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Based on the theoretical knowledge of technological innovation, this paper designs a sensor data value incubation model and
a sensor data collection model to collect the original data on green innovation efficiency. In order to explore the spatial and
temporal differentiation characteristics of China’s provincial green innovation efficiency and the spatial spillover effect of China’s
provincial green innovation efficiency, the entropy weight TOPSIS model is adopted to measure the green innovation efficiency of
China’s 30 provinces (cities) from 2005 to 2021 and analyze its temporal and spatial evolution characteristics. This paper uses an
exploratory spatial data analysis method to prove the agglomeration phenomenon of China’s provincial green innovation ef-
ficiency in the ground space. Finally, a spatial econometric model is introduced to study the impact of government R&D in-
vestment, green supervision, and green innovation efficiency on spatial spillover effects. The study found the following three
conclusions: First, the efficiency of green innovation in China’s provinces has been fluctuating in stages, and the overall trend has
been increasing year by year. The overall efficiency of green innovation in China’s provinces is low, and the overall development is
uneven and uncoordinated. Second, from the results of the spatial autocorrelation test, there is a clear and positive spatial
correlation between China’s provincial green innovation efficiency and agglomeration in the geospatial space. Third, government
R&D inputs and different types of green regulations have a significant impact on green innovation efficiency and have significant
spatial spillover effects. Along from the eastern region to the central region, then to the northeast and western regions, the degree
of effect on green innovation efficiency and the intensity of spatial spillover effects have gradually weakened. It is believed that the
government should reduce R&D investment in the eastern region and increase green sewage charges. Instead, the government
should raise R&D investment in the central, northeast, and western regions and offer enterprises green innovation subsidies.

1. Introduction

1.1. The Relationship between Green Innovation and Economic
Growth. Since human beings entered the 21st century, the
depletion of energy and increasingly severe green pollution
have made green development new kinetic energy for the high-
quality growth of all countries [1]. Green innovation is
a concrete manifestation of the deep integration of green
development concepts and technological innovation and is an
effective focus for breaking the traditional extensive economic
development model [2]. In order to seize the opportunities, the
developed countries have deployed the national strategy of
green innovation. Both the United States’ sustainable

performance strategic plan and the EU’s 2020 strategy have
brought innovation and innovation into the national strategic
position.

Since the reform and opening up, China’s economic
growth has achieved world-renowned achievements. However,
the economic development model of “GDP” has led to
problems such as green pollution and energy shortage in
various regions of China [3]. The rapid growth of China’s
economy comes at the expense of green sacrifice and energy
waste, which is unsustainable development [4]. China is in
a stage of rapid industrialization and urbanization, and it is
a period when the contradictions between economic devel-
opment, resource utilization, and green protection are most
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acute [5]. On the other hand, the Chinese government has
invested more in green pollution and energy shortages year by
year. The 19th National Congress and the 13th Five-Year Plan
emphasize the promotion of green development and the
emphasis on ecological civilization. Green innovation has
become a vital method for China to break through the con-
straints of resources and the environment. Besides, it could also
guide overall sustainable development. Its role in China’s
development is more important than ever.

Through the above analysis, Chinese scholars and the
Chinese government have reached an agreement that
China’s economic growth cannot be at the expense of the
environment, and a balance should be sought between
economic growth and green pollution. In October 2017,
General Secretary Xi Jinping clearly stated in the report to
the 19th National Congress of the Communist Party that
China’s economy has shifted from a stage of rapid growth to
a stage of high-quality development. Green development is
a part of high-quality economic development. The two have
a dialectical and unified relationship, and green innovation
is an important source of green development. To achieve the
strategic goal of high-quality economic development, we
cannot simply pursue GDP growth. We need to fully con-
sider resource endowments and green-carrying capacity.

We believe that green innovation is an important means
to balance the ecological environment and high-quality
economic growth, and it is also the only way for high-
quality economic development:

@ Green innovation is essentially the innovation of green
technology, which is to follow the principles of ecology
and the laws of ecological economy, save resources and
energy, avoid, eliminate, or reduce pollution and
damage of the ecological environment, and minimize
the ecological negative effects of “no pollution” or “less
pollution.” It is a general term for technologies, pro-
cesses, and products. Green technological innovation is
a new modern technological system coordinated with
the ecological environment system.

®@ Green innovation is an important part of green
development. Green development is a way of eco-
nomic growth and social development that aims at
efficiency, harmony, and sustainability. Green de-
velopment and sustainable development are ideo-
logically inherited. They are not only the inheritance
of sustainable development but also the theoretical
innovation of sustainable development in China.

