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In this study, a Caputo fractional derivative is employed to develop a model of malaria and HIV transmission dynamics with
optimal control. Also, the model’s basic properties are shown, and the basic reproduction number is computed using the next-
generation matrix method. Additionally, the order of fractional derivative analysis shows that the infected group decreases at the
beginning for the higher-order of fractional derivative. Moreover, the early activation of memory efects through public health
education reduces the impact of malaria and HIV infections on further progression and transmission. On the other hand, efective
optimal controls reduce the occurrence and prevalence of HIV and malaria infections from the beginning to the end of the
investigation. Finally, the numerical simulations are done for the justifcation of analytical solutions with numerical solutions of
the model. Moreover, the MATLAB platform is incorporated for numerical simulation of the solutions.

1. Introduction

Human immunodefciency virus (HIV) is a human harmful
virus that causes a fatal disease called acquired immuno-
defciency syndrome (AIDS) [1].Tere is no medication that
cures AIDS disease, but efective antiretroviral (ARV) drugs
could control the transmission and progression of the in-
fection. HIV can be prevented using the prominent rule
stated as abstinence-be-faithful-use-condom which is ab-
breviated as ABC rule. HIV can be transmitted to individuals
through contact of fuids with HIV exposed objects. HIV can
be transmitted vertically from mother to child and hori-
zontally from person to person in an unsafe exposure to HIV
exposed environment. Unsafe sexual practice is one of the
major modes of HIV transmission. Malaria infection is
a curable infection caused by a parasite called Plasmodium if
the infected mosquito bites humans to suck the blood [2].
Globally, the consequence of deforestation is causing an
increase in global warming that facilitates the risk of malaria
infection. In the most part of sub-Saharan Africa, malaria
cases and deaths are largely visible. Te malaria and HIV

diseases are studied separately for a long period of time as
fatal diseases. However, the co-infection of HIV and malaria
killed about 2 million each year [1].

Recently, mathematical models have become in-
dispensable tools to describe the transmission and pro-
gression dynamics of disease in the human population
[3–11]. Te frst mathematical model of malaria trans-
mission dynamics is introduced by Ross [7]. Ten, diferent
mathematical models are constructed to describe trans-
mission dynamics of malaria infection. Ngwa and Shu de-
veloped the malaria model with variable human and
mosquito population [9]. Chitins et al. [10, 11] studied the
transmission of malaria, considering that human and vector
species follow a logistic population. Tey also studied the
bifurcation analysis and the efects of seasonality that fa-
cilitate the spreading of the mosquito and feeding on the
host. Li [8] studied the transmission of malaria through the
stage-structured model and provides a basic analysis that
shows backward bifurcation.

Boukhouima et al. [12, 13] studied the dynamics of virus
in the human body through a fractional derivative. Hattaf
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[14] developed the new generalized fractional derivative and
applied it to the analysis of HIV dynamics in the body. Wu
et al. [15] studied the cellular dynamics of the HIV-1 with
uncertainty in the initial data. Dokuyucu and Dutta [16]
studied the TB-HIV dynamics with the fractional order
derivative. Te order of the fractional derivative contributes
to the memory efects. Okyere et al. [17] studied the
transmission dynamics of malaria using the optimal frac-
tional order derivative. Okyere et al. [18] studied the in-
vasion of disease in the ecological population, whereas the
difusive model of COVID-19 is studied in [19]. As a basis
for the memory efect, awareness intervention has con-
tributed to reducing disease transmission [20]. In addition,
the work done in [21–31] can be used to illustrate how
mathematical models have recently played a part in pro-
viding information for the public through ftting data and
new methods. In addition, in [31–34], co-infection models
are constructed to describe the dynamics of HIV, cholera,
and COVID-19 infections. Although some models are de-
veloped to study the dynamics of HIV and malaria, the
fractional order derivative is incorporated to study the co-
dynamics of malaria andHIV transmission dynamics. In this
study, we are motivated by the works done in [1] and extend
it to the fractional derivative model.

In addition, the remaining portions of the work are
organized as follows. Section 2 discusses the creation of the
mathematical model. Section 3 presents a basic analysis of
the model without control. Section 4 presents the optimal

control problem. Numerical simulation is presented in
Section 5. Results and discussions are presented in Section 6.
Te conclusion is presented in Section 7.

2. Mathematical Model Formulation

In this study, the total population is classifed into com-
partments as follows: (i) susceptible (S): It consists of all
human who are infection-free and have a chance to be
infected in the future; (ii) malaria-infected (Im): Tis
consists of only malaria-infected individuals; (iii) HIV-in-
fected: It consists of only HIV-infected individuals; (iv)
HIV-malaria-infected: It consists of all individuals infected
with both malaria and HIV infections before the AIDS stage;
(v) AIDS patients: It consists of individuals infected with
HIV at the AIDS stage; (vi) AIDS-malaria-infected: It
consists of individuals infected with malaria at the AIDS
stage; (vii) susceptible mosquito (Sv): It consists of non-
infectious mosquito population with chance to become
infectious if they suck the blood of malaria infected human
individuals; and (viii) infectious mosquito (Iv): It consists of
infectious mosquito vector.

