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Tis study aims to forecast the COVID-19 spread in Indonesia involving vaccination factors using vector autoregressive with
exogenous variables (VARX). Te COVID-19 spread represented by active, recovered, and death case rate indicators acts as
endogenous variables, while the COVID-19 vaccination represented by second-dose vaccination rates acts as exogenous variables.
Because the sum of three COVID-19 spread indicators in one day is one, only two indicators with the highest correlation rates are
involved in VARX modelling. Te other indicator is practically projected by subtracting one from the sum of two indicator
projection results. Based on the analysis results, the active and recovered case rates are two indicators chosen in VARXmodelling.
Using Akaike information criterion, the most suitable VARX model to project the case and recovered case rates are VARX (7, 1).
Tis model is expected to help the Indonesian government project the COVID-19 spread in Indonesia.

1. Introduction

COVID-19 has spread in Indonesia for over a year and a half
since 11 March 2020. Te spread of COVID-19 has con-
tinued to record terrible records. Based on data from the
Ministry of Health of the Republic of Indonesia, on 23 June
2021, the number of daily confrmed positive cases of
COVID-19 in Indonesia recorded a record high, namely
15,308 new cases. Tis record continued to be broken in the
days that followed. Te highest record recorded until 7
November 2021 was 56,757 cases, set on 15 July 2021. Ten,
the highest number of daily deaths due to COVID-19
recorded until 7 November 2021 was 2,069 cases, where the
incident occurred on 21 July 2021. Te Indonesian gov-
ernment has made various policies to reduce COVID-19
spread rates. One of the main policies is the National
Vaccination Program [1–3]. In the frst two months after the
start of the policy on 13 January 2021, this policy showed

positive developments toward the COVID-19 spread [4].
Active and death case rates of COVID-19 tend to decrease,
while COVID-19 recovered case rates increase. As of 7
November 2021, active, recovered, and death case rates of
COVID-19 are 0.2548%, 96.3662%, and 3.3790%, re-
spectively. It further gives the Indonesian government
a sense of optimism about reducing the COVID-19 spread
through vaccination [5].

Knowledge of models that can assist this projection
process is needed to project howmany vaccination rates must
be achieved every day to realize the desired COVID-19 spread
rates. Terefore, this study aims to design a model for pro-
jecting the COVID-19 spread rates by involving the
COVID-19 vaccination in Indonesia. Te model used is
vector autoregressive with exogenous variables (VARX). Tis
model is chosen because it can explain the causal relationship
between endogenous variables, where exogenous variables
infuence endogenous variables. Te COVID-19 spread rates
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can be measured using various indicators. Tis study uses
three indicators: active, recovered, and death case rates. Te
sum of three indicators in one day is one. So, to simplify the
projection, only two indicators are involved in VARX
modelling. Te projection of the other indicator is made by
subtracting one from the projection results of the two in-
dicators modelled by VARX. Ten, the second-dose
COVID-19 vaccination rates represent the COVID-19 vac-
cination factor against the Indonesian population. It is done
because people in Indonesia have been wholly vaccinated if
they have been vaccinated twice [6]. Tis research is expected
to help the Indonesian government project vaccination rates
the next day to control the COVID-19 spread in Indonesia.

2. Literature Review

Forecasting is closely related to time series analysis [7, 8].
Terefore, articles on modelling and forecasting the
COVID-19 spread in Indonesia using the concept of time
series analysis are discussed briefy in this section. Te ar-
ticles discussed are English articles indexed in the Scopus
database. Kirana and Bhawiyuga [9] modelled and fore-
casted the COVID-19 spread using naive methods. Te
COVID-19 spread used is the number of monthly
COVID-19 cases. Teir model’s mean absolute percentage
error (MAPE) is 15.85%. On the basis of the accurate
classifcation of the model, Wei [10] stated that this model is
suitable for forecasting the number of monthly COVID-19
cases in the next month. Ten, Djakaria and Saleh [11]
modelled and forecasted the COVID-19 spread in Gorontalo
Province, Indonesia, using the Holt-Winters smoothing
method. Te cumulative number of COVID-19 cases is used
as the COVID-19 spread indicator. Te MAPE of the model
obtained is 6.14%, so the model is perfect for forecasting the
cumulative number of COVID-19 cases on the next day
based on the model’s accurate classifcation by Wei [10].