® Green innovation is an important way to protect the
ecological environment. On the one hand, if the eco-
logical environment is good and the living environment
is good, the quality of human health is guaranteed. If
ecological green protection is good, natural resource
regeneration ability is strong, economic development is
sustainable, the development space is broader, and
stamina is more sufficient. On the other hand, eco-
nomic development can provide a solid material
guarantee for ecological compensation and ecological
restoration.
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1.2. Green Innovation Efficiency. Green innovation efficiency
(GIE) is a basic indicator for measuring the innovation
efficiency of regional green innovation activities, which is
also a comprehensive innovation capability that takes energy
scarcity and green costs into full consideration [6]. Green
innovation mainly aims at energy conservation and green
improvement from the two paths of product innovation and
process innovation [7]. China’s vast territory, regional re-
source endowments, and economic development levels are
varied, leading to obvious heterogeneity of regional green
innovation, which not only affects the balanced development
of the interregional economy but also the coordinated de-
velopment of the interregional ecological environment.
Therefore, the green transformation of China’s economic
growth mode is imminent [8]. Among the process, gov-
ernment R&D investment and green regulations are the two
main players. On the one hand, resources and environment
are public goods, so many problems in the field of green
pollution and ecological destruction cannot be solved
completely through market mechanisms. Green control
policy work must be supplemented in addition to market
mechanisms. On the other hand, since China entered the
new normal, the factor endowment structure dependent on
economic growth has changed. In the past, extensive eco-
nomic growth driven by factors such as demographic div-
idend, land dividend, resource dividend, and investment
dividend was unsustainable. The important content of this
paper includes how to systematically analyze and compre-
hensively evaluate regional green innovation performance
and how to accurately grasp the evolutionary law of green
innovation. Besides, the paper also discusses the importance
of green innovation performance theories for China’s ex-
ploration of green development models to achieve sus-
tainable green, economic development, and practical
significance.

This paper sorts out recent related research and sum-
marizes the main research work and main views of experts
and scholars on green innovation efficiency, as shown in
Table 1.

1.3. The Implication and Innovation of This Paper

@ It explores the relationship between green innovation
and high-quality economic growth, taking China’s
economic growth as a case.

@ It integrates the entropy weight TOPSIS model and
the spatial measurement model to explain the re-
gional differences between green innovation and
economic growth.

® Taking a developing country such as China as an
example, the conclusions obtained can provide ref-
erence for developing countries in the world.

@ It constructed an green innovation evaluation index
system and took China as an example. This evalua-
tion index system can provide a reference for mea-
suring the efficiency of green innovation in other
countries.



Discrete Dynamics in Nature and Society

TABLE 1: Summarization of the recent works.

Authors

Main
work and contributions

Ghisetti and Rennings

The depletion of energy and increasingly severe green pollution have made green
development new kinetic energy for the high-quality growth of all countries

Yang and Chai

A development model at the expense of greenness and energy waste is unsustainable

development

Song, Zhu, Wang et al.

The period when the contradiction between China’s economic development,
resource utilization, and green protection is the most prominent

Albort-Morant, Leal-Milldn et al.

Green innovation efficiency is a comprehensive innovation capability that
comprehensively considers energy scarcity and green cost

Yuan and Xiang

Green innovation mainly aims at energy conservation and green improvement from
the two paths of product innovation and process innovation

Dong, Wang, Jin et al.

The green transformation of China’s economic growth mode is imminent

® The policy recommendations and enlightenment in
this paper have practical guiding significance for the
government to formulate policies.

2. Literature Review

So far, the academic community has achieved more research
results in green innovation research, mainly from three
levels: concept analysis, influencing factors, and evaluation
models. There is no consensus on the academic concept of
green innovation. Case studies and cross-case comparative
analysis show that green innovation is equivalent to green
technology [9]. Discussing the biofuel innovation system in
the United States and Brazil suggests that eco-innovation is
a development model that can solve energy shortages and
green pollution problems [10]. We find sustainable in-
novation based on sustainable energy technologies for
consumable resources (natural gas, oil, and coal). Some
people believe that green innovation is the same as sus-
tainable innovation [11]. The main reason why scholars have
a different understanding of green innovation is that they
varied in their research perspectives, but all of their un-
derstandings reflect the unified relationship between re-
sources, environment, and innovation.