Moreover, the state variables and parameters used in the
model are described in Tables 1 and 2, respectively.

Considering the structural representation given in Fig-
ure 1, we have constructed the fractional model for HIV and
malaria transmission dynamics without control as given by
the following equation:

C
0 D

α
t S � Λh − βhS Ih + Ihm + Ia + Iam( 􏼁 − βmSIv − μS,

C
0 D

α
t Im � βmSIv − βhIm Ih + Ihm + Ia + Iam( 􏼁 − δm + μ( 􏼁Im,

C
0 D

α
t Ih � βhS Ih + Ihm + Ia + Iam( 􏼁 − βmIhIv − ηIh − μIh,

C
0 D

α
t Ihm � βmIhIv + βhIm Ih + Ihm + Ia + Iam( 􏼁 − ξIhm − δhmIhm − μIhm,

C
0 D

α
t Ia � ηIh − βmIaIv − δaIa − μIa,

C
0 D

α
t Iam � βmIaIv + ξIhm − δam Iam − μIam,

C
0 D

α
t Sv � Λv − βvSv Im + Ihm + Iam( 􏼁 − ]Sv,

C
0 D

α
t Iv � βvSv Im + Ihm + Iam( 􏼁 − ]Iv,

(1)

with initial conditions S(0)≥ 0, Im(0)≥ 0, Ih(0)≥ 0, Ihm

(0)≥ 0, Ia(0)≥ 0, Iam(0)≥ 0, Sv(0)≥ 0, Iv(0)≥ 0.
3. Mathematical Analysis of the Model

3.1. Invariant Region

Theorem 1. Te solution of Caputo fractional derivative
model (1) is invariant in the invariant set Ω ⊂ R6

+ × R2
+ such

that

Ω � Ωh ×Ωv � S, Im, Ih, Ihm, Ia, Iam, Sv, Iv( 􏼁 ∈ R6
+ × R

2
+: Nh ≤

Λh

μ
, Nm ≤
Λv

]
􏼨 􏼩, (2)
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Table 1: State variable and description.

State variable Description
S(t) Size of susceptible human individuals
Im(t) Size of malaria-infected human individuals
Ih(t) Size of HIV-infected human individuals
Ihm(t) Size of HIV- and malaria-infected human individuals
Ia(t) Size of AIDS patients
Iam(t) Size of AIDS- and malaria-infected individuals
Sv(t) Size of susceptible mosquito
Iv(t) Size of infectious mosquito population

Table 2: Parameter and assigned value.

Parameter Value
Λh Recruitment rate of susceptible human individuals
βh Transmission rate of HIV infection
βm Transmission rate of malaria infection
μ Natural death rate of all human individuals
δm Malaria-induced death rate
η Progression rate from Ih to Ia

ξ Transfer rate from Ihm to Iam

δam AIDS-malaria induced death rate
δhm HIV-malaria induced death rate
δa AIDS-induced death rate
Λv Recruitment rate of susceptible mosquito
βv Transmission rate of malaria from infected mosquito
] Death rate of mosquito individuals
c Treatment rate of malaria-infected
ω Treatment rate of AIDS-malaria-infected
ρ Treatment rate of HIV-malaria-infected

μS

νSv

Sv

S

u3γIm

u3ρIhm

u3 ωIam

μIm

δmIm

δhmIhm
IhmIh

μIhm

μIam

μIa

IamIa
δaIa

δam Iam

Iv

νSv

μIh

Im
(1 – u2) βmSIv

(1 – u2) βmIhIv

(1 – u4) ξIhm(1 – u4) ηIh

(1 – u2) βmIaIv

(1 – u1) βhIm (Ih + Ihm+ Ia + Iam)(1 – u1) βhS (Ih + Ihm+ Ia + Iam)

(1 – u2) βvSv (Im + Ihm + Iam)

Λh

Λv

Figure 1: Architecture of HIV and malaria transmission dynamics.

Discrete Dynamics in Nature and Society 3



where Nh � S + Im + Ih + Ia + Iam, Nm � Sv + Iv.

Proof. Considering the human population equation and
adding the right and left expressions of the fractional de-
rivative part gives

C
0 D

α
t Nh � Λh − μNh − δmIm − δhmIhm − δaIa − δamIam,

(3)

which implies
C
0 D

α
t Nh ≤Λh − μNh. (4)

Applying the Laplace transform on both sides and
solving the preceding expression as t reaches infnity, we
obtain

Nh ≤
Λh

μ
−
Λh

μ
− Nh(0)􏼠 􏼡Eα,1(−μt). (5)

Hence, the solution of the developed is bounded for all
time t. □

3.2. Non-Negativity of Solution

Theorem  . Te solution of Caputo fractional derivative
model (1) is non-negative in the invariant region for all time t.

