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In this article, an optimization strategy is presented for the numerical solution of Burgers’ equations, which play an important role
in estimating and forecasting pollution. Te method involves the exponential B-spline basis function as the basis function in the
diferential quadrature method. Since exponential B-spline involves a parameter, the artifcial bee colony optimization algorithm
is implemented to fnd the unknown parameters that result in the minimum error. Among the metaheuristic optimization
algorithms, the artifcial bee colony (ABC) is one that has received the greatest attention from researchers and has been suc-
cessfully implemented to solve various problems in engineering and sciences. Te proposed work emphasizes the calculation of
the parameter of exponential basis functions, a major factor that plays a role in the error calculation using the ABC optimization
algorithm.Te acquired fndings are provided as tables, and the physical behaviour is showcased in the form of fgures and tables.
Te results are in good conformity with the earlier studies.

1. Introduction

Optimization is the theory of methods that make a mathe-
matical function or system maximally useful or minimize its
disadvantages. Optimization methods are used in various
disciplines of research to identify solutions that maximize or
decrease some parameters of the subject. Te purpose of
optimization is to discover an optimal or near-optimal
solution with little computing efort. Tere has been
a steady increase since 1960s in the pursuit of developing
robust algorithms for challenging optimization problems by
modelling them after biological systems [1]. Nowadays,
while discussing optimization methods, researchers talk
about evolutionary algorithms. Goat’s genetic programming
[2] and Fogel et al.’s evolutionary algorithm [3] are among
the most well-known algorithms in this category; other

notable contributors are Holland’s evolutionary methods
[4], Rechenberg’s, and Schwefel’s work [5]. Hybrid versions
combining several paradigms are also very prevalent.
Among the many reports, the work by Back and Schwefel
[6], Michalewicz et al. [7], and Fogel [8] has provided
a comprehensive overview of the current state of evolu-
tionary algorithms. Perhaps the most well-known evolu-
tionary computing approaches today are genetic algorithms,
which are efective stochastic search and optimization
strategies with broad applicability. Recently, the genetic
algorithm community has focused much of its efort on
industrial engineering optimization issues, resulting in
a growing amount of research and practical
implementations.

Swarm intelligence algorithms [9] have recently caught
the attention of numerous research experts in related
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domains. Swarm intelligence (SI) is the collective behaviour
of self-organized systems. Typically, SI systems consist of
a population of simple agents interacting locally with one
another and their environment. Te source of inspiration is
frequently nature, particularly biological systems [10].
Fleeces of birds, schools of fsh, and colonies of social insects
like termites, ants, and bees are all well-known instances of
such swarms. Despite the fact that honey bee colonies exhibit
the self-organizing features necessary for SI, researchers
have been interested in the behaviour of these swarm sys-
tems to characterize novel intelligent techniques.

Te artifcial bee colony (ABC) [11] is one of the met-
aheuristic optimization algorithms that has received the
greatest attention and has been successfully implemented in
various applications such as the forecasting of transportation
energy and energy demand [12, 13].

Due to the applicability of the ABC algorithm in
optimizing the objective function efectively in terms of
time and computational complexity, the method is ap-
plied in the numerical technique to obtain the unknown
parameter. Te present work is intended to optimize
(minimize) the maximum numerical errors (L∞) for the
solutions of Burgers’ equation using the diferential
quadrature method involving an exponential B-spline
basis function using artifcial bee colony optimization
(ABC-EDQ) for the unknown parameter involved in
exponential B-spline. Te application of the method re-
duces the considered partial diferential equation to an
ordinary diferential equation (ODE) by approximating
the space derivatives through the usage of a diferential
quadrature method. Te subsequent step includes com-
puting the solution to the converted equations through
the use of MATLAB solvers.

Burgers’ equation came into existence in 1915 by Harry
Bateman [14] followed by Burgers in 1948 [15] and hence
was named “Burgers’ equation.” Burgers’ equation makes
one think of the Navier–Stokes equation for one dimension.
Burgers’ equation is an elementary partial diferential
equation which is widely practiced for applications in var-
ious felds of applied mathematics such as fuid mechanics,
nonlinear acoustics, gas dynamics, and trafc fow.