Ten, Aditya Satrio et al. [12] analyzed and forecasted
the COVID-19 spread in Indonesia, where the COVID-19
spread indicators used are the cumulative number of cases,
recovered, and death of COVID-19. Each indicator is
modelled separately using the autoregressive integrated
moving average (ARIMA) model. Using the same method,
Fadly and Sari [13] modelled and forecasted the number of
funerals carried out in DKI Jakarta Province, Indonesia,
since COVID-19 hit. Te articles described in the previous
paragraph use univariate time series analysis, whereas
multivariate time series analysis can also be used. Fitriani
et al. [14] simultaneously model and forecast the number of
daily COVID-19-positive cases in Indonesia and Singapore.
Te multivariate time series model used is vector autore-
gressive integrated (VARI). Te MAPE obtained in each
place was 32.74% and 37%, respectively. Te MAPE values
are enormous, so based on themodel’s accurate classifcation
by Wei [10], the model is unsuitable for forecasting. Ten,
Meimela et al. [15] modelled and forecasted the COVID-19
spread in Indonesia using the vector autoregressive in-
tegrated moving average (VARIMA).Te COVID-19 spread
indicators used are the daily positive and death cases.
VARIMA (1, 1, 1) is the best model got.

Also, Akbar et al. [16] analyzed the relationship between
COVID-19 active case rates assumed to be infuenced by
population growth rates. Bandung City and Purwakarta
Regency are the two areas considered, whereas the pop-
ulation growth rate in West Java Province represents the
population growth rate.Te vector autoregressive integrated
with exogenous variables (VARX) describes the relationship.
Te MAPE obtained in each place is 1% and 11.8%, re-
spectively. It aligns with Wei’s accurate classifcation model
(2006); the model is perfect for forecasting the COVID-19
spread in Bandung City, while the other is only good. As
explained in the previous paragraphs, no articles in the
Scopus database have explored modelling and forecasting
active, recovered, and death case rates of COVID-19 in
Indonesia, considering vaccination factors using the VARX
model.Terefore, this is a good opportunity to perform such
modelling and forecasting.

3. Materials and Methods

3.1. Materials. Te data used in this study are (1) active,
recovered, and death case rates of COVID-19 data and (2)
second-dose COVID-19 vaccination rates data. Te period
considered is from 27 January 2021, when the second-dose
vaccination program starts, until 7 November 2021. All data
are obtained from the ofcial website of the Science and
Technology Index, National Research and Innovation
Agency, Ministry of Research and Technology of the Re-
public of Indonesia.

3.2. Methods

3.2.1. Vector Autoregressive with Exogenous Variables.
Te general form of the vector autoregressive with exoge-
nous variables (VARX) model with the order of the en-
dogenous variables p and the order of the endogenous
variables q, VARX (p, q), is expressed as follows [17–21]:

zt � μ + 􏽘

p

i�1
ϕizt− i + 􏽘

q

j�0
θjxt− j + et, (1)

where zt represents the n-dimensional vector containing the
endogenous variables at time t, ϕi, i � 1, 2, . . . , p express the
(n × n)-order coefcient matrix of zt− i, xt represents the
r-dimensional vector containing the exogenous variables at
time t, θj, j � 0, 1, . . . , q express the (n × r)-order coefcient
matrix of xt− j, and et represents the n-dimensional random
error vector. Equation (1) can also be reformulated as follows
[22]:

ϕ Bz( 􏼁zt � μ + θ Bx( 􏼁xt + et, (2)

where ϕ(Bz) � In − 􏽐
p

i�1ϕiB
i
z, θ(Bx) � 􏽐

p

j�0θjB
j
x, B

i
zzt � zt− i,

and Bj
xxt � xt− j.

Tere are three assumptions of the VARX model pre-
sented as follows [23]:

(1) Te VARX (p, q) model is stationary if the zero
generators of the ϕ(v) and θ(w) determinants are
outside the unit circle
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(2) et is independent and identically multivariate-
normally distributed with zero-vector mean and
the constant covariance-matrix variance, and Σ. Σ is
a positive semidefnite matrix expressed as follows:
Σ � [σek1 ,t,ek2 ,t

], where k1, k2 � 1, 2, . . . , n

(3) et and xt are independent

Many criteria can be used to determine the order of the
VARX model. Lui et al. [22] stated that the order of the
VARXmodel is determined through the Akaike information
criterion (AIC). Te model with the smallest AIC is the best.
Te AIC value of a model can be determined by the fol-
lowing equation [24]:

AIC � ln (|Σ|) +
2L

T
, (3)

where T is the size of observation data, and L is many model
parameters.

3.2.2. Augmented Dicky-Fuller Test. Te unit root test
equation for Augmented Dicky-Fuller (ADF) from data that
have constant and trend elements is as follows [25–27]:

zk,t
′ � ηk + ψkt + βkzk,t− 1 + 􏽘

p− 1

i�1
ζk,izk,t− i
′ + ek,t, (4)

where zk,t represents observation data k at the time t, zk,t
′

represents the diference between zk,t and zk,t− 1, ηk is
a constant, ψk represents the trend parameter, ζk,i is the
parameter of zk,t− i

′ , p represents the optimum lag, and ek,t is
random error that is independent and identically normally
distributed with zero mean and constant variance. Te
followings are the test hypotheses used: H0: βk � 0, and H1:
βk < 0. Te test statistic used is the t-ratio of the parameter
estimator βk estimated using the least square method stated
as follows:

τ �
􏽢βk

s􏽢βk

, (5)

where 􏽢βk is an estimator βk, and s􏽢βk

is the standard deviation
of 􏽢βk. If τ less than the critical value, then H0 rejected which
means the data are stationary and vice versa. If H0 is not
rejected, then data must be diferentiated until it is stationary
[28, 29].