Proof. To show the non-negativity of solution, consider
model (1) along the axis where state variables vanish as
follows:

C
0 D

α
t S

􏼌􏼌􏼌􏼌􏼌S�0
� Λh ≥ 0,

C
0 D

α
t Im

􏼌􏼌􏼌􏼌􏼌Im�0
� βmSIv ≥ 0,

C
0 D

α
t Ih

􏼌􏼌􏼌􏼌􏼌Ih�0
� βhS Ihm + Ia + Iam( 􏼁≥ 0,

C
0 D

α
t Ihm

􏼌􏼌􏼌􏼌􏼌Ihm�0
� βmIhIv + βhIm Ih + Ia + Iam( 􏼁≥ 0,

C
0 D

α
t Ia

􏼌􏼌􏼌􏼌􏼌Ia�0
� ηIh ≥ 0,

C
0 D

α
t Iam

􏼌􏼌􏼌􏼌􏼌Iam�0
� βmIaIv + ξIhm ≥ 0,

C
0 D

α
t Sv

􏼌􏼌􏼌􏼌􏼌Sv�0
� Λv ≥ 0,

C
0 D

α
t Iv

􏼌􏼌􏼌􏼌􏼌Iv�0
� βvSv Im + Ihm + Iam( 􏼁≥ 0.

(6)

Hence, by Caputo generalized mean value theorem, the
solution of constructed model is non-negative. □

3.3. Existence and Uniqueness of Solutions

Theorem 3. Te solution of Caputo fractional derivative
model (1) exists and is unique in the defned invariant
region Ω.

Proof. Te proof can be shown using the fxed point
theory [5]. □

3.4. Disease-Free Equilibrium. Te disease-free equilibrium
EC
0 of Caputo fractional derivative model (1) is a steady state

point of disease extinction. It is computed and given by

E
C
0 �
Λh

μ
, 0, 0, 0, 0, 0,

Λv

]
, 0􏼠 􏼡. (7)

3.5. Basic Reproduction Number. Te basic reproduction
number (R0) is extensively applied in mathematical epi-
demiology to describe the status of infections invading the
population.Te biological signifcance of basic reproduction
number is that it shows the status of the disease in the
population, whether the disease in the population is extinct if
R0 < 1 or persists if R0 > 1 [35–37]. Recently, a next-
generation matrix method is broadly incorporated in the
modern research on infections transmission dynamics. Here
also, similar to the works done in [35–37], we have applied
the next-generation matrix to compute the basic re-
production number. Hence, from model (1), we construct
a matrix f that comprises of newly infected individuals
arriving in the compartments, and a matrix v encompasses
the transition terms in the infected compartments.

First, from only the malaria model, we construct basic
reproduction using the subsequent vectors.

f �
βmSIv

βvSvIm

􏼠 􏼡,

v �
δm + μ( 􏼁Im

]Iv

􏼠 􏼡.

(8)

At disease-free equilibrium, the Jacobian matrices F and
V obtained from preceding vectors f and v, respectively, are
given by

F �
0 βmS

βvSv 0
􏼠 􏼡,

V �
δm + μ 0

0 ]
􏼠 􏼡.

(9)

Te next-generation matrix FV− 1 is constructed from
the preceding matrices F and V as follows:

FV
− 1

�

0
βmS

]

βvSv

δm + μ
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

Te eigenvalues of the next-generation matrix FV− 1 are
computed as follows:

λ1 �

���
βm

􏽰 ��
βv

􏽰 �
S

√ ��
Sv

􏽰

�
]

√ ������
δm + μ

􏽰 ,

λ2 � −

���
βm

􏽰 ��
βv

􏽰 �
S

√ ��
Sv

􏽰

�
]

√ ������
δm + μ

􏽰 .

(11)
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Furthermore, the basic reproduction number R0m is the
spectral radius of next-generation matrix FV− 1. Hence, we
have

R0m � ρ FV
− 1

􏼐 􏼑

�

���
βm

􏽰 ��
βv

􏽰 ��
S
0

􏽰 ��
Sv

􏽰

�
]

√ ������
δm + μ

􏽰 .

(12)

Second, from only the malaria model, we construct basic
reproduction using the subsequent vectors.

f �
βhS Ih + Ia( 􏼁

0
􏼠 􏼡,

v �
ηIh + μIh

−ηIh + δaIa + μIa

􏼠 􏼡.