In terms of factors affecting green innovation, the fa-
mous “Porter hypothesis” believes that green regulations will
stimulate green innovation and reduce or offset the cost of
green regulations [12]. Regulation is a positive alternative to
green innovation by replacing markets, especially in de-
veloping countries, where regulation is an important
component of competition. Technology, market demand,
and green policy are the key influencing factors of green
innovation, and corporate green innovation activities mainly
come from the interaction of three important factors [13].
From a technical point of view, some studies have found that
the introduction of foreign green technologies and the
improvement of enterprises’ green technology capabilities
have actively promoted enterprises’ independent in-
novation, which is also an important factor affecting green
innovation. Using the stochastic frontier analysis method to
study the pros and cons of green innovation, it is found that
improving green innovation is conducive to improving the
efficiency of natural resource utilization [14]. Competitive

advantage is directly proportional to corporate green in-
novation, and government green regulation has a certain
impact on green innovation. From the perspective of in-
dustrial organization [15], Peattie [16] compared and ana-
lyzed the factors affecting green innovation in various
markets and believes that market demand has a significant
impact on corporate green product development. It is be-
lieved that foreign direct investment can play an active role
in green innovation by reducing the cost of green innovation
in the host country [17]. On the other hand, government
R&D investment can promote the efficiency of green in-
novation and has a leverage effect [18]. Broekel [19] believes
that government R&D investment is not conducive to the
improvement of green innovation efficiency and has
a “crowding effect.”

In addition, the academic research on sensors mainly
includes five aspects: visual sensors, industrial robots, auto-
mobile manufacturing, medical and health monitoring, and
food processing and packaging. First, in terms of visual sen-
sors, in the production line of electronic manufacturing, both
robot assembly and electronic component detection are in-
separable from the application of visual sensor equipment. As
one of the focuses of machine vision, image sensors are widely
used in consumer electronics, medical electronics, avionics,
and other fields [20]. Second, in the aspect of industrial robots,
in order to improve the adaptability of the robot and detect the
working environment in time, a large number of sensing
devices are applied to the robot. These sensors improve the
working condition of the robot and enable it to complete
complex work more fully. The application of sensors in the
robot industry has attracted the attention of most countries,
mainly the United States and Japan. Driven by these advanced
countries, the world has set off a boom in the development of
“intelligent sensors” [21]. Robots provide a good landing scene
and higher requirements for the development of sensors.
Third, in terms of bicycle manufacturing, sensors are the
information source of the vehicle electronic control system and
the basic key components of the vehicle electronic control
system. Traditional automobile sensors feed back information
in the control process of each system to realize automatic
control. They are the “neurons” of automobiles and are mainly
used in powertrain systems, body control systems, and chassis



systems [22]. In these systems, automobile sensors are re-
sponsible for the collection and transmission of information.
After information collected is processed by the electronic
control unit, instructions sent to the actuator are formed to
complete the electronic control. Fourth, in terms of medical
treatment and health monitoring, sensors can enable medical
devices to present more accurate images, helping doctors
correctly diagnose diseases and effectively treat patients; High
precision sensors can obtain accurate monitoring data, making
medical staff's diagnosis and equipment monitoring patient’s
body data more accurate [23]. Fifth, in terms of food pro-
cessing and packaging, through the network function of
wireless sensors, consumers can better understand the whole
process of food production, storage and transportation in food
processing plants, make food processing more intuitive and
transparent, and effectively eliminate consumers’ concerns
about food safety [24]. At the same time, in case of problems,
wireless sensor technology can also facilitate the regulatory
authorities to find problems in a timely manner and can be well
documented to curb food safety problems from the source.

Therefore, this paper uses the existing research at home
and abroad for reference, applies sensor technology to the
process of green innovation, and further studies the space-
time characteristics of innovation efficiency on the basis of
measuring China’s provincial green innovation efficiency.
Based on the provincial data of China, the spatial structure
characteristics and spatial overlap effect of provincial green
innovation efficiency are analyzed. Compared with previous
studies, this paper has the following incremental contri-
butions: First, it establishes a sensor data value incubation
mechanism. Second, the multisource data acquisition model
of sensor technology is constructed. Third, it objectively and
systematically measures the efficiency of green innovation in
China’s provinces. The fourth is to use a spatial econometric
model to study the spatial spillover effect of green innovation
efficiency.

