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Near-infrared spectrum technology is extensively employed in assessing the quality of tobacco blending modules, which serve as
the fundamental units of cigarette production. Tis technology provides valuable technical support for the scientifc evaluation of
these modules. In this study, we selected near-infrared spectral data from 238 tobacco blendingmodule samples collected between
2017 and 2019. Combining the power of XGBoost and deep learning, we constructed a favor prediction model based on feature
variables.TeXGBoost model was utilized to extract essential information from the high-dimensional near-infrared spectra, while
a convolutional neural network with an attention mechanism was employed to predict the favor type of the modules. Te
experimental results demonstrate that our model exhibits excellent learning and prediction capabilities, achieving an impressive
95.54% accuracy in favor category recognition. Terefore, the proposed method of predicting favor types based on near-infrared
spectral features plays a valuable role in facilitating rapid positioning, scientifc evaluation, and cigarette formulation design for
tobacco blending modules, thereby assisting decision-making processes in the tobacco industry.

1. Introduction

Cigarette products need to go through tobacco blending
module formula design, which is crucial in creating cigarettes
with distinct favors. It means that diferent modules are
mixed together in a certain proportion, and spices are added
for seasoning, so as to form cigarettes of various specifcations
[1].Te blending module of the tobacco roll group is the basic
unit of cigarette cut, and the sensory quality evaluation of the
blendingmodule can better guide its use in cigarette. Diferent
blending modules can be obtained by mixing fue-cured
tobacco leaves of diferent varieties, origin, position, year,
and grades. Tese modules, characterized by distinct favors
and grades, are mixed according to the requirements of
cigarette products. Among sensory quality evaluation indices,
the favor of tobacco blending module is a crucial factor
afecting the aroma style of cigarette and plays an important
role in cigarette formula design and product maintenance [2].
Te quality of formulations depends on the quality and
synergy of the modules utilized. By appropriately combining

modules of various favor types and grades that demonstrate
synergistic efects, superior quality outcomes can be attained
[3]. Te favor of module can be divided into three categories:
clear favor, intermediate favor, and luzhou favor [4]. Te
luzhou favor module features a noticeable aroma with high
concentration and a strong lingering sensation. It leaves
a strong sweet aftertaste, but with some noticeable of-favors.
Te clear favor module is refreshing, but the aftertastemay be
slightly less comfortable. Te intermediate favor module has
a lower smoke concentration and intensity, making it ideal as
a flling agent in the formulation. It efectively dilutes the
smoke concentration and intensity, contributing to the overall
balance of the blend [5]. By conducting favor evaluation, the
design of formula modules can be further optimized. Tis
optimization not only enables each favor module to com-
plement one another and emphasize the aroma style char-
acteristics of core modules, resulting in an enhanced overall
sensory quality of cigarette products, but also efectively re-
duces the cost of cigarette production. Ultimately, this op-
timization aids in improving resource utilization rates and
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reducing the cost of raw materials. Currently, the main
methods for industry to evaluate the sensory quality char-
acteristics of formula modules are still manual evaluation and
subjective judgment [6]. In this approach, formulators assess
the stylistic characteristics of modules by drawing upon their
subjective experience and perception, complemented by the
results of chemical measurements. However, this evaluation
method possesses inherent limitations. On the one hand, it
exhibits strong personal subjectivity, lacks standardized cri-
teria, and fails to guarantee consistent evaluation results. On
the other hand, the process itself is intricate, often requiring
multiple individuals to evaluate a single module. Each eval-
uation entails procedures such as processing, grouping,
laboratory sample preparation, and inspection, which can be
costly. As a result, there is an urgent need for a more objective
and accurate method to determine the quality of formula
modules, particularly for agricultural products like tobacco,
where quality is variable and the primary factors infuencing
product quality remain undetermined. Such a method would
optimize the entire module evaluation process and enable
comprehensive and precise quality determination.

In recent years, propelled by the rapid advancements in
computer technology, experts in the tobacco industry have
been actively exploring innovative and objective methodol-
ogies for determining favor types. Tese methodologies
encompass both qualitative and quantitative analyses. Re-
searchers have utilized statistical analysis techniques to aid in
categorizing modular favors based on the measurement of
specifc chemicals or groups of chemicals, such as free amino
acid content [7], aroma activity value [8], aromatic compound
type [9], and sugar and nicotine contents [10]. Trough
laboratory testing, they examined the chemical content and
subsequently established a relationship between the chemical
composition and favor type using various models, including
hierarchical analysis and correlation analysis [11], PLS [12],
SVM [13], and PCA [14]. Te aforementioned process has
achieved a certain level of scientifc evaluation. However, it is
hindered by the labor-intensive nature of chemical detection,
potential sample damage, high costs, and the need for spe-
cialized expertise, resulting in limited application. In this
regard, the utilization of near-infrared spectroscopy for de-
tection proves to be a favorable approach.

Near-infrared spectroscopy (NIRS) is a widely employed
technique due to its convenience, stability, and cost-
efectiveness [15]. It enables rapid and nondestructive de-
tection of sample compositions and properties. By establishing
a model correlating the intensity of spectral characteristic
bands with the samples under investigation, researchers can
determine the product quality. NIRS is particularly efective in
identifying the composition and structure of organic matter,
including agricultural products and petrochemicals, as it aligns
with the vibration frequency and absorption area of hydrogen
groups, as well as the molecular structure containing com-
ponents such as tobacco sugar, nicotine, and protein [16]. In
the feld of tobacco research, a multitude of scholars have
engaged in the modeling of NIRS analysis to discern and
uncover latent characteristics embedded within samples.
Zhang et al. [17] used 1D and 2D CNNs to extract NIRS’s
features and establish a tobacco origin identifcation model,