(13)

At disease-free equilibrium, the Jacobian matrices F and
V obtained from preceding vectors f and v, respectively, are
given by

F �
βhS

0 βhS
0

0 0
⎛⎝ ⎞⎠,

V �
η + μ 0

−η δa + μ
􏼠 􏼡.

(14)

Te next-generation matrix FV− 1 is constructed from
the preceding matrices F and V as follows:

FV
− 1

�

βhS
0

η + μ
+

βhS
0η

(δ + μ)(η + μ)

βhS
0

δ + μ

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

Te eigenvalues of the next-generation matrix FV− 1 are
computed as follows:

λ1 �
βhS

0

η + μ
+

βhS
0η

(δ + μ)(η + μ)
,

λ2 � 0.

(16)

Furthermore, the basic reproductions number R0h is the
spectral radius of next-generation matrix FV− 1. Hence, we
have

R0h � ρ FV
− 1

􏼐 􏼑

�
βhS

0

η + μ
+

βhS
0η

(δ + μ)(η + μ)
.

(17)

Moreover, according to the works done in [1], the basic
reproduction number R0 of the full model (1) is given by

R0 � max
���
βm

􏽰 ��
βv

􏽰 ��
S
0

􏽰 ��
Sv

􏽰

�
]

√ ������
δm + μ

􏽰 ,
βhS

0

η + μ
+

βhS
0η

(δ + μ)(η + μ)

⎧⎨

⎩

⎫⎬

⎭

� max R0m, R0h􏼈 􏼉.

(18)

3.6. Global Stability of Disease-Free Equilibrium

Theorem 4. Te disease-free equilibrium E0 of fractional
model is globally asymptotically stable ifR0 ≤ 1 and unstable if
R0 > 1.

Proof. To show global stability, we follow the works of
Castillo–Chavez and Song done in [2]. Now, we consider the
infected compartments of model (1) as given below. First, let
X be vector of variables for infection-free compartments and
Y be vector of infected compartments such that

G(X, Y) �

−δm − μ 0 0 0 0 0

0 −η − μ 0 0 0 0

0 0 −ξ − δhm − μ 0 0 0

0 η 0 −δa − μ 0 0

0 0 ξ 0 −δam − μ 0

0 0 0 0 0 −]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Im

Ih

Ihm

Ia

Iam

Iv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

0

0

0

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)
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which implies

G(X, Y) � PY − 􏽢G(X, Y), (20)

where the subsequent matrix is a Metzler matrix.

P �

−δm − μ 0 0 0 0 0
0 −η − μ 0 0 0 0
0 0 −ξ − δhm − μ 0 0 0
0 η 0 −δa − μ 0 0
0 0 ξ 0 −δam − μ 0
0 0 0 0 0 −]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

􏽢G(X, Y) �

0
0
0
0
0
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(21)

Hence, the conditions of Castillo–Chavez and song are
satisfed.Terefore, the disease-free equilibrium of model (1)
is globally asymptotically stable. □

4. Extension to Optimal Control Problem

In this section, we study the optimal control problem of HIV
and malaria co-infection transmission dynamics for α � 1.
Since the optimal control problem is very methodical and
hypothetical, it is applied in real life by taking feedback from
the target community based on numerical solutions of

model. Moreover, the control functions are taken in the
study can be described as follows: (i) HIV prevention control
(u1):Te intervention with this control reduces the chance of
getting with HIV infections, (ii) malaria prevention control
(u2):Tis control function helps in the prevention of malaria
infection, (iii) malaria treatment control (u3): Tis control
function is applied to treat individuals infected with malaria
infection, (iv) HIV progression control (u4): Tis is HIV
treatment control function applied for slowing HIV in-
fection to the advanced stage.

dS

dt
� Λh − 1 − u1( 􏼁 βhS Ih + Ihm + Ia + Iam( 􏼁 − 1 − u2( 􏼁 βmSIv + u3cIm − μS,

dIm

dt
� 1 − u2( 􏼁 βmSIv − 1 − u1( 􏼁 βhIm Ih + Ihm + Ia + Iam( 􏼁 − u3cIm − δm + μ( 􏼁Im,

dIh

dt
� 1 − u1( 􏼁 βhS Ih + Ihm + Ia + Iam( 􏼁 + u3ρIhm − 1 − u2( 􏼁 βmIhIv − 1 − u4( 􏼁ηIh − μIh,

dIhm

dt
� 1 − u2( 􏼁 βmIhIv + 1 − u1( 􏼁 βhIm Ih + Ihm + Ia + Iam( 􏼁 − u3ρIhm − 1 − u4( 􏼁ξIhm − δhmIhm − μIhm,

dIa

dt
� 1 − u4( 􏼁ηIh + u3ωIam − 1 − u2( 􏼁βmIaIv − δaIa − μIa,

dIam

dt
� 1 − u2( 􏼁βmIaIv + 1 − u4( 􏼁ξIhm − u3ωIam − δam Iam − μIam,

dSv

dt
� Λv − 1 − u2( 􏼁βvSv Im + Ihm + Iam( 􏼁 − ]Sv,

dIv

dt
� 1 − u2( 􏼁βvSv Im + Ihm + Iam( 􏼁 − ]Iv.