3. Indicator System and Research Model

The construction of the index system and the selection of
research models are crucial to the research results. Figure 1
shows the logical relationship between the index system and
various research models. First, an innovation and innovation
indicator system and green regulation indicators are built,
and the advance detailed analysis of indicators is carried out.
Second, the entropy weight TOPSIS model is used to
measure the efficiency of green innovation in China’s
provinces and test its autocorrelation. Finally, on the basis of
the first two steps, the spatial measurement model is used to
make spatial spillover recommendations and draw conclu-
sions and policy recommendations.

3.1. Indicator System Design

3.1.1. Variable Selection and Description. At present, there is
no separate indicator system for the green innovation
evaluation system. The common practice in the academic
community is to use the input-output method as an idea to
include green and energy indicators that reflect green in the
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innovation evaluation system. According to the OECD’s
description of green innovation evaluation indicators, the
green innovation evaluation indicators are mainly evaluated
from the two aspects of green product innovation and green
process innovation.

This paper measures the efficiency of provincial green
innovation as a whole and therefore selects the input and
output indicators of the R&D and economic transformation
stages of the innovation process. The OECD evaluation
system is adopted to comprehensively consider the re-
dundancy and availability of China’s provincial green in-
novation indicators and reshape the green innovation
evaluation index system. The specific indicators have the
following meanings:

® Innovative inputs are divided into capital investment
and labor input. According to their research [25],
capital stock (K) and R&D personnel full-time
equivalent (TSI) are used as indicators to measure
capital input and labor input. The capital stock is still
estimated by the perpetual inventory method pro-
posed by the study (current capital stock = current
capital stock * (1-9.6%) + current fixed assets), and
the estimated results are based on the figures for the
year 2000. Both capital investment and labor input
are positive indicators.

® Innovative outputs are divided into expected output
and non-expected output. Through their methods
[26] and [27], product innovation (GPTI) is used to
measure expected output and high-tech new prod-
ucts are used to sell revenue and energy consump-
tion. The ratio is measured by the ratio. The emissions
of three industrial wastes (waste water, exhaust gas,
solid waste, and THW) are used as a measure of poor
output. In order to eliminate the influence of dif-
ferent sizes, a three-waste weighted value calculation
was performed. Product innovation is a positive
indicator, while the three industrial wastes are
a negative indicator.

® Green regulation is a comprehensive consideration of
China’s green protection system, especially in the
field of green innovation, which is controlled by the
government and the market and public participation.
It is not easy to generalize green regulations with
certain types of indicators. In [28], the green regu-
lation is divided into the command-based green
regulation (F), incentive green regulation (I), and
public participation green regulation (P). The
command-based environment uses the SO, removal
rate (SOO) as a measure. The incentive-type envi-
ronment uses the unit GDP’s sewage charge (USD) as
a measure. The public-participating environment
uses the total number of green letters and visits (EP)
in each region as a measure.

This paper covers 30 provinces (including autonomous
regions and municipalities) in China as the object of in-
vestigation and measures the efficiency of China’s provincial
green innovation from 2005 to 2021, but the investigation
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Ficure 1: The logical route of this article.

does not include Tibet, Hong Kong, Macao, and Taiwan. In
addition, according to the statistics revealed by the National
Bureau of Statistics division in 2011, 30 provinces (auton-
omous regions and municipalities) are divided into four
major economic zones: the eastern, central, western, and
northeastern regions. The indicators of innovation input and
innovation output are derived from the China Statistical
Yearbook, China Science and Technology Statistical Year-
book, and China Energy Statistics Yearbook. The SO, re-
moval rate and unit GDP sewage charges come from the
China Green Statistics Yearbook and the Green Yearbook of
China, the total number of letters is from the green letters,
and visits comes from the China Green Yearbook.

3.1.2. Sensor Data Value Incubation Mechanism. The sensor
data itself are not the focus of our research, the key lies in the
unexplored potential value behind the sensor data, and the
hidden spatial value of the sensor data is boundless [29].
Sensor data, as a virtual production factor, also have
a “tangible” value and an “intangible” value. Specifically, the
entity of the sensor data refers to a measurable, fixed, and
different magnitude from other entities and the hidden space
of the sensor data. It refers to infinite possibilities that are
boundless, changing, and effective. This paper introduces the
concept of biological incubation and metaphorizes the re-
alization of the industrial big data value as the incubation
process of oviparous animals shown in Figure 2.