which has accuracy rate up to 90%. Chen et al. [18] employed
all preprocessed features as input directly into CNN for
modeling to determine the maturity of tobacco leaves, en-
abling automatic feature extraction within the CNN layer.Wei
et al. [19] utilized the deep transfer learning approach to
extract features and model the infrared data by fne-tuning
a pretrained CNNmodel.Tis model was employed to predict
key component parameters, such as nicotine and sugar
content, during the fue-curing process of tobacco leaves and
exhibited robustness and achieved accurate real-time moni-
toring of tobacco leaf composition changes. Borges-Miranda
et al. [20] performed regression on the intensity of 33 variables
and 1050NIR refectance of cigars to overcome the subjectivity
of raw material selection of high-grade cigars; they also
calibrated and verifed the model by partial least squares and
support vector regression algorithm. Jiang et al. [21] in-
troduced a regression approach based on a one-dimensional
full convolutional network for the quantitative analysis of
nicotine components in tobacco leaves. In this approach,
a convolutional layer was employed to substitute the maxi-
mum pooling layer, thus mitigating information loss. Tey
also proposed a classifcation model for tobacco cultivation
regions that combined ResNet and NIRS [22]. Tis innovative
approach efectively mitigates the vanishing gradient issues
that arise from network depth expansion. Zhu et al. [23]
presents a method, called TCCANN, for quantitatively ana-
lyzing the chemical components of tobacco leaves using NIRS.
Te TCCANN combines ResNet and LSTM neural networks
to address the gradient-disappearance issue and enable si-
multaneous analysis of multiple chemical compositions. In
general, these studies can be conducted from qualitative or
quantitative and undergo the following steps [24]. Initially,
NIRS data are gathered, followed by meticulous preprocessing
to eliminate noise and interference. Subsequently, feature band
extraction is performed to identify key spectral features that
capture important information about the sample’s properties.
Te extracted features are then used to develop a predictive
model through modeling techniques, such as machine
learning algorithms or chemometric methods. To ensure the
reliability and accuracy of the model, comprehensive testing is
conducted using independent validation datasets, assessing its
performance and generalizability across diferent samples and
conditions. Tis rigorous process enables the establishment of
robust fndings, providing valuable insights and actionable
information for further analysis and decision-making [25–28].

Although NIRS gained wide acceptance in the feld of
tobacco research, its application has primarily focused on
studying the spectral information of tobacco leaves and
cigarettes themselves. Te exploration of the potential of
analyzing individual components within tobacco blending
modules, which are directly associated with cigarettes and
serve as their fundamental units, has been limited [28, 29].
Moreover, researchers have often connected NIRS with
chemical information or linked chemical information with
sensory evaluation, but there is a lack of direct integration
between NIRS and sensory information, which hinders
a comprehensive understanding of the favor characteristics
of tobacco blending modules [30–32]. Furthermore, it is
worth noting that in conventional practices, the data are
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often input or processed without undergoing adequate
preprocessing steps. Tis approach of directly using or
processing the data without proper preprocessing is limited
in its efectiveness, especially in the presence of various types
of interference information in complex samples [33]. In
addition, methods based on traditional statistical learning
approaches, including regression, correlation analysis, and
principal component analysis, have inherent limitations and
cannot fully establish the comprehensive relationship be-
tween variables [34]. Hence, there is a need to enhance the
accuracy and predictive power of models used in the sensory
evaluation of tobacco blending modules.

In this study, we aim to address these challenges by
leveraging the NIRS data of tobacco blending modules to
develop a sensory quality prediction model. To eliminate
diferent types of interference information, we employ
a series of preprocessing combinations and compare their
efectiveness. In the model building phase, we utilize an
improved residual network module to construct a neural
network model. To enhance the stability of the network, we
incorporate layer normalization techniques. In addition,
label regularization is employed during the calculation of the
loss function to accelerate convergence and improve the
generalization capability of the model. To evaluate the
performance of our proposed model, we conduct compre-
hensive experiments and comparisons. Te results dem-
onstrate the exceptional predictive power of the model, with
an accuracy rate reaching 91.46%. Tis highlights the ef-
fectiveness and reliability of the model in accurately pre-
dicting the favor type of tobacco blending modules. Te
main contributions of this paper are as follows:

(1) Integration of NIRS data directly with modules’
sensory information: Our approach surpasses tradi-
tional practices by directly incorporating NIRS data
with blending modules’ sensory information. Tis
integration enables a more comprehensive analysis
and objective evaluation of tobacco blending mod-
ules, which can provide better guidance for their
utilization in cigarettes. In addition, by harnessing
the combined power of NIRS data integration, ad-
vanced preprocessing, and neural network modeling,
we streamline the evaluation process, facilitating
more efcient decision-making in the tobacco
industry.

(2) Utilization of an improved residual network archi-
tecture: During data preprocessing, we efectively
eliminate various forms of interference information by
employing a combination of diverse preprocessing
methods. To build our predictivemodel, we leverage an
enhanced residual network module, which ensures
more precise predictions. Furthermore, we incorporate
layer normalization techniques to stabilize the network
and apply label regularization to expedite convergence,
further enhancing the model’s performance.

Overall, our innovative approach ofers signifcant ad-
vancements in the evaluation of tobacco blending modules,
opening up new possibilities for quality assessment and

optimization in this domain. Te remaining sections of this
paper are organized as follows. Section 2 presents the
methodology employed in this study; Section 3 delves into
a comprehensive discussion of the experimental procedures;
Section 4 shows the comparative experiments and analyzes
the related results; Section 5 concludes this paper.

2. Methods

As an indirect measurement method, NIRS does not provide
direct predictions of the content or category of a specifc
substance in the sample. Instead, it relies on stoichiometry to
establish an association model for prediction.Te utilization
of NIRS data for model development involves several es-
sential processes that are discussed in the introduction,
including spectrum pretreatment, band selection, and model
selection. Tese processes play a crucial role in enhancing
the accuracy and reliability of the predictive model.

2.1. Preprocessing Methods. Due to various factors such as
sample size, environmental conditions, and human opera-
tion, the NIRS data obtained often contain signifcant
amounts of noise and irrelevant data. Moreover, the pres-
ence of stray light and baseline drift can further contribute to
fuctuations and distortions in the original data. Tis can
lead to the misinterpretation of certain trend items as
genuine spectral data during the model construction pro-
cess, consequently impacting the accuracy of the model [35].
To address these challenges, preprocessing of the spectrum is
essential. However, it is important to acknowledge that there
is no one-size-fts-all pretreatment method that can be
universally applied in all scenarios. Te choice of suitable
pretreatment methods should be approached with careful
consideration, taking into account the specifc characteris-
tics of the data, the objectives of the analysis, and the models
being employed. Commonly used NIRS pretreatment
methods include standardization, smoothing, trend cor-
rection, and derivation [36].