3.2.3. Granger Causality Test. Suppose that there are two
stationary time series z1,t and z2,t. In certain cases, z1,t can
be afected by z1,t− i and z2,t− i, and z2,t can also be afected
by z1,t− i and z2,t− i. Tis relationship is called a bi-
directional causality relationship [30, 31]. Te Granger
causality test is a popular statistical test used to check the
relationship.

Te relationship between z1,t with z1,t− i, which is also
called a restricted relationship, is stated as follows [32]:

z1,t � μ1 + 􏽘

p

i�1
ϕ1,iz1,t− i + e1,t. (6)

Ten, the relationship between z1,t with z1,t− i and z2,t− i,
which is also called the unrestricted relationship, is stated as
follows [33–35]:

z1,t � μ1 + 􏽘

p

i�1
ϕ1,iz1,t− i + 􏽘

p

i�1
ϕ2,iz2,t− i + e1,t. (7)

Te test hypotheses used are as follows: H0: ∀i, ϕ2,i � 0,
and H1: ∃i, ϕ2,i ≠ 0. Test statistics F determined by the
following equation [36]:

F �
R
2
ur − R

2
r􏼐 􏼑(T − p − 1)

1 − R
2
ur􏼐 􏼑p

, (8)

where R2
ur and R2

r represent the coefcient of determination
in equations (6) and (7), respectively. If the F test statistic is
greater than Fα,p,T− p− 1, then H0 is rejected, which means z1,t

infuenced by z1,t− i and z2,t− i [37]. z1,t and z2,t have a bi-
directional causality if z1,t infuenced by z1,t− i and z2,t− i, and
z2,t infuenced by z1,t− i and z2,t− i [38, 39].

3.2.4. VARX Parameter Estimation Using Maximum Like-
lihood (ML) Method. Te VARX models with
n � 2, r � 1, p � 1, and q � 0 can be stated as follows:

yt � Xtβ + et, (9)

where

yt �
z1,t

z2,t

􏼢 􏼣,

Xt �
1 0 z1,t− 1 z2,t− 1 0 0 x1,t 0

0 1 0 0 z1,t− 1 z2,t− 1 0 x1,t

􏼢 􏼣,

β �

μ1
μ2
ϕ(1)
11

ϕ(1)
12

ϕ(1)
21

ϕ(1)
22

θ(0)
11

θ(0)
21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

et �
e1,2

e2,2
􏼢 􏼣.

(10)

Based on equation (9), et can be stated as follows:

et � yt − Xtβ. (11)
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Because et ∼ N(0,Σ), then (yt − Xtβ) ∼ N(0,Σ).
Terefore, the distribution function of et can be expressed as
follows [40, 41]:

f et|β,Σ( 􏼁 �
1

2π|Σ|
exp −

1
2
yt − Xtβ( 􏼁

′
− 1 􏽘 yt − Xtβ( 􏼁􏼒 􏼓. (12)

Vector estimator of β obtained by maximizing the
likelihood function of et which is stated as follows:

l β,Σ e2, . . . , eT

􏼌􏼌􏼌􏼌􏼐 􏼑 �
1

(2π|Σ|)
T− 1 exp −

1
2

􏽘

T

t�2
yt − Xtβ( 􏼁

′ − 1 􏽘 yt − Xtβ( 􏼁⎛⎝ ⎞⎠. (13)

Generally, equation (14) is transformed into a natural
logarithm to facilitate maximization. Tis function is then

referred to as the log-likelihood function, which is expressed
as follows:

l ln l β,Σ e2, . . . , eT

􏼌􏼌􏼌􏼌􏼐 􏼑􏽨 􏽩 � − (T − 1)ln (2π|Σ|) −
1
2

􏽘

T

t�2
yt − Xtβ( 􏼁

′− 1 􏽘 yt − Xtβ( 􏼁. (14)

Vector estimator of β is the zero-generator vector of the
derivative of equation (15) on β. Te following is the
equation used to estimate the vector β:

􏽢β � 􏽘
T

t�2
Xt
′Σ− 1Xt

⎡⎣ ⎤⎦

− 1

􏽘

T

t�2

Xt
′Σ− 1yt. (15)

3.2.5. Diagnostic Test. Te diagnostic test is a feasibility test
of the model for forecasting. Tis feasibility test includes
checking the assumption of error and the model’s mean
absolute percentage error (MAPE). Te model errors are
tested to determine whether they are independent and
identically normally distributed with zero mean and con-
stant variance. Tis assumption is also known as the white
noise assumption. One of the statistical tests commonly used
to test whether the errors are independent or not is the
Ljung-Box test. Te null hypothesis (H0) in this test is that
the errors are independent, while this test’s alternative hy-
pothesis (H1) is the opposite. Te test statistic with the lag
length M denoted by QM is determined using the following
equation [42, 43]:

QM � T(T + 2) 􏽘
M

m�1

r
2
m

T − m
, (16)

where

rm �
􏽐

T
t�m+1ek,tek,t− m

􏽐
T
t�1e

2
k,t

. (17)

Reject H0 if QM > χ21− α,dfek,t

[44, 45].
Meanwhile, the naked eye can check the assumption that

the error is normally distributed with zero mean and con-
stant variance using the quantile-quantile plot (Q-Q Plot)
[46]. Suppose FNk

(ek,t) is the value of the normal cumulative

distribution function with zero mean and constant variance
of ek,t. If the scatter of point pairs (ek,t, F− 1

Nk
(ek,t)) is around

a line with a gradient one, then ek,t is visually normally
distributed with zero mean and constant variance. If the
assumption of white noise in the model error is met and the
MAPE of the model is less than 20%, then the model ob-
tained is suitable for use in forecasting.

 . Results

Te symbols used for each data are stated as follows: z1,t

states daily COVID-19 active case rate data, z2,t states daily
COVID-19 recovered case rate data, z3,t states daily
COVID-19 death case rate data, and x1,t states second-dose
COVID-19 vaccination rate data. Te sum of the three
indicators in one day is one, so to simplify the modelling and
forecasting process, and only two indicators are used in
VARX modelling. Te remaining indicator is practically
projected by subtracting one from the two indicators’
projected results. Te two indicators selected are the two
indicators that have the highest correlation rates.

4.1. Data Descriptive. Descriptive statistics for each data
obtained using Microsoft Excel software are presented in
Table 1.

Table 1 shows the intensity of active, recovery, death, and
vaccination rates fromCOVID-19 in Indonesia per day, each
of which is diferent. Te intensity values are 7.8119%,
89.2812%, 2.9069%, and 7.8703% per day, respectively. Te
intensity values of the active and death cases appear to be
lower than that of vaccination. It indicates that the number
of Indonesian citizens exposed and died from COVID-19 is
lower than the number of people vaccinated daily. It shows
that the Indonesian government is serious about handling
COVID-19 via vaccination. Ten, there are deviations from
the active, recovery, death, and vaccination rates from
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COVID-19 against each average daily. On average, the
deviation values from the active, recovery, death, and vac-
cination rates from COVID-19 were 5.1750%, 4.9703%,
0.2807%, and 8.0520% per day, respectively. Te daily de-
viations of the active and death rates are lower than the
deviation of the vaccination rate. It indicates that Indonesian
citizens are increasingly varied of COVID-19 with a high
willingness to vaccinate. It prevents extreme value deviations
from occurring. Finally, the variance of z1,t, z2,t, z3,t, and x1,t

is 0.2678%, 0.2470%, 0.0008%, and 0.6484%, respectively.
Te interpretation of the variance values is similar to the
interpretation of the deviation value. Ten, the correlation
rates between z1,t, z2,t, and z3,t obtained using Microsoft
Excel software are presented in Table 2.

Table 2 displays the correlation rate between z1,t and z2,t,
− 0.9993, which is the highest correlation rate among the
correlation rates of the other indicator data pairs. It is not
surprising because the two are rationally the opposite of each
other. If the active case rate increases, the recovered case rate
decreases, and vice versa. Tis fact can be seen visually in
Figure 1. Terefore, z1,t and z2,t are selected as endogenous
variables. Te high negative correlation between z1,t and z2,t

is not a problem in VARX modelling. It is the same as
regression modelling, where if the correlation rate between
variables is high, the model formed can provide an excellent
description of the data.

Table 3 captures the correlation rates between endoge-
nous and exogenous variables above 0.6. It indicates that
endogenous and exogenous variables are strong enough.

4.2.DataStationaryTest. In this section, z1,t, z2,t, and x1,t are
checked for stationary visually and formally. Visually, the
stationarity of the three data is seen from each graph, while
formally, the stationary of the data is tested using the ADF
test. Each data graph is observed whether it is around the
average line or not. If the data graph is around the average
line, then the data are stationary, and vice versa. Te graphs
of z1,t, z2,t, and x1,t with their respective average lines are
presented in Figure 1.

Figure 1 displays that the graphs of the three data do not
appear to be around the average line. Terefore, visually, the
three data are not stationary. Ten, the formal stationarity
test of the three data is carried out using the ADF test. Te
signifcance level and optimal lag used are 0.05 and 6, re-
spectively. Te test statistics of each data are determined
using equation (5). Te formal stationary test result of the
three data using the ADF test is presented in Table 4.