Recently in 2022, researchers established an energy
equation combined with the viscous Burgers’ equation as
a quantitative model for estimating river water thermal
pollution [16]. Termal pollution is a pollution that causes
a decrease in the oxygen level of water, making aquatic life
harder. It occurs due to various human activities that in-
cludes electric generating plants, steel melting facilities, and
industrial boilers. Termal pollution in rivers, lakes, and
waterways can be studied using the energy equation and the
viscous Burgers’ equation. Te proposed model is a non-
linear system of partial diferential equations (PDEs), which
may be thought of as an initial and boundary value problem
(IBVP).Te authors have examined an explicit second-order
Lax–Wendrof type technique to obtain the numerical so-
lution of the equation and visually represented the numerical
solutions as a temperature profle, which exhibits good
qualitative agreement with the real heat transport
occurrence.

In the context of pollution, this equation plays an im-
portant role. In a work reported by researchers in 2019,
Burgers’ equation has also been used as a model to forecast
pollution, emphasizing hydro and water pollution [17].

In this paper, the authors propose a correction strategy
based on Burgers’ equations to improve the estimation and
prediction of pollution.

Burgers’ equation is given by

ut + α uux − ] uxx � 0. (1)

Here, the coefcient of kinematic viscosity is given as ],
a parameter which is greater than zero with a small positive
value while α represents a positive constant which behaves as
a driving force.

Due to various applications of Burgers’ equation, there
are various well-known numerical methods reported in the
literature to solve this equation.

Various well-known numerical methods have been
applied to fnd the numerical solution of Burgers’ equation
in the last few years, such as the diferential quadrature
method (DQM) with modifed cubic B-spline [18], cubic B-
spline basis functions in standard form [19], modifed
trigonometric cubic B-spline [20], and exponential mod-
ifed cubic B-spline [21].Te fnite element method has also
been applied to the equation with the Hopf–Cole trans-
formation by transforming the equation to the linear heat
equation [22] and with the Galerkin fnite element ap-
proach [23]. Te equation has also been experimented with
the collocation approach with quadratic B-spline basis
functions [24], quartic B-spline [25], cubic B-spline [26],
and modifed cubic B-splines [27]. Many researchers have
also implemented the fnite diference approach in diferent
forms, such as the fnite diference method, which has been
used with the parameter-uniform implicit diference
scheme [28], the fourth-order fnite diference method [29],
and the implicit fourth-order compact fnite diference
scheme [30].

Tis is how the research is presented. In Section 1, an
introduction to the scheme and its signifcant contributions
in several areas are presented. Following this is an expla-
nation of the numerical scheme in Section 2, which includes
a discussion of ABC, exponential B-spline, and their
implementation in the diferential quadrature method. In
Section 3, numerical examples of the equation are provided
with various aspects of parameters and for diferent time
levels. Te thoughts on the usefulness of the system are
included in Section 4.

2. Scheme Description (ABC-EDQ)

Te proposed method uses artifcial bee colony optimization
to establish the parameter for the execution of the expo-
nential B-spline using the diferential quadrature method.

2.1. Exponential B-Spline Diferential Quadrature Method
(EDQ). Te diferential quadrature technique is a well-
known method for solving partial diferential equations
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that have been used with a variety of basic functions [31].
Many problems, including Fisher’s equation [32], the
Telegraph equation [33], the Korteweg-De Vries equation
[34], the nonlinear Schrodinger equation [35], and many
more, have been successfully solved numerically using this
method. Tis approach has also been used for fractional
diferential equations [36], indicating its applicability be-
yond partial diferential equations.

To make this method work, frst consider the domain xϵ
[a, b] as a � x1 <x2 < . . . <xN � b, where N characterizes
its distribution. Te solution u(x, t) is a smooth function
over the solution domain, approximated for its rth de-
rivatives with respect to x as a linear sum of all functional
values in terms of weighting coefcients ai,j as follows:

d
(r)

u

dx
(r)

xi

􏼌􏼌􏼌􏼌 � 􏽘
N

j�1
a

(r)
i,j u xj􏼐 􏼑, i � 1, 2, . . . , N, r � 1, 2, . . . , N − 1.