Standardization is a pretreatment method that aims to
transform spectra into a standardized scale by subtracting the
mean and dividing by the standard deviation. Tis process
eliminates diferences in spectral intensity and enhances
comparability between samples. However, in situations where
the data distribution is heavily skewed or contains extreme
outliers, standardization may not efectively normalize the
spectra. Furthermore, if the spectral data exhibit a high level of
noise, standardization can amplify the noise during the scaling
process, potentially compromising the accuracy of subsequent
analysis [37]. Smoothing techniques are employed to reduce
noise and eliminate high-frequency fuctuations in the spec-
trum.Tis method diferentiates all spectral data and fnds the
slope of data points in each band to construct new data.
Various smoothing algorithms such as moving average,
Savitzky–Golay, or wavelet smoothing can be applied
depending on the specifc requirements of the data. However,
excessive smoothing can result in the loss of fne details and
important spectral information, particularly in regions of in-
terest with sharp peaks or rapid changes. Selecting an
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appropriate smoothing algorithm and adjusting the smoothing
parameters are crucial to strike a balance between noise re-
duction and preservation of important spectral characteristics
[38]. Trend correction plays a critical role in removing sys-
tematic variations or baseline drift from spectra. It involves
ftting a mathematical function to the baseline and subtracting
it from the original spectrum. However, it is important to note
that trend correctionmethodsmay encounter challenges when
the baseline drift is complex or exhibits nonlinear patterns. In
such cases, accurately capturing the baseline variations and
selecting an appropriate function for correction can be dif-
cult. Te efectiveness of trend correction also relies on the
quality of the baseline estimation, which may be infuenced by
factors such as noise, overlapping peaks, or instrumental ar-
tifacts [39]. Diferentiation is anotherwidely used pretreatment
method that aims to eliminate background interference by
calculating the derivative of the spectrum. Tis process helps
highlight specifc features or spectral changes relevant for
analysis. However, when overlapping peaks occur in the
spectrum, diferentiation attempts to diferentiate between
their individual contributions by calculating changes in in-
tensity or slope at diferent wavelengths. Tis diferentiation
process involves calculating derivatives, which can amplify the
noise present in the data. Consequently, the noise associated
with the original spectrum may be magnifed during the peak
separation process, leading to inaccurate or distorted peak
shapes. Te introduction of noise during diferentiation be-
comes particularly signifcant when the overlapping peaks have
similar spectral profles or are closely spaced, making it
challenging to accurately diferentiate between them. In such
cases, the noise introduced by diferentiation can hinder
proper peak separation and may even create additional arti-
facts or false peaks in the resulting spectrum. To mitigate the
impact of noise introduced by diferentiation, careful con-
sideration should be given to selecting the appropriate dif-
ferentiation method, order, and window size [40]. Norris and
SG are commonly usedmethods for diferentiation.TeNorris
derivative method is also called direct diference method,
which may cause errors for the sparse spectrum, so it is more
suitable for the spectrum with more wavelength sampling
points and higher resolution [41]. Te SG derivative method
solves the polynomial ftting matrix by least squares to obtain
the derivative of the center point of the window. It overcomes
the shortcoming of direct diference and is suitable for the
sparse spectrum [42].

Multiple preprocessing methods can be applied simul-
taneously to enhance the quality of the spectral data.
However, it is crucial to carefully determine the order in
which these methods are implemented, considering their
individual efects. In the present study, the researchers opted
for a combination of two preprocessing methods, namely,
multiplicative scatter correction (MSC) and second de-
rivative (D2). Te selection of the MSC and D2 combination
method was based on their demonstrated efcacy in
achieving the best experimental results, as discussed in the
subsequent section.

MSC is employed to eliminate the baseline translation
phenomenon caused by the scattering of NIR on the sample
particles of uneven size. It performs well when the

absorbance and the chemical properties of the sample show
an obvious linear relationship [43]. By correcting this
baseline translation, MSC helps improve the comparability
and accuracy of the spectral data. To implement MSC,
a standard spectrum is frst required. Inmost cases, the mean
of all spectra is used as the standard spectrum, as shown in
the following equation:

X �
1
n



n

i�1
Xi, (1)

where X1∗p is the standard spectrum, (Xi)1∗p is every
sample data, n is the number of spectral samples, and p is the
number of spectral bands.

On the basis of the calculated standard spectrum, linear
regression between each sample and the standard spectrum
is carried out, as shown in equation (2), and the parameters
ai and bi are obtained from the linear regression analysis.

Xi � aiX + bi. (2)

Finally, the values of each spectrum are corrected using
the following equation:

Xi �
Xi − bi

ai
. (3)

Tis equation represents the correction process, where
Xi denotes the corrected values of the spectrum.

D2, or the second derivative, is a mathematical operation
applied to the spectrum that calculates the rate of change of
the spectral intensity. By taking the derivative twice, D2
highlights and amplifes changes in the spectral data. Tis
process efectively removes unwanted background in-
terference, such as baseline variations or fuctuations, that
can obscure important spectral features. Te calculation of
the second derivative involves comparing the spectral in-
tensity values of adjacent data points. Te formula to cal-
culate the second derivative, as shown in the following
equation, is

x
″
i,k �

d2x
dw

2 �
xi,k+1 − 2xi,k + xi,k−1

wk+1 − wk( 
2 . (4)

In this equation, x″i,k represent the second derivative
results of the k-th band of the i-th sample, xi,k denotes the
measurement result of the spectral intensity, and wk rep-
resents the wavelength value of the k-th band. Te second
derivative operation enhances the visibility of spectral peaks,
valleys, and other critical information that may be indicative
of specifc chemical components or characteristics. It helps
to accentuate fne details and subtle variations in the
spectrum, making them more distinguishable and easier to
analyze.

2.2.FeatureBandScreeningMethod. TeNIRS data obtained
by the instrument contain a large amount of band in-
formation. On the one hand, the processing of a large
number of features requires a robust computer performance
to handle the computational load. On the other hand, a large
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part of these feature bands are often redundant bands with
a large amount of collinear information and useless in-
formation, which will only hinder the processing performance
of the model [44]. As a result, the insufcient processing of
the really important information leads to the instability of
themodel and poor experimental results.Terefore, before the
formal establishment of the model, the bands should be
screened in advance to simplify the model and improve its
prediction ability. Feature screening is typically approached
from two perspectives: interpretability of the labels and re-
duction of redundancy among independent variables. Com-
mon methods include statistical analysis, machine learning
algorithms, and dimensionality reduction techniques [45].
Statistical analysis evaluates the correlation or importance
between each band and the target variable, using measures
such as correlation coefcients, analysis of variance, and in-
formation gain. Machine learning algorithms employ em-
bedded methods, recursive feature elimination, and model-
based feature selection. Dimensionality reduction techniques
such as PCA and LDA transform the original bands into fewer
new features while preserving the most informative data
variations.

Determining the feature band selection method involves
considering multiple factors such as the size of the dataset,
feature correlations, computational resources, and model
performance. Terefore, it is necessary to validate various
feature extraction methods through experiments. In the next
section, we provide a detailed description of the experi-
mental process to evaluate the performance of diferent
feature selection techniques. Te results of the experiments
clearly demonstrate the efectiveness of competitive adaptive
reweighting sampling (CARS) and XGBoost in the feature
screening process.