Based on Table 4, all data have a value of not less than the
critical value. Terefore, H0 on each data test is not rejected,
which means that all the data are not stationary, so the
diferencing process using equation (3) is carried out. After

the data are diferentiated, the next step is the three data’s
visual and formal stationarity tests. After the diferencing
process is carried out twice, all data are stationary. Te
graphs of z1,t

″ , z2,t
″ , and x1,t

″ with their respective average lines
are presented in Figure 2.

Figure 2 shows the graphs of three data diferentiated
twice and appear to be around the average line. Terefore,
visually, they are stationary. Next, the formal stationarity test
is carried out using the ADF test. Te signifcance level and
optimal lag used are 0.05 and 6, respectively. Te test sta-
tistics of each data are determined using equation (5).
Furthermore, a formal summary of the three data stationary
tests using the ADF test is presented in Table 5.

Table 5 captures the three data diferentiated twice that
have a τ value less than the critical value. Terefore, H0 of
each test is rejected, which means that all data are
stationary.

4.3. Causality Relationship Test. A check of the existence of
a bidirectional causal relationship between z1,t

″ and z2,t
″ in

this study is carried out using the Granger causality test. Te
signifcance levels, optimal lag, and residual degrees of
freedom used are 0.05, 7, and 256, respectively. Te efect of
z1,t− 1″ and z2,t− i

″ on z1,t
″ is tested frst. Te F value obtained is

2.6931. Tis value is greater than the critical value, 2.0442.
Terefore, H0 is rejected, which means that z1,t

″ is afected by
z1,t− 1″ and z2,t− i

″ . Next, the efect of z1,t− 1″ and z2,t− i
″ on z2,t

″ is
tested. Te F value obtained is 2.7514. Tis value is also
greater than the critical value, 2.0442. Terefore, H0 is
rejected which means that z2,t

″ is afected by z1,t− 1″ and z2,t− i
″ .

Because z1,t
″ is afected by z1,t− 1″ and z2,t− i

″ , and z2,t
″ is afected

by z1,t− 1″ and z2,t− i
″ , then z1,t

″ and z2,t
″ have a bidirectional

causality relationship.

4.4. VARXOrder Identifcation. Te AIC value, as described
in Section 2, is used as a criterion to determine the best order
of endogenous and exogenous variables of the VARXmodel.
Te model with the smallest AIC value is the most suitable.
Te AIC value for each model is determined by equation (3).
Te maximum order of the endogenous and exogenous
variables considered is 10. Te AIC value for each model is
determined using the R software. Based on the results ob-
tained from the software, the AIC value of the VARX (7, 1),
− 34.2194, is the smallest AIC value among other models.
Terefore, the most suitable model chosen is the VARX
(7, 1).

4.5. VARX (7, 1) Parameter Estimation Using ML Method.
Te VARX (7, 1) parameters are estimated using the ML
method, equation (14), as described in Section 2. Te esti-
mation process is carried out using the help of Microsoft

Table 1: Descriptive statistics of each data.

Descriptive statistics z1,t (%) z2,t (%) z3,t (%) x1,t (%)

Average 7.8119 89.2812 2.9069 7.8703
Variance 0.2678 0.2470 0.0008 0.6484
Standard deviation 5.1750 4.9703 0.2807 8.0520

Table 2: Te correlation rates between z1,t, z2,t, and z3,t.

Data pairs Te correlation rates
z1,t and x1,t − 0.6599
z2,t and x1,t 0.6352

Discrete Dynamics in Nature and Society 5



Excel software. Te parameter estimation results are pre-
sented in Table 6.

On the basis of the parameters obtained in Table 6, the
VARX (7, 1) model is stated in equation (16).

􏽢z1,t
″

􏽢z2,t
″

⎡⎣ ⎤⎦ �
1.7448E − 05

− 1.8174E − 05
􏼢 􏼣 +

0.5495 0.7931

− 1.0376 − 1.2881
􏼢 􏼣

z1,t− 1″

z2,t− 1″
⎡⎣ ⎤⎦ +

1.2891 1.4981

− 1.5079 − 1.7207
􏼢 􏼣

z1,t− 2″

z2,t− 2″
⎡⎣ ⎤⎦

+
5.3873 5.6679

− 5.5021 − 5.7843
􏼢 􏼣

z1,t− 3″

z2,t− 3″
⎡⎣ ⎤⎦ +

5.6900 6.0157

− 5.8682 − 6.1934
􏼢 􏼣

z1,t− 4″

z2,t− 4″
⎡⎣ ⎤⎦

+
8.9929 9.4176

− 9.0363 − 9.4565
􏼢 􏼣

z1,t− 5″

z2,t− 5″
⎡⎣ ⎤⎦ +

3.2196 3.3846

− 3.3553 − 3.5186
􏼢 􏼣

z1,t− 6″

z2,t− 6″
⎡⎣ ⎤⎦

+
0.7175 0.6588

− 0.8463 − 0.7909
􏼢 􏼣

z1,t− 7″

z2,t− 7″
⎡⎣ ⎤⎦ +

− 0.0117

0.0104
􏼢 􏼣x1,t

″ +
0.2203

− 0.2162
􏼢 􏼣x1,t− 1″ .