(2)

To determine the requisite weighting factors, the sug-
gested method employs exponential B-splines, a version of
ordinary B-splines. Te purpose is to represent the solution
using the features of the B-spline basis function but with the
addition of a parameter that depicts the form of the
piecewise polynomial. Many attempts have been made to
solve diferent types of diferential equations using expo-
nential basis functions, but they have always been limited by
the requirement to incorporate a parameter, the value of
which has only been approximated intuitively. An expo-
nential B-spline in the piecewise domain is defned as
follows:

ψm(x) �
1
h
3

β2 xm−2 − x( 􏼁 −
β2
ω

sin h ω xm−2 − x( 􏼁( 􏼁( 􏼁, x ϵ xm−2􏼂 , xm−1􏼡,

α1 + β1 xm − x( 􏼁 + c1e
ω xm−x( ) + δ1e

−ω xm−x( ), x ϵ xm−1􏼂 , xm􏼓,

α1 + β1 x − xm( 􏼁 + c1e
ω x−xm( ) + δ1e

−ω x−xm( ), x ϵ xm􏼂 , xm+1􏼓,

β2 x − xm+2( 􏼁 −
β2
ω

sin h ω x − xm+2( 􏼁( 􏼁( 􏼁, x ϵ xm+1􏼂 , xm+2􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where h is the uniform space partition and other parameters
are reported as follows:

α1 �
ωhc

ωhc − s
,

β1 �
ω
2

c(c − 1) + s
2

(ωhc − s)(1 − c)
􏼠 􏼡,

β2 �
ω

2 (ωhc − s)
,

c1 �
1
4

(1 − c + s)e
−ωh

− s

(ωhc − s)(1 − c)
􏼠 􏼡,

δ1 �
1
4

(−1 + c + s)e
ωh

− s

(ωhc − s)(1 − c)
􏼠 􏼡,

c � cos h(ωh),

s � sin h(ωh).

(4)

Te numerical values of the function and the derivatives
at nodal point can be obtained as follows:

ψm xm−1( 􏼁 � ψm xm+1( 􏼁 �
s − ωh

2(ωhc − s)
,

ψm xm( 􏼁 � 1

ψm
′ xm−1( 􏼁 �

ω(c − 1)

2(ωhc − s)
;ψm
′ xm+1( 􏼁

�
ω(1 − c)

2(ωhc − s)
;ψm
′ xm( 􏼁 � 0,

ψm
″ xm−1( 􏼁 � ψm

″ xm+1( 􏼁 �
ω2

s

2(ωhc − s)
;ψm
″ xm( 􏼁

�
−ω2

s

(ωhc − s)
.

(5)
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Te basic functions at the border grid points are rede-
fned to meet the criterion of a diagonally dominating matrix
before the basis function is implemented, as illustrated in
[18].

φ1(x) � ψ1(x) + 2ψ0(x),φ2(x) � ψ2(x) − ψ0(x),

φk(x) � ψk(x) for k � 3, 4, . . . , N − 2,

φN−1(x) � ψN−1(x) − ψN+1(x),φN(x) � ψN(x) + 2φN+1(x).

(6)

2.2. Artifcial Bee Colony Optimization. To optimize nu-
merical issues, Karaboga [37] proposed the artifcial bee
colony (ABC) algorithm in 2005. Te ABC algorithm is
a swarm-based metaheuristic algorithm. It was infuenced by
how honey bees used intelligence in their foraging. Various
algorithms, tailored to the unique intelligence of bee swarms,
have been created throughout the years. A swarm of bees is
a large group of bees that have gathered to form a colony [10].
Te primary feature of a swarm is the foraging behaviour of
the bees. A bee will collect nectar from a fower and put it in its
honeycomb when it discovers a good source of nourishment.
Enzymes are produced, and nectar is poured into the hive’s
vacated cells to begin the honey-making process. Worker bees
dance to communicate with each other and tell each other
about the location of potential food sources. Tey dance in
one of the defned ways, depending on how well the food
supply is doing economically. Bees perform a dance called the
waggle dance to indicate the direction of the sun and, by
extension, the location of food sources. How quickly the
dance moves indicate the distance between the hive and the
food supply. A trembling bee is a sign that the bee is uncertain
about the present food supply’s potential for proft [38].Tere
are a number of parameters involved in defning the algo-
rithm based on the performance of bees. Figure 1 explains the
types of bees and their roles. Figure 2 depicts the role of
unemployed bees in hunting for food.