CARS, as a feature selection method, leverages Monte
Carlo sampling and partial least squares regression to
identify the most relevant and informative wavelengths for
a given problem. It efectively addresses the issue of re-
dundant and collinear information present in the feature
bands. Te feature selection process involves iterative sta-
tistics, where feature elimination is performed at each it-
eration. Specifcally, a partial least squares (PLS) regression
model is constructed using the ri feature bands with higher
weights in the modeling dataset. Te mean square error of
the test set model is then calculated for interactive verif-
cation. After completing N rounds of sampling, the variable
subset with the minimum root mean square error cross-
validation (RMSECV) is selected as the optimal feature set.
CARS incorporates an adaptive reweighting mechanism
based on the contribution of samples to the classifcation
task. Tis allows CARS to assign higher weights to more
informative features while reducing the infuence of irrel-
evant or redundant ones. Unlike traditional feature selection
methods, such as principal component analysis (PCA),
which rely solely on statistical measures, CARS employs
a competitive mechanism that actively promotes the se-
lection of informative features while suppressing the in-
fuence of irrelevant or redundant ones. Tis adaptive
weighting scheme enhances the performance and robustness
of the selected feature subset.

On the other hand, XGBoost, a popular machine learning
algorithm, demonstrates excellent performance in feature
selection as well. It is an enhanced version of the gradient boost
machine algorithm, which belongs to the ensemble learning
category. By combining the strengths of gradient boosting and
decision tree algorithms, XGBoost efectively identifes the
most crucial features for accurate prediction. It utilizes an
ensemble of weak learners to iteratively learn from the data
and optimize a specifc objective function. XGBoost consists of
multiple CART trees, with each iteration adding a new tree to
capture the residuals generated in previous iterations. To
optimize leaf node splitting, XGBoost incorporates second-
order Taylor expansion, maximizing the objective function
gain at each split.Te splitting process can be performed using
a greedy algorithm or by selecting candidate points through an
approximate algorithm prior to segmentation. As XGBoost
progresses through the trees, it assigns diminishing weights to
each tree, reducing their infuence in subsequent expansion
steps. Tis adaptive weighting scheme allows XGBoost to
assign higher weights to informative features, enabling the
algorithm to focus on the most discriminative aspects of the
data [46]. Compared to other algorithms, XGBoost stands out
as a powerful machine learning algorithm. It integrates reg-
ularization techniques to mitigate overftting and enhance
model generalization, guaranteeing that the chosen features
are not only relevant but also robust across diverse datasets.
Furthermore, XGBoost incorporates a built-in feature im-
portance metric that evaluates and ranks the signifcance of
each feature based on its contribution to themodel’s predictive
performance. Tis valuable information facilitates feature
ranking and selection, enabling researchers to concentrate on
the most infuential features during their analysis. In addition,
XGBoost ofers the advantage of having a smaller number of
parameters compared to CARS, making it more manageable
and easier to fne-tune.

2.3. Model ConstructionMethod. Common NIRS regression
models include multiple linear regression, principal com-
ponent regression, partial least squares regression, and
support vector regression [47]. However, these regression
methods often yield unsatisfactory results when applied
solely due to the large amount of NIRS data and collinearity
issues. As a typical nonlinear modeling method, neural
network models, such as multilayer perceptron (MLP),
convolutional neural network (CNN), and long short-term
memory (LSTM), are also commonly used in NIRS pro-
cessing [48]. Multilayer perceptron is the simplest neural
network model which includes input layer, output layer, and
hidden layer. It updates the model through the gradient
descent process, propagates the output of the fully connected
layer in the forward direction, and updates the gradient in
the back direction. Te one-dimensional convolutional
neural network (1DCNN) is another popular approach in
NIRS analysis. Leveraging the powerful feature extraction
capability of CNNs, 1DCNN extracts spectral data features
and fts samples by exploring various functions. It typically
comprises an input layer, convolutional layers, pooling
layers, and fully connected layers. Another deep learning
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model commonly used in NIRS processing is the self-coding
model, which integrates an encoder and a decoder to in-
terpret features.Te encoder extracts features from the input
data, while the decoder reconstructs them.

To better capture the complex features present in NIRS
data, this paper employs an advanced approach for feature
mapping. Specifcally, a multilayer convolutional neural
network (CNN) integrated with an attention mechanism,
known as the efcient channel attention network (ECANet),
is utilized to construct the model and map the data features.

CNNs are specifcally designed to capture spatial and
temporal dependencies in data, making them well-suited for
tasks that involve extracting meaningful features from
structured or sequential data [49]. In the context of NIRS
data, CNNs are particularly valuable for their ability to
automatically learn and extract relevant features at diferent
levels of abstraction. Te convolutional layers apply a set of
flters to the input data, enabling the network to detect and
extract local patterns and spatial relationships. Te pooling
layers, on the other hand, downsample the feature maps,
reducing the spatial dimensions while preserving the most
salient features. Finally, the fully connected layers combine
the extracted features and provide the fnal output. Te
calculation process is described by the following equation:

fi � 
m

k�1
xk · ωi

k + b
i
k, (5)

where fi represents the output feature map of the i-th
convolution layer. Te index i corresponds to the specifc
flter used in that layer. xk denotes the feature map of the
input x to the i-th convolution layer. Te weight of the flter
for this convolution layer is represented by ωi

k and bi
k rep-

resents the bias term associated with that flter. Te equation
illustrates the summation of the element-wise product of the
input feature map and the corresponding flter weights,
followed by the addition of the bias term, to obtain the output
feature map. By incorporating CNNs as a feature extraction
module in our model, we aim to leverage their capability to
enhance the representation and analysis of NIRS data, leading
to improved performance and insights in our study. More-
over, the integration of attention mechanism into CNN can
efectively improve its feature extraction performance.

ECANet is a highly efcient network that integrates
a channel attention module. It builds upon the squeeze and
excitation networks (SENets) and incorporates the attention
mechanism [50]. While many deep learning networks focus
on improving spatial dimensions, SENet introduces atten-
tion mechanisms from the channel dimension. It auto-
matically learns the importance of diferent channel features,
enhancing useful features while suppressing irrelevant ones.
SENet consists of the SE module, which compresses each
feature channel into a real number through spatial di-
mension compression. It learns a parameter that represents
the correlation between channels and generates the im-
portance weight for each feature channel. Tis weight is then
used to recalibrate the input features of the SE module,
completing the feature recalculation process. However, the
initial compression of spatial dimensions in the SEmodule is

complex and computationally expensive. In addition, the
two fully connected layers after the pooling layer can weaken
the weight learning and prediction ability of channel at-
tention. To address these limitations, the ECA module
improves the compression operation by adopting a local
cross-channel interaction strategy without dimensionality
reduction. It enables cross-channel interaction of features,
signifcantly reducing computational complexity [51].
Consequently, the ECA module provides an extremely
lightweight channel attention mechanism.