(18)

20

15

10

5

0

Pe
rc

en
ta

ge
 (%

)

0 50 100 150 200 250 300
Time (Day)

z (1, t)
z (1, t) Average

Z1,t

Z1,t Average

(a)

Pe
rc

en
ta

ge
 (%

)

0 50 100 150 200 250 300
Time (Day)

95

90

85

80

z (2, t)
z (2, t) Average

Z2,t

Z2,t Average

(b)

0 50 100 150 200 250 300
Time (Day)

30

25

20

15

10

5

0

Pe
rc

en
ta

ge
 (%

)

x1,t

x1,t Average

x (1, t)
x (1, t) Average

(c)

Figure 1: Graph of z1,t (a), z2,t (b), and x1,t (c).
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In order to be used to forecast the actual data, equation
(18) is transformed to the actual data as follows:

􏽢z1,t

􏽢z2,t

􏼢 􏼣 �
1.7448E − 05

− 1.8174E − 05
􏼢 􏼣

2.5495 0.7931

− 1.0376 0.7119
􏼢 􏼣

z1,t− 1

z2,t− 1
􏼢 􏼣 +

− 0.8099 − 0.0882

0.5673 − 0.1446
􏼢 􏼣

z1,t− 2

z2,t− 2
􏼢 􏼣

+
3.3586 3.4649

− 3.5239 − 3.6309
􏼢 􏼣

z1,t− 3

z2,t− 3
􏼢 􏼣 +

− 3.7954 − 3.8220

3.6281 3.6545
􏼢 􏼣

z1,t− 4

z2,t− 4
􏼢 􏼣

+
3.000 3.0540

− 2.8021 − 2.8541
􏼢 􏼣

z1,t− 5

z2,t− 5
􏼢 􏼣 +

− 9.0762 − 9.4349

8.8491 9.2011
􏼢 􏼣

z1,t− 6

z2,t− 6
􏼢 􏼣

+
3.2713 3.3072

− 3.1719 − 3.2103
􏼢 􏼣

z1,t− 7

z2,t− 7
􏼢 􏼣 +

1.7845 2.0670

− 1.6627 − 1.9367
􏼢 􏼣

z1,t− 8

z2,t− 8
􏼢 􏼣

+
0.7179 0.6588

− 0.8463 − 0.7909
􏼢 􏼣

z1,t− 9

z2,t− 9
􏼢 􏼣 +

− 0.0117

0.0104
􏼢 􏼣x1,t +

0.2437

− 0.2370
􏼢 􏼣x1,t− 1 +

− 0.4523

0.4428
􏼢 􏼣x1,t− 2

+
0.2203

− 0.2162
􏼢 􏼣x1,t− 3.

(19)

Meanwhile, z3,t can be modelled as follows:

􏽢z3,t � 1 − 􏽢z1,t − 􏽢z2,t. (20)

4.6.Diagnostic Test ofVARX (7, 1). Independence of both e1,t

and e2,t to time is carried out using the Ljung-Box test
described in section 2.Te signifcance levels and the degrees
of freedom used are 0.05 and 7, respectively. Te test statistic
is determined using equation (18). Te test statistics of e1,t

and e2,t obtained are 3.3610 and 3.4270, respectively.Te test
statistic values are smaller than the critical value, 14.0671.
Terefore, H0 of each independence test of e1,t and e2,t to
times is not rejected, which means that e1,t and e2,t are
independent of time. Next, the normality test of the VARX
(7, 1) model error is visually carried out frst through the Q-
Q plot. Q-Q plots for e1,t and e2,t are presented in Figure 3.

Figure 3 indicates the scattering of points in each plot
appears to be around a line with one gradient. Terefore, e1,t

and e2,t visually follow a normal distribution with zero mean
and constant variances, namely 0.00108 and 0.00107. Based
on this, the model equation (20) errors fulfll the assumption
that they are independent and identically normally dis-
tributed with zeromean and constant variance.Te next step
is checking the error size of the model. Tis study measures
the error size using the mean absolute percentage error
(MAPE). Te MAPE value of z1,t and z2,t is 1.5751% and
0.0833%, respectively. Te MAPE value is less than 10%,

even close to zero. Terefore, according to Wei [10], the
VARX (7, 1) model is very feasible to forecast z1,t and z2,t in
the next day based on the feasibility criteria of the MAPE-
based model.

Te feasibility of the VARX (7, 1) model is also checked
using the visual comparison between the forecast results and
the actual data. Te visual comparison between the forecast
results and the actual data is presented in Figure 4.