(22)
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4.1. Objective Function. Te objective functional for mini-
mization of cost of using controls and the number of infected
compartments is defned by

J � min
u1 ,u2 ,u3 ,u4

􏽚
tf

0
c1Im + c2Ih + c3Ihm + c4Ia + c5Iam + c6Iv +

1
2

􏽘

4

i�1
wiu

2
i

⎛⎝ ⎞⎠dt. (23)

4.2. Hamiltonian Function. Pontryagin’s maximum princi-
ple is applied for the construction of the Hamiltonian
function that minimizes the objective function, as given by
subsequent equation (38). Let λi, i � 1, 2, 3, 4, 5, 6, 7, 8 be

adjoint variables corresponding to state variables
S, Im, Ih, Ihm, Ia, Iam, Sv, Iv, respectively. Hence, we defne
Hamiltonian function as follows:

H � c1Im + c2Ih + c3Ihm + c4Ia + c5Iam + c6Iv +
1
2

􏽘

4

i�1
wiu

2
i

⎛⎝ ⎞⎠ + λ1
dS

dt
+ λ2

dIm

dt
+ λ3

dIh

dt
+ λ4

dIhm

dt

+ λ5
dIa

dt
+ λ6

dIam

dt
+ λ7

dSv

dt
+ λ8

dIv

dt
,

(24)

which implies

H � c1Im + c2Ih + c3Ihm + c4Ia + c5Iam + c6Iv +
1
2

􏽘

4

i�1
wiu

2
i

⎛⎝ ⎞⎠

+ λ1 Λh − 1 − u1( 􏼁 βhS Ih + Ihm + Ia + Iam( 􏼁 − 1 − u2( 􏼁 βmSIv + u3cIm − μS􏼂 􏼃

+ λ2 1 − u2( 􏼁 βmSIv − 1 − u1( 􏼁 βhIm Ih + Ihm + Ia + Iam( 􏼁 − u3cIm − δm + μ( 􏼁Im􏼂 􏼃

+ λ3 1 − u1( 􏼁 βhS Ih + Ihm + Ia + Iam( 􏼁 + u3ρIhm − 1 − u2( 􏼁 βmIhIv − 1 − u4( 􏼁ηIh − μIh􏼂 􏼃

+ λ4 1 − u2( 􏼁 βmIhIv + 1 − u1( 􏼁 βhIm Ih + Ihm + Ia + Iam( 􏼁 − u3ρIhm − 1 − u4( 􏼁ξIhm − δhmIhm − μIhm􏼂 􏼃

+ λ5 1 − u4( 􏼁ηIh + u3ωIam − 1 − u2( 􏼁βmIaIv − δaIa − μIa􏼂 􏼃 + λ6 1 − u2( 􏼁βmIaIv + 1 − u4( 􏼁ξIhm − u3ωIam􏼂

− δam Iam − μIam􏼃 + λ7 Λv − 1 − u2( 􏼁βvSv Im + Ihm + Iam( 􏼁 − ]Sv􏼂 􏼃 + λ8 1 − u2( 􏼁βvSv Im + Ihm + Iam( 􏼁 − ]Iv􏼂 􏼃.

(25)

4.3. Adjoint Equations. Te adjoint equations are computed
from the subsequent partial derivatives, that is,

dλ1
dt

� −
zH

zS
,

dλ2
dt

� −
zH

zIm

,
dλ3
dt

� −
zH

zIh

,
dλ4
dt

� −
zH

zIhm

,
dλ5
dt

� −
zH

zIa

,
dλ6
dt

� −
zH

zIam

,
dλ7
dt

� −
zH

zIm

,
dλ8
dt

� −
zH

zIv

. (26)

Terefore, the adjoint equations are computed as
follows:
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dλ1
dt

� 1 − u1( 􏼁 βh Ih + Ihm + Ia + Iam( 􏼁 λ1 − λ3( 􏼁 + 1 − u2( 􏼁 βmIv λ1 − λ2( 􏼁 + μλ1,

dλ2
dt

� −c1 + 1 − u1( 􏼁 βh Ih + Ihm + Ia + Iam( 􏼁 λ2 − λ4( 􏼁 + u3c λ2 − λ1( 􏼁 + 1 − u2( 􏼁βvSv λ7 − λ8( 􏼁 + δm + μ( 􏼁λ2,

dλ3
dt

� −c2 + 1 − u1( 􏼁 βhS λ1 − λ3( 􏼁 + 1 − u1( 􏼁 βhIm λ2 − λ4( 􏼁 + 1 − u2( 􏼁 βmIv λ3 − λ4( 􏼁 + 1 − u4( 􏼁η λ3 − λ5( 􏼁 + μλ3,

dλ4
dt

� −c3 + 1 − u1( 􏼁 βhS λ1 − λ3( 􏼁 + 1 − u1( 􏼁 βhIm λ2 − λ4( 􏼁 + u3ρ λ4 − λ3( 􏼁 + 1 − u4( 􏼁ξ λ4 − λ6( 􏼁