Te ECANet combines the power of CNNs with at-
tentionmechanisms to efectively capture and emphasize the
most relevant information in the NIRS data. By leveraging
the hierarchical feature extraction capability of CNNs and
the attention mechanism’s ability to focus on informative
features, the ECANet enhances the model’s ability to extract
discriminative features from the NIRS data. By integrating
the attention mechanism, the ECANet dynamically adjusts
the weights of diferent channels in the feature maps,
allowing the network to selectively emphasize important
channels while suppressing less relevant ones. Tis adaptive
weighting scheme further enhances the model’s capability to
capture and exploit the most informative features for ac-
curate mapping of NIRS data.

Te ECA module utilizes a band matrix, denoted as Wk

in equation (6), to capture interactions between feature
channels. Tis band matrix contains parameters that control
the importance of each channel in the attention mechanism.
Specifcally, the weight yi is computed by considering in-
teractions with its k neighboring channels, as shown in
equation (7). In vector form, it can be expressed as equation
(8). Tis localized attention mechanism allows the network
to adaptively adjust the weights of diferent channels based
on their relevance to the task at hand.

Wk �

ω1,1
· · · ω1,k 0 0 · · · · · · 0

0 ω2,2
· · · ω2,k+1 0 · · · · · · 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 · · · 0 0 · · · ωC,C− k+1
· · · ωC,C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6)

ωi � σ 
k

j�1
ωj

y
j
i

⎛⎝ ⎞⎠, y
j
i ∈ Ω

k
i , (7)

ω � σ C1Dk(y)( . (8)

To realize the information interaction in the ECA
module, one-dimensional convolutions are employed in-
stead of fully connected layers. Tis approach efciently
captures channel dependencies without the computational
burden associated with fully connected operations. Te size
of the convolution kernel, denoted as k, is adaptively de-
termined based on the number of feature channels C, as
shown in the following equation:

k � Φ(C) �
log2(C)

Υ
+

b

Υ



odd
, (9)
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where Φ indicates nonlinear mapping, Υ and b are the pa-
rameters, and odd indicates taking the nearest odd number.
Tis adaptive kernel size selection ensures that the ECAmodule
efectively captures the relevant information in the feature
maps. Te integration of the ECANet for feature mapping in
this paper aims to improve the representation and modeling of
the complex features inherent in NIRS data. By dynamically
adjusting the channel weights and capturing relevant de-
pendencies, the ECANet enhances the overall performance
and predictive accuracy of the model. Figure 1 illustrates the
implementation process of the ECA module:

Typically, the cross entropy function is commonly chosen
as the loss function in deep learning models. However, op-
timizing the loss function solely based on large errors with the
real label can lead to overftting, especially when working with
small sample sizes. In addition, manually assigned labels may
contain errors, which can signifcantly impact the network,
particularly when the number of samples is limited. To ad-
dress these concerns, label smooth regularization was in-
troduced in the experiment to optimize the label assignment
in the support set. Label smooth regularization employs
weighted mixing in the calculation of the cross entropy loss
function to reduce the weight of real sample labels, thereby
inhibiting model overftting and improving accuracy. It re-
places the original true label distribution, represented as
q(k | x) � δ(k,y), with a modifed label distribution as shown
in the following equation:

q′(k | x) � (1 − ϵ)δ(k,y) + ϵf(k), (10)

where k is the real label, x is the training sample, q(k | x) is the
original real label distribution, q′ is the replaced label dis-
tribution, δ(k,y) is the class of one-hot coding vector, ϵ is the
label smoothing parameter, and f(k) is a prior label distri-
bution independent of x. Te formula can be regarded as the
fusion of the original distribution q and the defnite distri-
bution f, whose probabilities are (1 − ϵ) and ϵ, respectively.
In this paper, f is a uniformly distributed function, so the
label distribution after smoothing can be obtained as equation
(11), where K � 3 is the total number of categories.

q
′
(k | x) � (1 − ϵ)δ(k,y) +

ϵ
K

. (11)

In the deep learning model, the independent individual
distributed data will achieve the best training efect, and the
resulting model has strong generalisation and high prediction
ability. However, with the increasing number of layers in the
model network, the slight changes in the lower layer network
may cause the input data distribution of the upper layer
network to become ofset. As a result, the upper layer network
becomes saturated and the lower layer network gradient
disappears when the back propagation occurs. Te batch
normalisation (BN) and layer normalisation (LN) can force
data back to the standard distribution, avoiding problems
such as saturation of activation functions and making the
model unsensitive to initial parameters and network depth,
thereby stabilising the training process. At the same time, the
general deep learning model requires regularisation to sta-
bilise themodel, such as randomly ignoring neurons using the

dropout optimiser, so the model can simulate a large number
of network structures and improve the robustness of neuronal
nodes inside the model. BN and LN also have a certain
regularisation efect on the data as they make the loss function
smoother, allowing to learn in larger steps and reducing
training time and training costs. However, although BN and
LN have the same purpose, they are used in diferent situ-
ations and ways. BN can normalise all samples of a single
neuron for the same dimension of all data in a batch, so it is
sensitive to the batch size. When the number of batches is
small, the gradient will be unstable and the efect will be
worse. LN is for all neurons in a layer of network, that is, all
dimensions of each sample are normalised to reduce the
variance of the model. As the batch size in this experiment is
small, LN should be used instead of BN. After LN processing,
the channel direction will be normalised, and batch size data
will be output in a batch. In this method, the distribution of
each layer can be stabilised, and the subsequent layer can
continue to learn, stay away from the derivative saturation
area, and accelerate the model convergence.

Te network structure after incorporating the ECAmodule
is illustrated in Figure 2(a), while the network structurewith the
built-in attentionmechanism is depicted in Figure 2(b). Finally,
the network is fattened, and the softmax function is used as the
classifcation function. Te model still employs the cross-
entropy function as the loss function and utilizes the Adam
optimizer for gradient descent during the training process.