Figure 4 shows that the forecast line of z1,t and z2,t

appears very close to the actual data of z1,t and z2,t. It means
that the VARX (7, 1) model is visually feasible to forecast z1,t

and z2,t in the next day. Te VARX (7, 1) model is also
practically forecast z1,t and z2,t in the next few days.

4.7. Forecasting. Forecasting z1,t, z2,t, and z3,t are carried out
on six days, from 8 November 2021 until 13 November 2021.
Tese forecasts are practically carried out using equation
(19) for z1,t and z2,t and equation (20) for z3,t. Te second-
dose COVID-19 vaccination rates used for this forecast are
the same as the actual on that date, 29.5200%, 29.7817%,
30.1154%, 30.4491%, 30.7828%, and 31.0465%. Te z1,t, z2,t,
and z3,t forecasting results obtained are presented in Table 7.

Table 7 shows that the forecasting results of z1,t, z2,t, and
z3,t from 8 November 2021 until 13 November 2021 tend to
decrease. To determine the accuracy of the forecast results
presented in Table 7, we will look at the mean absolute
percentage error (MAPE) size. Te MAPE of z1,t, z2,t, and

Table 3: Te correlation rates between endogenous and exogenous
variables.

Data pairs Te correlation rates
z1,t and z2,t − 0.9993
z1,t and z3,t − 0.7421
z2,t and z3,t 0.7162

Table 4: Data stationary test z1,t, z2,t, and x1,t.

Data z1,t z2,t x1,t

τ − 2.7926 − 2.7815 2.4323
Critical value − 3.2000 − 3.2000 − 3.2000
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z3,t forecasting results on 8 November 2021 until 13 No-
vember 2021 is 2.2853%, 0.0051%, and 0.0082%, respectively.
Tis MAPE of z1,t, z2,t, and z3,t forecasting results is tiny.
Terefore, equations (19) and (20) are suitable for fore-
casting z1,t, z2,t, and z3,t for the next six days.

5. Discussions

First, an analysis of the infuence of the second-dose
COVID-19 vaccination rates on active and recovered case
rates of COVID-19 is discussed. Generally, equation (19)
shows that the second-dose COVID-19 vaccination rate in
the previous three days infuences active and recovered case
rates of COVID-19 today. It does not always decrease active
COVID-19 case rates but increases active COVID-19 case

rates. It is also an increase and decrease in the COVID-19
recovered case rate.Te active case rates of COVID-19 today
are − 1.17% of second-dose COVID-19 vaccination rate
today, 24.37% of second-dose COVID-19 vaccination rate
yesterday, − 45.23% of second-dose COVID-19 vaccination
rates the previous two days, and 22.03% of second-dose
COVID-19 vaccination rate previous three days. A negative
percentage means that the second-dose COVID-19 vacci-
nation rate will decrease today’s COVID-19 active case rate.
In contrast, a positive percentage means that the second-
dose COVID-19 vaccination rate will increase today’s
COVID-19 active case rate.

Meanwhile, the recovered case rates of COVID-19 today
are 1.04% of the second-dose COVID-19 vaccination rate
today, − 23.70% of the second-dose COVID-19 vaccination
rate yesterday, 44.28% of the second-dose COVID-19 vac-
cination rate previous two days, and − 21.62% of second-dose
COVID-19 vaccination rate previous three days. A positive
percentage means that the second-dose COVID-19 vacci-
nation rate will increase today’s COVID-19 recovered case
rate. In contrast, a negative percentage means that the
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Figure 2: Graph of z1,t
″ (a), z2,t

″ (b), and x1,t
″ (c).

Table 5: Data stationary test z1,t
″ , z2,t
″ , and x1,t

″ .

Data z1,t
″ z2,t

″ x1,t
″

τ − 8.2813 − 8.3078 − 13.7290
Critical value − 3.2000 − 3.2000 − 3.2000
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Table 6: Results of parameter estimates of VARX (7, 1).