With the in-depth integration of the new generation of
information technology and the real economy, enterprises
continue to accumulate production, R&D, economic man-
agement, operation and maintenance, and other data in the
manufacturing process, and the accumulated quantity is
huge and various. Multisensor data originate from various
data integrations in various links, including informatization
data, Internet of things data, and cross-border data, and have
many characteristics such as complexity, multisource, and
heterogeneity. The collision and fusion of multisource
heterogeneous data is valuable, and the construction of the
multisensor data “resource pool” is the primary goal of
realizing data. Multisource heterogeneous data utilize nu-
trients provided by the resource pool to release and magnify
the value through the incubation mechanism, just like the
hatching of oviparous animal embryos. The resource pool is
called the cradle of value breeding. Sensor data cover
product research and development, production, market,

customers, logistics supply chain, after-sales service, finance,
manpower, production equipment and instruments, sen-
sors, products, environmental regulations, social economy,
and other data, covering a long process, a variety of types,
and a wide range. The quality-tested multisensor data are
dazzling, and the multisensor data need to be classified,
cataloged, and described in detail so that data users can
better discover data and enterprise managers can efficiently
manage data, and it is conducive to fully mining its value.

3.1.3. Combined Sensor Data Collection Technology.
Single-point acquisition technology is the basis of multi-
sensor data acquisition and has been widely used, but many
limited counties are also exposed in the process of practical
application. For example, the data are irrelevant, and the
data collection cycle is long. In addition, data items collected
by the single-point collection technology through each
collection channel are discrete, and the collection and
transmission of various types of data are independent, which
ensures that the data will not interfere with one another, but
also leads to the lack of interaction between the data. For the
key relationship network, it is difficult to carry out accurate
correlation analysis in the follow-up, and it is difficult to
guarantee the utilization rate of the relationship between
data. The application and implementation of complete and
accurate data from the sensor data in all aspects of the
industrial chain such as process design, production and
processing, and workshop management; repair and main-
tenance plays an important role in improving product
quality, optimizing processes, and enhancing user
experience.

The combined technology is also suitable for data
analysis applications of other digital control-based au-
tomation equipment (such as robots, laser-cutting ma-
chines, and production lines). The combined acquisition
technology has broad application prospects in the open
intelligent manufacturing ecosystem. Combination
technology can collect various data items of industrial
equipment in combination and establish a relationship
network between data. The specific implementation
process of the combination technology is as follows: First,
the user uses the acquisition parameters to configure the
interface acquisition parameters, needs to configure the
parameters of the data to be collected, and defines the data
acquisition period and the combination period of the
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collected data. Second, the data acquisition module
continuously and periodically collects the equipment.
After that, the local cached data are combined to form one
or more sets of combined data; the fifth step is to cache the
combined data in the database and perform it in the cloud
persistent storage. The specific process is shown in
Figure 3.

3.1.4. The Sensor Usage in the Work

@ The efficiency of green innovation is closely related to
the application of sensor technology. First of all,
virtual sensor technology and network sensor tech-
nology can improve the monitoring range and
transmission speed of sensors through fast Fourier
transform and neural network intelligent recognition
of sensor array signals. Second, through network
sensors and multiagent cooperation technology,
sensor networks can be deployed to objectively
evaluate the green innovation efficiency of adjacent
regions. Finally, sensor technology can enable the
green development of high-carbon emission in-
dustries, focusing on enabling the production,
manufacturing, operation, and control processes in
the carbon emission field, reducing energy and re-
source consumption, and achieving the dual im-
provement of production efliciency and carbon
efficiency.

®@ The measurement accuracy of green innovation ef-
ficiency is closely related to the sensor data. First, the
measured data must be real-time data, and multi-
sensor cooperative operation can collect real-time
data. Second, the original data of the measurement
must be multisource data, and multi-sensors can
combine the combined acquisition technology
through different channels and can collect and fuse
data from different channels. Finally, the sensor data
are beneficial to the storage and transmission of data,
and the security performance of the data is very high.

3.2. Research Model

3.2.1. The TOPSIS Model of Entropy Weight. The TOPSIS
model of entropy weight is the fusion of the information
entropy and TOPSIS model. Specifically, in the traditional
TOPSIS model, the entropy method is used to determine the
index weight. The entropy-weighted TOPSIS model is
a method to approximate the ideal solution. The sample data
are not strictly limited. It is mainly suitable for multi-index,
multischeme decision analysis system evaluation. By con-
structing and calculating the Euclidean distance of the
positive and negative ideal solutions, multiple decisions can
be made.