+ 1 − u2( 􏼁βvSv λ7 − λ8( 􏼁 + δhm + μ( 􏼁λ4,

dλ5
dt

� −c4 + 1 − u1( 􏼁 βhS λ1 − λ3( 􏼁 + 1 − u1( 􏼁 βhIm λ2 − λ4( 􏼁 + 1 − u2( 􏼁βmIv λ5 − λ6( 􏼁 + λ5 δa + μ( 􏼁,

dλ6
dt

� −c5 + 1 − u1( 􏼁 βhS λ1 − λ3( 􏼁 + 1 − u1( 􏼁 βhIm λ2 − λ4( 􏼁 + u3ω λ6 − λ5( 􏼁 + 1 − u2( 􏼁βvSv λ7 − λ8( 􏼁 + δam + μ( 􏼁λ8,

dλ7
dt

� 1 − u2( 􏼁βv Im + Ihm + Iam( 􏼁 λ7 − λ8( 􏼁 + ]λ7,

dλ8
dt

� −c6 + 1 − u2( 􏼁 βmS λ1 − λ2( 􏼁 + 1 − u2( 􏼁 βmIh λ3 − λ4( 􏼁 + 1 − u2( 􏼁βmIa λ5 − λ6( 􏼁 + ]λ8,

(27)

with transversal conditions λi(tf) � 0, i � 1, 2, 3, 4, 5,

6, 7, 8.

4.4. Optimal Control Functions. Te optimal controls
u∗1 , u∗2 , u∗3 and u∗4 are obtained by solving the subsequent
equations.

zH

zu1
� 0,

zH

zu2
� 0,

zH

zu3
� 0,

zH

zu4
� 0. (28)

To obtain u∗1 , we solve, from the subsequent equation,
for u1.

zH

zu1
� 0. (29)

Te above implies

u1 �
βhS Ih + Ihm + Ia + Iam( 􏼁 λ3 − λ1( 􏼁 + βhIm Ih + Ihm + Ia + Iam( 􏼁 λ4 − λ2( 􏼁

w1
� u
∗
1 . (30)

To obtain u∗2 , solve, from the subsequent equation,
for u2.

zH

zu2
� 0. (31)

Te above implies,

u2 �
βmSIv λ2 − λ1( 􏼁 + βmIhIv λ4 − λ3( 􏼁 + βmIaIv λ6 − λ5( 􏼁 + βvSv Im + Ihm + Iam( 􏼁 λ8 − λ7( 􏼁

w2
� u
∗
2 . (32)

To obtain u∗3 , solve, from the subsequent equation,
for u3.

zH

zu3
� 0. (33)

Te above implies,

u3 �
cIm λ2 − λ1( 􏼁 + ρIhm λ4 − λ3( 􏼁 + ωIam λ6 − λ5( 􏼁

w3
� u
∗
3 .

(34)
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To obtain u∗4 , solve, from the subsequent equation,
for u4.

zH

zu4
� 0. (35)

Te above implies,

u4 �
ξIhm λ6 − λ4( 􏼁 + ηIh λ5 − λ3( 􏼁

w4
� u
∗
4 . (36)

In compact form

u
∗
1 � min 1, max 0,

βhS Ih + Ihm + Ia + Iam( 􏼁 λ3 − λ1( 􏼁 + βhIm Ih + Ihm + Ia + Iam( 􏼁 λ4 − λ2( 􏼁

w1
􏼨 􏼩􏼨 􏼩,

u
∗
2 � min 1, max 0,

βmSIv λ2 − λ1( 􏼁 + βmIhIv λ4 − λ3( 􏼁 + βmIaIv λ6 − λ5( 􏼁 + βvSv Im + Ihm + Iam( 􏼁 λ8 − λ7( 􏼁

w2
􏼨 􏼩􏼨 􏼩,

u
∗
3 � min 1, max 0,

cIm λ2 − λ1( 􏼁 + ρIhm λ4 − λ3( 􏼁 + ωIam λ6 − λ5( 􏼁

w3
􏼨 􏼩􏼨 􏼩,

u
∗
4 � min 1, max 0,

ξIhm λ6 − λ4( 􏼁 + ηIh λ5 − λ3( 􏼁

w4
􏼨 􏼩􏼨 􏼩.