3. Experimental

3.1. Data Acquisition. Te experimental materials used in
this study comprised 238 tobacco blending modules pro-
vided by Hubei China Tobacco Industry Co., Ltd. Tese
modules spanned the years 2017–2019.Te dataset consisted
of 76 samples from the clear favor module, 104 samples
from the intermediate favor module, and 58 samples from
the luzhou favor module. Te distribution of the modules
across the production years is detailed in Table 1:

Te instruments used for data collection are Brook
MATRIX-I Fourier transform near-infrared spectrometer,
Binder BD400 standard incubator, and AUARI shredder.
After the sampling process, the 238 cigarette blendingmodules
were placed in a standard incubator and dried at 40°C for
a duration of 2 hours. Subsequently, the samples were ground
into a 40-mesh (0.425nm) powder using a grinder and sealed
for further testing. For each module sample, approximately
50 g of the powdered material was placed in a sample cup and
compacted before being subjected to NIR spectrometer data
sampling. Troughout the experiment, strict environmental
conditions were maintained, with a temperature of 22°C and
a relative humidity of 60%. Te NIR spectrometer utilized in
this study collected spectral data within the band range of
3600–12500 cm− 1 using the difuse refection method. Te
spectral resolution was set at 16 cm− 1. To ensure accuracy, fve
spectra were repeatedly collected for each sample, and the
average value was taken as the representative data for analysis.
Te NIRS raw data obtained from this process is illustrated in
Figure 3; a total of 238 modules of NIRS data were collected,
each containing 1154 band values.

Discrete Dynamics in Nature and Society 7



3.2. Data Preprocessing. After careful evaluation, the combi-
nation of MSC+D2 was fnally determined as the optimal
pretreatment method for the NIRS data. In order to assess the
impact of diferent pretreatment methods on the subsequent
analysis, a variety of pretreatment techniques were initially
considered. Figure 4 shows the data images obtained after
applyingMSC, frst derivative (D1), and second derivative (D2)
processing, respectively. By comparing the visual representa-
tions, it becomes evident that theMSC technique plays a crucial
role in normalizing the spectra and enhancing their consis-
tency.Trough the application ofMSC, the fuctuation range of

all spectral data is efectively reduced, leading to a more stable
and uniform representation. In addition, MSC enhances the
spectral overlap, ensuring a better alignment of spectral features
and improving the overall quality of the data. On the other
hand, the derivative methods exhibit noticeable efects on the
variation range and structural characteristics of the spectral
data.Tesemethods introduce substantial changes in the shape
and intensity of the spectral features. D1 amplifes the rate of
change in the spectrum, resulting in sharper peaks and valleys,
while D2 accentuates these changes even further, leading to
more pronounced variations in the spectral shape.

C

H

W

GAP

χ χ'

Adaptive Selection of
Kernel Size : k= Ψ (C)

1*1*C 1*1*C

Figure 1: ECA module implementation process.
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Figure 2: Model structure. (a) ECA block structure. (b) Network structure.
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Te XGBoost model was employed in favor evaluation
based on spectral data to assess the efect of the pretreatment
method. Tis model ofers several advantages, including
a lower number of parameters, a simple modeling process,
and the ability to efectively validate the feature extraction
efect. Data were randomly selected as the training set and test
set of the experiment, and the ratio was 6 : 4, that is, 143 pieces
were selected as the training data and 95 pieces as the test data.
Te model was constructed based on the training set, and
predictions were made using the test set. Tis process was
repeated 10 times to ensure robustness, and the fnal results
were averaged to obtain more reliable outcomes. In order to
evaluate the efectiveness of diferent preprocessing methods,
this study also considered several alternative approaches. Te
test set accuracy results obtained from these diferentmethods
were recorded and are presented in Table 2.

Te accuracy of several preprocessing methods was found
to be lower compared to direct processing with the source
data. Tis suggests that these methods alter the internal

information structure of the potential reaction module in the
source data, leading to a decrease in model accuracy. Te
accuracy ofD2 is the highest, indicating that theD2 processing
mode can further clarify the internal structure of data. In

Table 1: Experimental data statistics.

Flavor
Year

2017 2018 2019
Clear favor 25 11 40
Intermediate favor 42 10 52
Luzhou favor 22 7 29
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Figure 3: Raw NIRS data.
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Figure 4: Data distribution after single preprocessing. (a) MSC. (b) D1. (c) D2.

Table 2: Accuracy of the single pretreatment model.

Methods Accuracy (%)
Raw data 43.73
D2 62.50
Standard normal variate (SNV) 44.58
Standardization (SS) 41.67
Moving average (MA) 41.33
Wavelet transform (WT) 40.54
MSC 46.88
D1 55.23
Min-max normalization (MMN) 43.09
Mean centralization (MC) 46.34
SG smoothing (SG) 41.23
Detrend (DT) 46.98
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general, the efectiveness of a single preprocessing method is
limited due to the presence of various interference factors
in complex samples. By combining diferent preprocessing
methods, it becomes possible to eliminate diferent types of
interference information. Tis comprehensive approach al-
lows for better extraction of relevant features and ultimately
improves the accuracy of the model.

Several common pretreatment methods, as well as several
single treatment methods with good performance, were se-
lected for combination based on their specifc purposes. Te
derivative and DT methods were employed to eliminate
baseline drift, while SNV and MSC were used to reduce
scattering efects. In addition, MC was applied to eliminate
background noise. Te aforementioned data set partitioning
methods and experimental approaches were also imple-
mented. Te accuracy of the test results from two pre-
treatment combination models is presented in Table 3.

Te combination method has a better performance than
the single pretreatment method on the whole. Particularly,
the combination of other methods withD2 demonstrates the
best performance. Te highest accuracy of the data results is
achieved by using the combination of MC+D2, SNV+D2,
and MSC+D2. Tese preprocessing methods yield similar
trends and distributions in the resulting images. Figure 5
illustrates the data after MSC+D2 processing, which ex-
hibits the highest accuracy.

Furthermore, three preprocessing methods were com-
bined, with the second derivative (D2) applied as the fnal
step. Te accuracy test results are presented in Table 4. It can
be observed that combining the three preprocessing methods
increases the complexity of the preprocessing while sub-
stantially altering the original data structure. However, this
combination does not lead to a signifcant improvement in
prediction accuracy and, in some cases, even results in a slight
decrease compared to the combination of two preprocessing
methods. Terefore, the combination of MSC+D2 for data
preprocessing is considered as the preferred choice.

3.3. Feature Band Screening. While using full-spectrum
modeling to increase the complexity of the model, the ef-
fect may be reduced due to the large number of interference
variables. Te selection of band information can efectively
extract useful information and improve the model pre-
diction efect. Terefore, before the formal establishment of
the model, feature screening should be conducted. Te
XGBoost model was also used for favor prediction to
measure the merits of the band screening method.

In this paper, several models including principal com-
ponent analysis (PCA), successive projections algorithm
(SPA), competitive adaptive reweighting sampling (CARS),
and XGBoost ensemble learning were compared for feature
band extraction, and their parameters were adjusted, re-
spectively. Te optimal experimental results obtained are
presented in Table 5.