The TOPSIS model of entropy weight is the fusion of the
information entropy and TOPSIS model. Specifically, the
entropy weight method is adopted to determine the index
weight in the traditional TOPSIS model. The main purpose is
to prevent subjective factors from being affected when the
index weights are determined during the analysis, which
enhances the objectivity of the evaluation results. The
entropy-weighted TOPSIS model is a method to approxi-
mate the ideal solution. There is no strict restriction on the
sample data. It is mainly applicable to multi-index and
multischeme decision analysis system evaluation. By con-
structing and calculating the Euclidean distance of positive
and negative ideal solutions, multiple decisions are made.
The unit is rated for superiority and superiority (better than
SFA or DEA). The main calculation steps are as follows [30]:

@ Construct a decision matrix: There are m indicators
participating in evaluation units, and there are n
evaluation indicators for each evaluated unit. The
structural decision matrix is as follows:

X=(x;), (=12 ,mj=12..n. (1)
®@ Dimensionless decision matrix: The indicators are
normalized, and the indicators are divided into
positive indicators and negative indicators. The
normalization formula for the positive and negative

indicators is as follows:
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® The information entropy of the indicator is calculated
as follows:

1z ij
&= Tnom ;sz ln(Pij)?pij - ﬁ 3)

J

@ The index entropy weight is calculated as follows:

w; = _W—jej); wie0,1L,) w=1 (4

Qi
® The weight matrix is calculated as follows:
R=(13)) o Tig = W - Xij (5)

® The optimal solution and the worst solution are
calculated as follows:

)

(6)

St =
F = max(ry;, 150

S ,rnj),S; = min(rlj,rzj,---

@ The distance between each unit is calculated, and the
positive and negative ideal solutions using Euclidean
distance are calculated as follows:

The relative progress of each unit is calculated as
follows:
Sd;
C,=——"—=C; €[0,1] 8
bSdf+8d; 10.1] ®

In formula (8), the greater the relative proximity C; of
each unit, the closer the evaluation target i is to the
ideal solution. According to relative closeness, the
higher the green innovation efficiency of the

province, the higher the classification and ranking of
each green innovation efficiency.

3.2.2. Exploratory Spatial Data Analysis. We use exploratory
spatial data analysis (ESDA) to analyze the spatial and spatial
relevance of green innovation efficiency. In the research
process, the spatial weight matrix is generated to determine
the weight of each spatial unit, and the spatial correlation
analysis is performed according to the economic attributes
of each unit. The spatial autocorrelation test determines
whether the samples are spatially related, the correlation
between them, and the spatial correlation of the description
object. ESA has two types of analysis methods: global sta-
tistics and local statistics.

In this paper, the global spatial autocorrelation index
Moran’s I is used to measure the spatial correlation of the
evaluation units in the province. The Moran index is an
important indicator of the similarity of spatial neighboring
unit elements. The Moran index is calculated as follows [31]:

Z?=1Z;‘l=1wij (% = })(xj B E)

I= A , (9)
Szzz‘:lzj:1wij

Z?:lzg'lﬂxixj

In formula (9), $? = 1/nY1L, (x; - %)*, % = 1/nY 1 xS is
the sample variance, n represents the number of spatial
units, x; represents the attribute value in the i area, W;;
represents the spatial unit neighbor weight, and G(d) rep-
resents the global G coeflicient. The Moran index is generally
between —1 and 1. Greater than 0 indicates the positive
autocorrelation, and the larger the data, the more obvious
the spatial distribution agglomeration; smaller than 0 in-
dicates the negative correlation; the smaller the data, the
stronger the spatial negative correlation. The Moran index
can be regarded as the correlation coefficient between the
observed value and its spatial lag. The observation value and
its spatial lag are drawn as a scatterplot, called Moran
scatterplot, and Moran’s I is the slope of the retracement
regression line. In this formula, the global G(d) coefficient
usually normalizes G(d) Z(G) = (G- E(G))/vVar(G).
However, E(d) and Var(G) represent the mathematical
expectation and variance of G(d), respectively. Z(d) is

G(d) = (10)



positive for the presence of high-value clusters, and Z(d) is
responsible for indicating the existence of low-value
clusters [32].

3.2.3. Spatial Econometrics Model. Maintaining the optimal
allocation of government R&D investment and green su-
pervision is not only a key factor for improving the efficiency
of green innovation in China’s provinces but also a key
factor for achieving high-quality economic growth and the
coordinated development of resources and the environment.
The internal unity is Qingshan and Jinshan Yinshan. We
make full use of previous research results to incorporate
government R&D investment, green supervision, and re-
gional green innovation capabilities into the same research
framework and build a spatial measurement model of
provincial green innovation efficiency based on the tradi-
tional Cobb-Douglas production function.