(37)

4.4.1. Optimality System

dS

dt
� Λh − 1 − u1( 􏼁 βhS Ih + Ihm + Ia + Iam( 􏼁 − 1 − u2( 􏼁 βmSIv + u3cIm − μS,

dIm

dt
� 1 − u2( 􏼁 βmSIv − 1 − u1( 􏼁 βhIm Ih + Ihm + Ia + Iam( 􏼁 − u3cIm − δm + μ( 􏼁Im,

dIh

dt
� 1 − u1( 􏼁 βhS Ih + Ihm + Ia + Iam( 􏼁 + u3ρIhm − 1 − u2( 􏼁 βmIhIv − 1 − u4( 􏼁ηIh − μIh,

dIhm

dt
� 1 − u2( 􏼁 βmIhIv + 1 − u1( 􏼁 βhIm Ih + Ihm + Ia + Iam( 􏼁 − u3ρIhm − 1 − u4( 􏼁ξIhm − δhmIhm − μIhm,

dIa

dt
� 1 − u4( 􏼁ηIh + u3ωIam − 1 − u2( 􏼁βmIaIv − δaIa − μIa,

dIam

dt
� 1 − u2( 􏼁βmIaIv + 1 − u4( 􏼁ξIhm − u3ωIam − δam Iam − μIam,

dSv

dt
� Λv − 1 − u2( 􏼁βvSv Im + Ihm + Iam( 􏼁 − ]Sv,

dIv

dt
� 1 − u2( 􏼁βvSv Im + Ihm + Iam( 􏼁 − ]Iv,
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dλ1
dt

� 1 − u1( 􏼁 βh Ih + Ihm + Ia + Iam( 􏼁 λ1 − λ3( 􏼁 + 1 − u2( 􏼁 βmIv λ1 − λ2( 􏼁 + μλ1,

dλ2
dt

� −c1 + 1 − u1( 􏼁 βh Ih + Ihm + Ia + Iam( 􏼁 λ2 − λ4( 􏼁 + u3c λ2 − λ1( 􏼁 + 1 − u2( 􏼁βvSv λ7 − λ8( 􏼁 + δm + μ( 􏼁λ2,

dλ3
dt

� −c2 + 1 − u1( 􏼁 βhS λ1 − λ3( 􏼁 + 1 − u1( 􏼁 βhIm λ2 − λ4( 􏼁 + 1 − u2( 􏼁 βmIv λ3 − λ4( 􏼁 + 1 − u4( 􏼁η λ3 − λ5( 􏼁 + μλ3,

dλ4
dt

� −c3 + 1 − u1( 􏼁 βhS λ1 − λ3( 􏼁 + 1 − u1( 􏼁 βhIm λ2 − λ4( 􏼁 + u3ρ λ4 − λ3( 􏼁 + 1 − u4( 􏼁ξ λ4 − λ6( 􏼁

+ 1 − u2( 􏼁βvSv λ7 − λ8( 􏼁 + δhm + μ( 􏼁λ4,
dλ5
dt

� −c4 + 1 − u1( 􏼁 βhS λ1 − λ3( 􏼁 + 1 − u1( 􏼁 βhIm λ2 − λ4( 􏼁 + 1 − u2( 􏼁βmIv λ5 − λ6( 􏼁 + δa + μ( 􏼁λ5,

dλ6
dt

� −c5 + 1 − u1( 􏼁 βhS λ1 − λ3( 􏼁 + 1 − u1( 􏼁 βhIm λ2 − λ4( 􏼁 + u3ω λ6 − λ5( 􏼁 + 1 − u2( 􏼁βvSv λ7 − λ8( 􏼁 + δam + μ( 􏼁λ6,

dλ7
dt

� 1 − u2( 􏼁βv Im + Ihm + Iam( 􏼁 λ7 − λ8( 􏼁 + ]λ7,

dλ8
dt

� −c6 + 1 − u2( 􏼁 βmS λ1 − λ2( 􏼁 + 1 − u2( 􏼁 βmIh λ3 − λ4( 􏼁 + 1 − u2( 􏼁βmIa λ5 − λ6( 􏼁 + ]λ8.

(38)

5. Numerical Simulations

In this section, we have used the compacted fde12 function
which is designed to solve Caputo fractional derivative [39].
MATLAB platform is used for numerical simulations of
population size to describe efects on memory and applied
control measures. Te some of the constants used in the
simulations are w1 � 20, w2 � 50, w3 � 60, w4 � 70, c1 � 20,

c2 � 15, c3 � 10, c4 � 5, c5 � 2, c6 � 2. Moreover, the applied
initial value of state variables are S(0) � 50, Im(0) �

100, Ih(0) � 50, Ihm(0) � 30, Ia(0) � 50, Iam(0) � 50, Sv(0)

� 5000, Iv(0) � 100 and parameters values are given in the
subsequent Table 3.

