

we get

Qn+1 R

Q

n+1

Y

>+(Z+0)¢4R H<

)
i)

:S*<Sn+1_s_n ) ¢ ( ntl _ ~“n ) ¢ ( n+1__n ( n+1_%+ln Qn )
S* S* Sn+1 1 * E* En+ 2 * I Q* Qn+1
n Rn n * Rﬂ Rn
+¢,R ( +1 —F+ln n+1> +(Z+0)¢,R [H( Rf) _H<f>]'
(54)
Using the inequality Inx <x — 1, we obtain
-S, S E, ,-E E IL.,-1 I
AT <S ( n+l n n —1>+¢1E*( n+1* L n l)+¢21*( n+1* n n _1>
\ Sn+1 E En+1 I In+1
Q Q ) * (R 1= R ) % R 1 R
+ mtl _<n —1|+¢, R[4 )+ (Z+0)p,R [H( s )—H(—Z)]
¢3 ( Q Qn+1 ¢4 R Rn+1 (/54 R R
(55)
\ E* I
= (1 - S ) (Sn+1 - Sn) + ¢1(1 - —> (En+1 - En)+¢2(1 - —) (In+1 - In)
n+l En+1 In+1
Q" R" R, R
-9 @1 ) 1+ 5 o () (%))
(1= ) @ui =@+ (17 3 ) R ) v 0k [ () -
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By employing system (13), (55) becomes

S* §,(1-&)(1-y)(E,+1,)S E*
ATnS<1—S ><ﬁ_ c( )( 13/])( n+ n) n+l_esn+l+ZRn>+¢l<l_E >

n+1 n+l

-<5C(l—g)(1_y)(En+l+In)sn+l_(9+a)En+l>+¢2<l_I>( -~ (6+1’]+I[/+Q) thl)

N In+1
) R * Rn+ Rn

+ ¢>3<1 —QQ—> (VLo = (04 1+ 9)Qu) + ¢4<1 —R—>¢QM # 0L, - (24 0)R,y, + S+ 09 [H(2) - ()|
n+l n+l

(56)

As f=6.(1-&)(1-y)(E* +I*)S*/N + 0S* — XR*, so
by replacing it in (56), we obtain

AT, ( )(8 (1—%)(1_V)(E +1 )S +6S*—3R* =8 (1—%)(1—]/)(E +1,)S,.1 — 1+2Rn>
n+1

+¢1<1—

* R
+ ¢3(1 _QQ—) (WL = O+ 7+ 9)Qpuy) + ¢4(1 _ﬁ

*

N

n+l

)(5 (1-8)(1=9)(E, +1,)S1

—(9+0‘)En+1)+¢2<1_11 )( w1 — O+ +y+ Q)

n+l +1

>(PQn+l + QIn+1 - (Z + Q)Rn+1

* Rn+1 _& Rn
+(Z+0)¢,R [ R +1an+1]
(57)
(- S (05"~ 65,,,) + 1_57 0. (1-&)(1-y)(E"+I)S _6,:(1—%)(1—)})(15,,+I,,)S,,Jrl
Sn+1 Sn+1 N N
+ IR - E" 8.0 -8) (1= 9) (Byy + 1)Su v (0+@)E" - ¢, —aF,,,
E N In+1 (58)

Q R
+¢ (0+n+y+ Q) — ¢3Q— Y + 630+ 1+ @)Qpuy — ‘/’4R—1 (9Quiy + QL)

n+1

n+1

+¢,(Y+T)R" +¢,(Z+ 6)R"<—%+ lnRR” )

By replacing 6.(1 - &) (1 —y)(E* +I*)S* = N¢, (6 + a)E",
aE* = ¢, (0+n+y+Q)I*, yI* =¢;(0+71+¢)Q*, ¢Q* +
AI" = ¢, (2 + O)R* in (58), we can easily get
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FIGURE 3: Numerical simulation for model (1) by using NSFD scheme with (a)h = 0.01, (b)h = 1, (c)h = 10, and (d)h = 10. (a—c) Stable DFE
point with y = 1.01, &, = 0.814715e — 01. (d) Stable DEE point y = 0.7, 5. = 4.314715. Other parameters remain fixed as f=1,0 =1,
7 =0.05, X = 0.104874e — 01, Q2 = 10.270934,, ¢ = 0.584931e — 03, N = 1,& = 0.999373e — 01, a = 4.7, v = 4.0786530e — O1.

*

-0 S
AT,,S—(SH+1—S*)2+(1—S

Sn+1 n+l

*

-5.(1-&)(Q-yp(E +I*)S*§

n+l

* *R*In *R* * * * Rn
+ ¢yl — p,aE -yl —Q+¢4(Z+6)R + ¢y (Z+6O)R" In—"-
Rn+11 Rn+1 R
-0 2 s* S, R,E”
= (S —S") - ¢ 2SR H + H( 2o
Sn+1( i ) (pl ( (Snﬂ) (S R En+1

) (0+®)E" -~ N¢, (0 + oc)E*S”“iR”

E * %
—rgi +¢aE — Pyl

E* . .S RI'

* 1ok + ¢12R - ()bZ“E ::Hlfn

SR En+1 SR In+1
Sn+1RnQ*
S*R*Qn+1

(59)

n+1

) o) (i)
In+1E Rn+II

- ¢2aE*<H<S—) ; H(S’ffl* . ) ; H( 1)) : ¢3w1*(H(S_) ; H(Sl'“* 2 ) ; H(Qt:“ ))
Sui1 SRI,, R, 1 Sl S'R'Q,.44 Q'R

Thus, T, is a nonincreasing sequence and there exists
a constant T such that lim, , T,=T Therefore,
lim AT, =0  which implies lim, ,S,=S",
lim, , E,=E*, lim I,=TI" lim, , Q,=Q" and
lim

n—oon
R,=R".

n—~:oo

n—00

The numerical simulations depicted in Figure 3(a)-3(c)
also demonstrate that, for any step size, the solutions of the
NSED scheme (19) converge to the DFE point whenever
Ry<1. This demonstrates that the DFE point is un-
conditionally convergent for the discrete NSFD scheme. The
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solutions of the NSFD scheme (19) diverge from the DFE
point and converge to DEE point for any step size when R,
exceeds one, as presented in Figure 3(d). O

6. Conclusions

In the present work, a mathematical model enlightening the
spread mechanism of COVID-19 is discussed and analyzed.
The fundamental reproduction number is estimated, which
is crucial in examining the local and global stability of DFE
and DEE points. The reproduction number presents that
COVID-19 is either under control or growing worse over
time. The mixed Euler and NSFD schemes are developed to
assess various properties of the continuous model. By using
different criteria and conditions, the positivity and
boundedness of solutions as well as local and global stability
of DFE and DEE points are discussed in detail for the NSFD
scheme. It has been revealed that mixed Euler and NSFD
schemes are not only unconditionally convergent but also
produces findings that are accurate and mathematically as
well as biologically feasible for the continuous model. The
validity of theoretical results has been verified by numerical
simulations.
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