Te accuracy of PCA and SPA feature band extraction is
not as high as that of all bands modeling, and the perfor-
mance of PCA is extremely poor. Tis could be attributed to
the fact that these methods solely focus on the relationship

between independent variable bands, neglecting the crucial
relationship between the variable bands and the predicted
value. As a result, the extracted bands may not adequately
capture the necessary information for accurate modeling,
leading to suboptimal performance. Furthermore, the lim-
ited number of bands extracted after sampling is insufcient
to efectively explain the underlying model, further ham-
pering the modeling process. In addition, PCA extracts
bands in a linear manner and combines some band in-
formation, which may result in a less efective outcome, as
the nonlinear relationships and intricate interactions among
the bands are not fully considered in the extraction process.

Table 3: Accuracy of two pretreatment combination models.

Methods Accuracy (%)
DT+ SNV 50.03
D1 +MSC 58.38
D1 + SNV 56.45
D2 +MSC 56.70
MC+D1 57.05
MSC+MC 47.44
MSC+D1 59.88
SNV+D1 57.42
MSC+D2 65.79
SNV+D2 62.31
MC+D2 64.14
DT+MC 46.38
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Figure 5: Data distribution after the preprocessing of MSC+D2.

Table 4: Accuracy of three pretreatment combination models.

Methods Accuracy (%)
MC+ SNV+D2 62.50
SNV+MC+D2 61.48
MSC+MC+D2 63.08

Table 5: Optimal experimental results of diferent feature band
extraction model.

Methods Characteristic number Accuracy (%)
PCA 8 34.29
SPA 9 50.00
CARS 145 64.39
XGBoost 150 66.67
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However, the CARS and XGBoost classifcation methods
demonstrate superior performance. Tese methods extract
a sufcient number of bands while preserving the original
data structure. By retaining the essential features of the
original model and reducing complexity, these methods
efectively flter out interfering factors. Consequently, the
feature extraction methods based on CARS or XGBoost were
considered. In this approach, the number of extracted bands
is approximately one-tenth of the original bands, signif-
cantly reducingmodel complexity and enhancing processing
capabilities. To summarize, this paper employs an XGBoost-
based feature extraction model, which not only achieves
slightly higher accuracy than CARS but also ofers simpler
tuning with reduced dependence on initial parameters.

Te XGBoost model utilizes all bands to construct the
model and assigns each band an importance score that
refects its contribution to the overall model. In this paper,
the XGBoost algorithm adopts gbtree as the weak learner
and softmax as the classifcation function. Te optimal
parameter set is determined through grid search. Following
the experiment, the maximum depth of the tree is set to 8,
the minimum sample weight sum of the child nodes is 2, the
number of established trees is 70, the learning rate is 0.06, the
regularization weight is 2, and the shrinkage step is set to
0.05. In addition, cycle optimization is performed using
fve-fold cross-validation.

Te importance scores of each band in the fnal model
are depicted in Figure 6(a). In this study, 150 bands were
chosen as the representative bands for the model. Tese
characteristic bands accounted for 80% of the model’s in-
terpretability while comprising only 13% of the total number
of original bands.Tis signifcant reduction in the number of
bands greatly reduced the model’s complexity. Moreover,
the model also achieved high prediction accuracy. Te
distribution of the selected characteristic bands within the
original bands is illustrated in Figure 6(b).

3.4. Model Construction. In this experiment, the near-
infrared spectral data of 238 modules were randomly di-
vided into 190 pieces of data in the training set and 48 pieces
of data in the test set according to the ratio of 8 : 2. Te
specifc data distribution is shown in Table 6.

Model details are shown in Table 7. Te size parameter
represents the dimensions of the convolution kernel. Te
number parameter refers to the number of channels in the
convolutional layer, indicating the dimensionality of the output
feature maps. Te stride parameter determines the step size at
which the convolution kernel moves across the input data. Te
second layer of the network consists of two components: an
ordinary convolutional layer and an ECA module. Te ordi-
nary convolutional layer processes the input data from the
previous layer using convolutional operations. On the other
hand, the ECA module operates on the output results of the
frst layer, incorporating channel-wise attention mechanisms.
Te ECA module enhances the interdependencies between
diferent channels, allowing the network to capture more
relevant and discriminative features.Te outputs from both the

ordinary convolutional layer and the ECA module are then
combined and passed on to the subsequent third layer for
further processing.

In the training process, due to the limitation of the available
dataset, the batch size for each training iteration was set to 1.
Tis choice was made to maximize the utilization of the
available data and facilitate efcient learning. We have planned
a total of 120 training rounds, with each round consisting of 30
iterations.Te initial learning rate of themodel was set to 0.005.
As the training progresses, a cosine decay schedule was
employed to gradually reduce the learning rate. Tis decay
schedule helped ensure that the model converged efectively
and mitigated the risk of overftting by fne-tuning the learning
rate throughout the training process. Moreover, the label
smoothness rate to 0.1. During the training process, we con-
tinuously monitor the convergence of the model. If the model
demonstrates satisfactory convergence and achieves the desired
performance before completing the planned training rounds,
we have the fexibility to stop the training process prematurely.
Tis allowed us to save computational resources while ensuring
that the model reached its optimal performance.

Te selection of activation functions plays a crucial role in
enabling the model to exhibit a nonlinear structure and
enhance its feature extraction capabilities. A well-chosen
activation function can facilitate faster convergence and
improve overall model performance. In this experiment, we
explored several common activation functions, including
ReLU, ELU, and tanh, to assess their efectiveness and con-
duct comparative experiments. Te comparison of the frst
two activation functions is shown in Figure 7. It was observed
that the ReLU activation function had limited success, which
can be attributed to its characteristic of setting negative
gradients to zero. Tis behavior can lead to the “dying ReLU”
problem, where some neurons become inactive, resulting in
the corresponding parameters being unable to update. Al-
though the ELU activation function addresses this issue to
some extent, its convergence efciency was found to be in-
ferior to that of tanh. Te tanh activation function, on the
other hand, demonstrated faster convergence and better
handling of gradient updates near zero. Terefore, it was
selected as the activation function for the middle layer of the
model. In the output layer, the softmax activation function
was chosen because it compresses the output values into the
range of [0, 1]. Tis property is particularly convenient for
direct classifcation predictions. In summary, based on the
experimental results and the desirable characteristics of the
activation functions, we selected tanh as the activation
function for the middle layer and softmax as the activation
function for the output layer. Tese choices aim to promote
faster convergence, improve gradient updates, and facilitate
more efective classifcation predictions.