Parameter Estimator
μ1 1.745E − 05
μ2 − 1.817E – 05
ϕ(1)
1,1 0.5495

ϕ(1)
1,2 0.7931

ϕ(1)
2,1 − 1.0376

ϕ(1)
2,2 − 1.2881

ϕ(2)
1,1 1.2891

ϕ(2)
1,2 1.4981

ϕ(2)
2,1 − 1.5079

ϕ(2)
2,2 − 1.7207

ϕ(3)
1,1 5.3873

ϕ(3)
1,2 5.6679

ϕ(3)
2,1 − 5.5021

ϕ(3)
2,2 − 5.7843

ϕ(4)
1,1 5.6900

ϕ(4)
1,2 6.0157

ϕ(4)
2,1 − 5.8682

ϕ(4)
2,2 − 6.1934

ϕ(5)
1,1 8.9929

ϕ(5)
1,2 9.4176

ϕ(5)
2,1 − 9.0363

ϕ(5)
2,2 − 9.4565

ϕ(6)
1,1 3.2196

ϕ(6)
1,2 3.3846

ϕ(6)
2,1 − 3.3553

ϕ(6)
2,2 − 3.5186

ϕ(7)
1,1 0.7175

ϕ(7)
1,2 0.6588

ϕ(7)
2,1 − 0.8463

ϕ(7)
2,2 − 0.7909

θ(0)
1,1 − 0.0117
θ(0)
2,1 0.0104
θ(1)
1,1 0.2203
θ(1)
2,1 − 0.2162
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Figure 3: Q-Q plots of e1,t (a) and e2,t (b).
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second-dose COVID-19 vaccination rate will reduce
COVID-19 recovered case rate today. Tese facts do not
mean that vaccination in Indonesia is not adequate. Suppose
the percentage of the efect of today’s vaccination up to the
previous three days on the active and recovered case rates is
added. In that case, the results have negative and positive
values, respectively. Negative values indicate that vaccina-
tion reduces the daily active case rate, and positive values
indicate that vaccination generally increases the daily re-
covery case rate. Next is an analysis of the infuence of active
and recovered case rates of COVID-19 on itself. In general,
equation (19) shows that the active and recovered rates of
COVID-19 today are infuenced by themselves on the
previous three days. Te percentage of each day can be seen
in equation (19).

Te last is an analysis of the efect of second-dose
COVID-19 vaccination rates on 8 November 2021 on ac-
tive and recovered case rates of COVID-19. Suppose the
second-dose COVID-19 vaccination rates on 8 November
2021 are assumed not to increase from the previous day.
Tus, the forecasted active and recovered case rates of
COVID-19 on 8 November 2021 are 0.2321% and 96.3886%,
respectively. Te forecast value of the COVID-19 active case
rates is greater than the forecast value obtained in the
forecasting section. Te forecast value of the COVID-19
recovered case rates is also smaller than that obtained in the
forecasting section. It shows that if the second-dose
COVID-19 vaccination rates on 8 November 2021 are not
increased, the decline in the COVID-19 spread rate in
Indonesia will be slower. Terefore, although the second-

dose COVID-19 vaccination rates do not always decrease the
COVID-19 active case rates and increase the COVID-19
recovered case rates every day, the second-dose COVID-19
vaccination rates on 8 November 2021 must still be in-
creased. It also applies from 9 November 2021 until 13
November 2021.

6. Conclusion

Te VARX model (7, 1) is the best VARX model to describe
a causal relationship between active and recovered case rates
of COVID-19 in Indonesia infuenced by the exogenous
variable, second-dose COVID-19 vaccination rates. Te
assumption of white noise is fulflled, and the MAPE of this
model is tiny, so this model is very suitable to be used in the
forecasting process the next day. Forecasting results in the
six days also give very close results to the actual data (even if
the absolute percentage error is almost zero). Tere is an
oddity in this VARX (7.1) model. Te second-dose
COVID-19 vaccination rates carried out daily should al-
ways reduce COVID-19 active case rates and increase
COVID-19 recovered case rates.

However, in this model, the impact of the second-dose
COVID-19 vaccination rates carried out in the previous
three days on COVID-19 active case rates can decrease and
increase simultaneously. It also happened to the impact of
the second-dose COVID-19 vaccination rates on the
COVID-19 recovered case rates. Te second-dose
COVID-19 vaccination rates carried out in the previous
three days on COVID-19 recovered case rates can increase
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Figure 4: Te visual comparison between the z1,t and z1,t forecast (a) and z2,t and z2,t forecast (b).

Table 7: Te z1,t, z2,t, and z3,t forecasting results.

Date z1,t forecast (%) z2,t forecast (%) z3,t forecast (%)

8 November 2021 0.2275 96.3930 3.3795
9 November 2021 0.2350 96.3862 3.3788
10 November 2021 0.2247 96.3960 3.3793
11 November 2021 0.2389 96.3822 3.3788
12 November 2021 0.2220 96.3988 3.3791
13 November 2021 0.2165 96.4042 3.3793
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and decrease simultaneously. However, it does not indicate
that vaccination does not afect daily activities and recovery
case rates. Te sum of the percentage efect of today’s
vaccination to the previous three days on the active and
recovered case rates has negative and positive values, re-
spectively. Tese negative and positive values indicate that
vaccination generally decreases the daily active case rate and
increases the daily recovery case rate.

Another analysis result obtained is that if the second-
dose COVID-19 vaccination rates do not increase from the
previous day, COVID-19 active case rates will only decrease
slightly, and COVID-19 recovered case rates will only in-
crease slightly. It has caused the COVID-19 spread in
Indonesia to decline more slowly. Based on this, the vac-
cination rate must still be increased. With this model, the
Indonesian government can project the second-dose
COVID-19 vaccination rates that must be carried out to-
day so that active and recovered case rates of COVID-19 can
be achieved by that date.
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