Moderately intensive government R&D investment has
a positive impact on green innovation, which can reduce
innovation costs and risks and drive local R&D investment
with leverage. Appropriate types of green regulations can
stimulate green innovation and produce compensation,
thereby reducing energy consumption and improving the
level of technology. Safeguarding the optimal allocation of
government R&D investment and the green regulation is not
only a key factor in improving the efficiency of green in-
novation in China’s provinces but also in achieving the high-
quality growth of the economy and the coordinated de-
velopment of resources and environment. Lucid waters and
lush mountains are invaluable assets. We fully draw on
previous research results, incorporate government R&D
input, green regulation, and regional green innovation ca-
pabilities into the same research framework, and build
a spatial measurement model of provincial green innovation
efficiency based on the traditional Cobb-Douglas pro-
duction function. The specific model [33] is as follows:

EIE;, = A GRD{, e ENRY,. (11)

In order to eliminate the heteroscedasticity and the
influence of different dimensions, the logarithm of each side
of (11) is processed, and an econometric model is con-
structed as follows:

InEIE;, = a + B,InGRD;, + B,InENR;, +¢; . (12)

In the formula, the variable EIE represents the green
innovation efficiency, the variable GRD represents the
government R&D input cost, the variable ENR represents
the green regulation, A represents a constant term, o and f3;
or f3,, respectively, represent the government R&D input and
green regulation elasticity coefficient, and ¢;, represents the
random error [34].

Spatial econometrics was originally derived from the
statistical analysis of spatial data. The integration of spatial
statistics and econometrics not only changes the classical
assumptions of traditional econometrics but also promotes
spatial econometrics as an independent discipline and is
widely used in many fields of natural sciences and social
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sciences. Spatial econometrics research focuses on the issue
of spatial self-first. There are four main reasons for the
source of spatial autocorrelation, which is also an important
area for the application of spatial metrology analysis. The
first is externality. For example, in economic fields such as
endogenous economic growth theory and new economic
geography theory, the analysis is concentrated on the in-
fluence of changes in the characteristics of related units of
a given unit. The second one is the spillover effect. For
example, the behavior of the interpreted variable is also
affected by the change of the explanatory variable of the
adjacent observation unit. The third reason is to ignore
important variables. For example, there is a lack of im-
portant spatial structure latent variables, which will have an
impact on different spatial observation units, and the spatial
measurement model needs to be analyzed. The last one is
spatial heterogeneity and mixing effects.

The spatial econometrics was first proposed by some
scholars. It is widely used in various disciplines and has been
recognized by the academic community. In the nearly
40years of the development of spatial econometrics, a va-
riety of spatial econometric models have emerged. Among
them, the spatial error model (SEM) and the spatial lag
model (SLM) are the two most used spatial measurement
models in the empirical analysis. The former could be ap-
plied to the spatial correlation of error terms, and the latter is
applicable that there is a spatial lag that is interpreted as
a variable. They proposed a spatial Durbin model (SDM)
with both SEM and SLM properties, which greatly enriched
SEM and SLM. This article builds three spatial econometric
models of SDM, SLM, and SEM based on the basic
econometric model [35]. The specific model is as follows.

Model 1. The spatial Durbin model is expressed as
InGIE;, = pWInGIE;, + B, + B,InGRD;, + f,InSO0,
+ fB5InUSD; ; + BInEP;, + B;WInGRD,;,
+ BsWInSOO;; + B, WInUSD;, + B, WInEP;, +¢;,.
(13)

Model 2. The spatial lag model is expressed as
InGIE;, = pWInGIE;, + 8, + 3,I1nGRD;, + ,InSOO0;
+ B3InUSD; ; + B,InEP;; +¢; .
(14)

Model 3. The spatial error model is expressed as
InGIE;, = B, + $,InGRD;, + 3,InSOO;

+ B5InUSD;; + B,InEP;, + (1 — pW)g; . (19

The choice of different models is mainly based on
judgment rules [36]. The SLM model and the SEM model are
screened using the LM-error and LM-lag, robust LM-error
test, and robust LM-lag test. If both models are applicable,
the corresponding Wald test and the LR test are carried out
to determine whether the SDM model can be simplified into
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an SLM model or an SEM model. Finally, the Hausman test
is used to determine whether the fixed or random effect is
used to determine the most superior spatial
econometric model.