4. Results and Discussion

Te model training process is illustrated in Figure 8, where it
can be observed that the model started to converge after
approximately 100 training iterations and eventually reached
a stable state.
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Te accuracy achieved on the test set was 91.67%, while
the training set accuracy reached a perfect score of 100%.Te
confusion matrix of the test set is presented in Table 8,
demonstrating the overall good performance of the model.
Particularly, the intermediate favor module exhibited ex-
cellent predictive capability, achieving a 100% accuracy rate.
However, the clear favor module showed relatively poorer
performance, which could be attributed to the imbalanced
distribution of samples across diferent favor categories in
the dataset. To further enhance the prediction efectiveness,
it may be necessary to address this imbalance by supple-
menting the dataset with additional samples and ensuring
a balanced representation of each favor category.

Te selected characteristic variables were used as input
data and the scent type was used as a classifcation label to

further verify the superiority of the model. Te BP neural
network (BP), partial least squares regression (PLS), and
random forest (RF) were used to learn and predict the model
of the training set and test set data. Te experimental results
are shown in Table 9.

In some common NIRS classifcation models, the efect
of favor classifcation is poor, which may be due to their low
complexity and inability to efectively extract the feature
information when processing complex data, resulting in an
unsatisfactory modeling efect.

Ablation experiments were conducted to verify the
validity of the model established. Compared with the
original model, layer normalisation was removed inmodel 1,
and the data directly enter the activation layer after passing
through the convolution layer. Model 2 took the form of
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Figure 6: XGBoost model result. (a) Score of each band. (b) Selected characteristic distribution bands.

Table 6: Confusion matrix of the result.

Data set Flavor type Quantity

Training set
Clear favor 61

Intermediate favor 83
Luzhou favor 46

Testing set
Clear favor 15

Intermediate favor 21
Luzhou favor 12

Table 7: Detailed structure of the model.

Layer Detailed structure Size Number Stride Output size
First layer Conv1 + LN+ tanh 1∗3 4 2 1∗74∗4
Second layer Conv2a + LN+ tanh 1∗3 8 1 1∗72∗8

ECA block
GlobalMaxPooling + reshape 3 8 — 1∗8∗1

Conv2b + reshape 1∗3 8 1 1∗1∗8
Mutiply — — — 1∗72∗8

Tird layer Conv3 + LN+ tanh 1∗3 16 1 1∗70∗16

Output layer MaxPooling 3 16 — 1∗23∗16
Flatten + softmax — — — 1∗3
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hard labels and used the original labels directly when cal-
culating the cross entropy loss function. In model 3, the ECA
block was removed and the convolution neural network
without attention mechanism was adopted. Model 4 did not

carry out feature band extraction and adapted full-spectrum
data modeling. Te experiment was repeated for 10 times,
and the average accuracy is shown in Table 10. Based on the
experimental results, all these factors play a crucial role in
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Figure 7: Comparison of activation functions. (a) ReLU. (b) ELU.
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Figure 8: Model training process.

Table 8: Results of other models.

Real
Predict

Clear favor Intermediate favor Luzhou favor Total
Clear favor 13 1 1 15
Intermediate favor 0 21 0 21
Luzhou favor 0 1 11 12
Total 13 23 12 48

Table 9: Results comparison.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)
BP 77.08 77.34 77.08 77.21
PLS 54.17 53.90 52.30 53.09
RF 66.67 67.76 66.67 67.21
Tis paper 91.67 94.32 92.78 93.54
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the construction of a good model, and the prediction ac-
curacy of all the favor types decreased to a certain extent
when these elements were removed. At the same time, the
convergence rate of all models decreased, and the conver-
gence amplitude of model 1 and model 2 decreased sig-
nifcantly and was unstable.Te loss function value of model
1 decreased very little, and the prediction accuracy was low.
Te prediction accuracy of model 4 was also low, which may
due to the large number of interference bands, and the
model paid too much attention to irrelevant details of
the data.

Furthermore, to provide a more robust evaluation of the
model’s efectiveness, the leave-one cross-validation method
was employed in this experiment. Tis technique involves
iteratively training the model on all but one sample and then
testing its performance on the remaining sample. Tis
process is repeated for each sample in the dataset, ensuring
that every sample serves as both training and testing in-
stances. After conducting the leave-one cross-validation, the
average accuracy rate was calculated, yielding a result of
94.54%. Tis average accuracy rate provides a more reliable
estimate of the model’s predictive performance, as it takes
into account the variability that may arise from diferent
training and testing data subsets. Te high average accuracy
rate obtained through leave-one cross-validation further
demonstrates the robustness and generalizability of the
model. It indicates that the model has learned meaningful
patterns and features from the training data that enable it to
accurately predict the favor of spectral data even when
presented with unseen samples. It also demonstrates that
data augmentation approach would help the model gener-
alize better.

Finally, we compared the experimental results of our
paper with the model accuracy results reported in the latest
articles on tobacco modular favor prediction [52, 53]. Te
comparison results are presented in Table 11. It is worth
noting that the availability of limited data poses a challenge,
but despite this limitation, our prediction model has achieved
a relatively favorable outcome. Te accuracy of favor pre-
diction in our model has shown a slight improvement
compared to some of the existing models.

Our research contributes to the feld of tobacco favor
prediction by presenting a promising model with improved
accuracy.Te next research will consider the case of obtaining
more data to further improve the feature understanding
ability of the model.

5. Conclusion

Tis study proposes a classifcationmodel based on XGBoost
integrated learning and deep learning for the rapid posi-
tioning and scientifc evaluation of tobacco blending module
favor styles. Characteristic variables with strong correlation
with favor types in the near-infrared spectrum data of the
module were used to recognise the favor types.

First, the combination of multiplicative scatter correc-
tion and second derivative was used to preprocess the data to
eliminate noise and baseline drift. Te XGBoost model was
used to extract 150 relevant bands. In feature modeling, the
ECA module with attention mechanism and layer nor-
malization was introduced into the feature coding mapper.
Te smooth label coding was used to replace the original
label one-hot coding to calculate the cross entropy loss
function and optimise it.

Te experiment showed that the convolutional neural
network with attention mechanisms combined with the
feature information extracted from the high-dimensional
near-infrared spectrum by XGBoost could efectively
identify the favor style features of the tobacco blending
module and realise the objectifcation of the favor index
evaluation. Te favor category recognition accuracy of our
proposed model reached an impressive 95.54% in the
leave-one cross-validation, highlighting its robustness and
efectiveness. Tis achievement demonstrates the model’s
strong learning and prediction abilities, positioning it as
a promising method for objective sensory quality evaluation
of the tobacco rolling group’s formulation module. Te
model’s accurate predictions provide a scientifc foundation
for decision-making by professionals in the tobacco in-
dustry, enhancing their ability to make informed choices.
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