2.2.1. Procedure. To fnd optimal solutions, swarm-based al-
gorithms rely on a cooperative process of trial and error. Peer-
to-peer learning’s social colony behaviour is the engine that
propels ABC optimization algorithms [39]. ABC generates a set
of candidate solutions and then continuously selects the best
one. Evolution in anABC population is driven by variation and
selection. Each iteration of the variational process investigates
a new region of the search space. Te selection process ensures
that prior knowledge will be put to good use.

Te ABC algorithm comprises four stages: the beginning,
when no data are available, the working bees, and the observing
phase. Each solution in ABC’s initial population is a dimension
vector, and the population is generated randomly.Te number
of dimensions is proportional to the number of variables in the
population’s food-source optimization issue. Te seeded bees
adjust the current solution based on their own experiences and

the ftness benefts of the change. Te bee will replace the old
food source with the new one if the ftness value of the new
food source is greater than the old one. To update the position,
the dimension vectors specifed in the introductory phase are
being used together with the necessary step sizes to calculate the
new coordinates. Te increment might range from −1 to 1.

Te employed bee phase and the position update procedure
are shown in Figure 3. Here, Xi indicates where the bee is right
now, and the highlighted box indicates the randomly chosen
direction.Te Xk bee was chosen at random. o achieve this, the
random bee’s direction is subtracted from that of the chosen
bees. Te step size is an arbitrary positive integer that is
multiplied by this diference. Finally, this number is added to
the vector of dimensions Xi to determine the size of the new
food location “V.” Tis vector is created in the neighbourhood
of Xi and has the same metric values.

Bees that are hard at work in the hive share their position
and information about the nectar quality of newly developed
solutions (food sources). Uninvolved bees analyse the
available information and choose the best options based on
the ftness probability they ofer. Te worker bee’s observer
counterpart, meanwhile, updates the position in its memory,
and evaluates the upcoming resource’s suitability. If the new
area is more suitable than the previous one, the bee will
remember it and abandon the old one.

If the food source’s location hasn't been updated in a certain
amount of time, it has been deemed abandoned. If a food source
is abandoned, the bee assigned to it becomes a scout bee and is
sent to investigate a new food source elsewhere in the search
area.TeABC exit limit, or the predetermined number of cycles,
is a key regulating factor. Figure 4 explains the workings of the
ABC algorithm in the form of a fow chart that is also presented
below as a given pseudocode (Algorithm 1).

Pseudocode of the algorithm:

3. Numerical Applications and Discussion

Consider the following boundary values for numerically
investigating Burgers’ equation using the provided
methodology:

u(a, t) � ψ1(t), u(b, t) � ψ2(t), (7)

and initial conditions

4 Discrete Dynamics in Nature and Society



Types of Bees

Busy Bees Employed
bees

Unemployed
bees

In order to survive, various
types of bees make use of the

resources at hand. Workers bees
ensure that the abundance,

proximity, and direction of available
food sources contribute to the town's

bottom line.
With considerable certainty,

working bees share their
knowledge with their counterparts

in the jobless bee population.
 Unemployed bees are responsible for
summing together data gathered by
employed bees and choosing a food

source. They’ve broken up the
jobless bees into two factions.

Some species of bee make
advantage of readily accessible
food sources. Workers bees are

responsible for ensuring that the
connected food source remains
profitable, taking into account

factors such as abundance,
proximity, and direction from the hive.

Figure 1: Te diferent types of bees and their role.

Unemployed Bees

Onlooker Bees Scout Bees

they are the bees that survey the
colony’s paid labourers for data,
and then use that information to

hunt for food.

They are in charge of
searching for new food

sources around the hive.

Figure 2: Role of unemployed bees in hunting for the food.

- × +

Xi

Xk

V

Figure 3: Te employed bee phase and the position update procedure.
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Initial food source

Evaluate the quality of each food source

Initial new food sources for employed bees
and evaluate solution quality

Initialize new sources for
onlook bees and evaluate

quality

Calculate positions for food
source

Stop

Store the position
of best food source

Compare solution
quality by the

new sources and
initialized one

Figure 4: Working of the ABC algorithm.