 . Results and Discussion

Te fractional derivative model and the optimal control
problem are analyzed with the support of numerical
simulations.

In Figure 2, the susceptible population size decrease with
high order of fractional derivative for long period of time. In
Figure 3, the numerical simulations show that the size of
only malaria infected human population decrease with high
order of fractional derivative at the beginning of simulations.
However, after a few years, for long time of interval, the size
of malaria infected population increase as the order of
fractional derivative increase. Moreover, at the end of nu-
merical simulation, there is an inclination that high order of
fractional derivative reduces size of malaria infected
population.

In Figure 4, at the beginning of simulations, for high
order of fractional derivative the size of only HIV-infected
population decreases. Moreover, the small value of fractional
derivative reduces a little whereas the HIV-infected pop-
ulation size decrease and increase for high order of fractional
derivative. In Figure 5, the high order of fractional derivative

reduces HIV-malaria infected population size only at the
beginning of infection. In Figure 6, AIDS individuals’ size is
low for high order of fractional derivative after some
specifed time span of simulation. In Figure 7, the high order
of fractional derivative reduces the infected population in
the beginning of simulation. Moreover, for long period of
time the high order of fractional derivative increase the
infected individuals.

In Figure 8, the size of susceptible mosquito population
decreases with high order of fractional derivative starting
from the beginning of simulation time. In Figure 9, at the
beginning, the size of infected mosquito population decrease
for high value of order of fractional derivative. In Figure 10,
it is diagnosed that the size of malaria infected population
decrease due to intervention with control measures.

In Figure 11, it is observed that the presence of applied
controls reduces the size of HIV-infected population ef-
fectively at the beginning and at the end of simulations time.
In Figure 12, HIV-malaria infected population size decrease
with presence control intervention. In Figure 13, the size of
AIDS population decreases due to interventions with control
measures for all time of simulation. In Figure 14, the sim-
ulation results show that the intervention with applied
optimal controls reduces the AIDS-malaria infected pop-
ulation size whereas in Figure 15, the number of infected
mosquito population decrease with applied available con-
trols. In general, the study demonstrates that early in-
tervention to manage the dynamics of HIV and malaria
transmission by prevention and treatment can lower
infection-related mortality and morbidity. Additionally,
early treatment intervention can lower the number of deaths
brought on by HIV and malaria. As a result, public health
education is necessary to raise awareness within the pop-
ulation about HIV and malaria preventive and treatment
measures as well as the efects of HIV and malaria
coinfections.
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Table 3: Parameter value and source.

Parameter Value Source
Λh 500/year [1]
βh 0.0001 Assumed
βm 0.0002 Assumed
μ 0.02 [1]
δm 0.1 Assumed
η 0.1 [40]
ξ 0.1 [40]
δam 1 Assumed
δhm 0.1 Assumed
δa 1 [40]
Λv 50 Assumed
βv 0.00015 Assumed
] 0.001 Assumed
c 0.1 Assumed
ω 0.1 Assumed
ρ 0.1 Assumed

t (years)
0 20 40 60 80 100
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(t)

0

500

1000

1500

2000

α = 0.8
α = 0.6

α = 0.4
α = 0.2

Figure 2: Numerical simulations of susceptible population size with diferent orders of fractional derivative.
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Figure 3: Numerical simulations of malaria infected human population size with diferent orders of fractional derivative.
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Figure 4: Numerical simulations of HIV infected human population size with diferent orders of fractional derivatives.
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Figure 5: Numerical simulations of HIV-malaria infected human population size with diferent orders of fractional derivative.
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Figure 6: Numerical simulations of AIDS human population size with diferent orders of fractional derivative.
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Figure 7: Numerical simulations of AIDS-malaria human population size with diferent orders of fractional derivative.
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Figure 8: Numerical simulations of susceptible mosquito population size with diferent orders of fractional derivative.
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Figure 9: Numerical simulations of infected mosquito population size with diferent orders of fractional derivative.
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Figure 10: Numerical comparison of only malaria infected pop-
ulation size with and without applied controls.
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Figure 11: Numerical comparison of only HIV infected population
size with and without applied controls.
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Figure 12: Numerical comparison of both malaria and HIV in-
fected population size with and without applied controls.
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Figure 13: Numerical comparison of only AIDS stage population
size with and without applied controls.
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7. Conclusion

Te high order of fractional derivative reduces the size of
infected population at the beginning of the infection. Tus,
early activation of population memory efects can reduce the
size of infected population. On the other hand, the in-
tervention with optimal control reduces the number of the
infected population. Terefore, the results obtained from
numerical simulations show that it is advisable to apply
public health education for reducing the impact of HIV and
malaria infections at the beginning or before the occurrence
of infections whereas applying optimal control exhaustingly
from the beginning to the entire period of infection reduces
the impact of infections. [41–46].
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