(1) Input parameters� Population, ft, t, lb, ub, limit, Np.
(2) Calculate objective function value (f ) & ftness value (ft).
(3) Set trial� 0.
(4) for i� 1 to t

Evaluate employed bee stage
Determined probability
Apply Onlooker bee phase for generating food source
Memorise the best food source
if trial> limit
enter into Scout bee stage

end
end

ALGORITHM 1: Pseudocode of the ABC algorithm.

Table 1: Solution of the equation using ABC for parameter at time t� 0.1 for Example 1.

t� 0.1 h k
v � 10− 2 v � 10− 4 v � 10− 6

L2 L∞ L2 L∞ L2 L∞

Present P� 150 0.5 10− 2 1.7755e− 02 1.6304e− 03 2.0226e− 06 1.953e− 06 2.0253e− 10 1.9584e− 10
P� 200 0.025 10− 3 3.7941e− 03 3.6881e− 03 4.2152e− 07 4.076e− 07 4.2195e− 11 4.0800e− 11
P� 200 0.1 10− 2 6.1673e− 03 5.8412e− 03 6.7453e− 07 6.520e− 07 6.7511e− 11 6.5281e− 11
[40] P� 150 0.1 10− 2 3.364e− 03 3.810e− 03 3.490e− 07 3.979e− 07 3.915e− 11 4.002e− 11
[40] P� 200 0.1 10− 2 3.381e− 03 3.829e− 03 3.509e− 07 4.001e− 07 3.510e− 11 4.512e− 11

Table 2: Solution of the equation using ABC for parameter at time t� 1 for Example 1.

t� 1 h k
v � 10− 2 v � 10− 4 v � 10− 6

L2 L∞ L2 L∞ L2 L∞

Present 0.5 10− 2 2.392e− 04 2.1617e− 04 2.2504e− 08 2.1760e− 08 2.504e− 12 2.1760e− 12
P� 200 0.025 10− 3 4.670e− 06 4.515e− 06 4.6883e− 10 4.5334e− 10 4.6883e− 14 4.5334e− 14
P� 200 0.1 10− 2 7.471e− 05 7.218e− 05 7.5013e− 09 7.2534e− 09 7.5013e− 13 7.2535e− 13
[40] p� 200 0.1 10− 2 2.476e− 02 2.748e− 02 3.166e− 06 3.6070e− 06 3.1742e− 10 3.6190e− 10
[40] p� 150 0.1 10− 2 2.483e− 02 2.757e− 02 3.183e− 06 3.6270e− 06 3.1914e− 10 3.6308e− 10
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u(x, 0) � f(x), (8)

from the exact solution on the domain [a, b].
When the exponential B-spline diferential quadrature

technique is used to substitute the space derivatives in
Burgers’ equation, the equation is changed into a series of
nonlinear ordinary diferential equations with time de-
pendence, as shown in the following equation:

zun

zt
� −α u􏽘

N

j�1
a

(1)
i,j u xj􏼐 􏼑 + ]􏽘

N

j�1
a

(2)
i,j u xj􏼐 􏼑 � 0, (9)

with i � 1, 2, . . . , n.
In this paper, the MATLAB 2014 programming ap-

proach is used to determine the numerical solution of the
equation while applying EDQ alongside ABC, and the results
are displayed as errors. Te two test problems presented are

considered for determining the numerical answer with the
defned approach:

Example 1. Consider Burgers’ equation (1) with domain
[0, 2] and zero boundary condition, as well as the initial
condition from the precise solution for α= 1. Te precise
solution obtained analytically is used to verify the equation’s
solution as follows:

u(x, t) � 2π]
sin(c)e

β
+ 4 sin(2 c)e

− 4β

4 + cos(c)e
β

+ 2 cos(2 c)e
−4β , (10)

where c � πx, β � −π2]2t.
Te numerical solution of the problem is achieved at

various time levels for k � 0.01 at various v values. Te value
of the parameter for the exponential B-spline is derived
using ABC for application in the diferential quadrature
technique. Te obtained numerical fndings are compared
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Figure 5: Behaviour of the solution that decreases in amplitude for small values of parameter v.
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Figure 6: Behaviour of the solution of Example 1 that decreases in amplitude for very small values of v.
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with the exact solutions in Tables 1 and 2 and are reported in
the form of errors for t= 0.1 and t= 1 as accessible in the
literature.

Te important parameters are swarm size: 5, maximum
iterations: 50, inertia weight is linearly reduced, and social
and cognitive coefcients are c1 � c2 � 2.05. Te numerical
solutions are in good agreement with the precise solution, as
evidenced by the obtained results in the form of L2 and L∞
errors.

Figures 5 and 6 depict the physical behaviour of the
solution obtained at t� 1 for various values of v. From the
fgures, the physical behaviour of the equation over time can
be seen to remain unchanged in behaviour but changing in
amplitude.

It can be observed from the results presented in the
Tables 1 and 2 that the algorithm has played an important
role in minimizing the errors even at the same value of the
parameter.

Example 2. Consider the equation (1) to be solved in the
domain [0, 1.2] with boundary and initial condition taken
from the exact solution [19] for α � 1, given as follows:

u(x, t) �
x/t

1 +
����
(t/g)

􏽰
exp x

2/4]t􏼐 􏼑
,

g �
0.125
]

for t≥ 1.

(11)

Te numerical solution has been obtained with ] � 0.005
at diferent time levels for t � 1.7 and t � 3.1.

In Table 3, the errors are estimated at diferent time levels
for time step, k � 0.01 and the number of domain partition
as 121 and 151, the fndings are compared with available data
in literature. Using ABC, results are calculated for the pa-
rameters in Table 3 considering swarm size: 5; maximum
iterations: 20; inertia weight is linearly decreased; and social
and cognitive coefcients are taken as c1 � c2 � 2.05 and k �

Table 3: Solution of the equation using ABC for parameter at diferent time levels for Example 2.

N� 121 p
t� 1.7 t� 3.1

L2 L∞ L2 L∞

Present 1 1.9076e− 06 7.7721e− 06 7.4189e− 04 2.2055e− 03
[40] 1 1.9076e− 06 7.7210e− 06 6.5722e− 07 3.3167e− 06
Present 2 1.9115e− 06 7.7902e− 06 7.4188e− 04 2.2055e− 03
[40] 2 1.9115e− 06 7.7905e− 06 6.5874e− 07 3.3167e− 06
N� 151
Present 0.5 7.4195e− 04 2.2093e− 03 7.4195e− 04 2.2093e− 03
[40] 0.5 8.7867e− 07 3.6908e− 06 5.1592e− 07 3.5718e− 06
Present 1 7.4195e− 04 2.2093e− 03 7.4195e− 04 2.2093e− 03
[40] 1 8.7908e− 07 3.6927e− 06 5.1601e− 07 3.5718e− 06
[21] — 7.7700e− 06 7.7500e− 06 4.700e− 07 1.5800e− 06
Present 2 7.4195e− 04 2.2093e− 03 7.4195e− 04 2.2093e− 03
[40] 2 8.8075e− 07 3.7002e− 06 5.1637e− 07 3.5718e− 06
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Figure 7: Behaviour of the solution for Example 2 for the diferent time levels.
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1. Te collected fndings show that the numerical results are
afected by the parameter as well as the number of domain
divisions. Te acquired fndings are equivalent to the exact
solutions that are accessible. Figure 7 depicts the solution
behaviour along with the physical behaviour of the equation
over time.

4. Concluding Remarks

Te ABC technique is used to acquire the parameter for the
exponential B-spline-based diferential quadrature ap-
proach, which is used to calculate the numerical solution to
Burgers’ problem. To demonstrate the accuracy of the
procedure the problems are solved with the diferent values
of the coefcient of kinematic viscosity ranging from small
to high. To illustrate the errors, diferent time steps and the
number of domain divisions are employed. Te obtained
results are compared to the applied numerical method with
particle swarm optimization algorithm in comparison to the
ABC algorithm. It can be observed that the errors obtained
by ABC algorithm are less as compared to the PSO algorithm
when applied for minimizing the error while the value of
parameter is same for diferent applied domain partitions.
Te proposed strategy presented in the work may be
experimented using some other optimization algorithm such
as spider monkey and grey wolf optimization algorithm.
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