3.3. Theoretical Introduction

3.3.1. Spillover Effect Theory

@ The development of one aspect of a thing drives the
development of other aspects of the thing.

® There is an impact of the increase in aggregate de-
mand and national income in a certain region on
other countries.

@ Spillover effects: There are technology spillover ef-
fects. Multinational corporations are the main in-
ventors of the world’s advanced technologies and the
main source of supply for the world’s advanced
technologies. Multinational corporations realize their
technology transfer through the internalization of
foreign direct investment. This kind of technology
transfer behavior brings external economy to the host
country, that is, technology spillover. A technology
spillover is a specific situation of positive externality.
It is neither the benefit obtained within the economic
activity itself nor the benefit obtained by the user of
the product of the activity. In other words, this kind
of interest is external to the economic activity itself
and produces an external economy to society.

3.3.2. Analysis of the Spatial Spillover Effect Mechanism.
The so-called spillover effect refers to when an organization
conducts an activity. It will not only produce the expected
effect of the activity but also affect people or society outside
the organization. Spillover effects are divided into economic
benefit effects and technology spillover effects:

@ Arrow first explained the role of spillover effects in
economic growth with externalities. He believes that
new investment has a spillover effect. Companies that
invest in not only can increase productivity by ac-
cumulating production experience, but other com-
panies can also increase productivity by learning
from those companies that invest.

® Paul Romer proposed a knowledge spillover model.
Knowledge is different from ordinary commodities in
that knowledge has spillover effects. This enables the
knowledge produced by any manufacturer to in-
crease the productivity of the whole society. “En-
dogenous technological progress” is the driving force
of economic growth. In Romer’s model, the total
production function describes the stock of capital,
labor, and the stock and output of creative technology
and the relationship between.

@@ Palente studied the relationship between technology
diffusion, learning-by-doing, and economic growth.
He designed a learning-by-doing model for a specific
manufacturer to select technology and absorb time.

He believes that before and after absorbing various
technologies, the proprietary technical knowledge
accumulated by manufacturers through learning-by-
doing is ready for further introduction of
technologies.

4. Empirical Analysis

4.1. Green Innovation Efficiency Analysis. This paper uses the

TOPSIS model of entropy to measure the green innovation

efficiency of 30 provinces (cities) in mainland China and

classifies the eastern, central, northeastern, and western

regions, respectively, see Table 2 for more details.
Analysis of the form is as follows:

® In terms of time, China’s provincial-level green in-
novation efficiency is changing year by year, and the
overall trend is improving year by year. Over time,
the efficiency of green innovation in each province
has been improved to varying degrees, and the degree
of difference is also diverse. This is mainly because, on
the one hand, green technology is promoted and
applied on a larger scale as each province’s GDP and
infrastructure continue to improve, and its economic
base continues to be consolidated. On the other hand,
the government’s investment in energy consumption
and green pollution has increased significantly. In
addition, from the point of view of time, in the vi-
cinity of 2008, most provinces have experienced
a small decline in green innovation efficiency, which
is mainly affected by the financial crisis.

® From the provincial dimension, the overall efficiency
of green innovation in China’s provinces is low, and
the overall development is uneven and un-
coordinated, showing a low trend in the east, high,
and middle. The gap between green innovation ef-
ficiency between provinces is very prominent, and
the individual provinces are almost zero. At the
theoretical level of the two mountains, Jiangsu
(0.7374), Guangdong (0.7335), Shanghai (0.6213),
Zhejiang (0.5866), Beijing (0.5504), Shandong
(0.5340), and other six provinces (A grade) have
already marched toward the goal of lucid waters and
lush mountains. They all performed well in the co-
ordination of economic growth and resource and
green load. 17 provinces (B-grade, C-class, and D-
class) such as Tianjin (0.4831), Fujian (0.3156), and
Henan (0.3025) failed to achieve economic growth
and coordinated development of resources and en-
vironment and failed to achieve green water. The
remaining seven provinces (E-level) have a large
space for green innovation efficiency.

® From the regional dimension, it descends from east
to west, east (0.4882), national (0.2720), central
(0.2245), northeast (0.2098), and western (0.1182)
regions. The trend of the four major regions is shown
in Figure 4. Through testing the green efficiency
growth rate of the four major economic regions, it is
found that the growth in the central region is
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TaBLE 2: China’s provincial green innovation efficiency.

Growth
Province Mean Level 2005 2007 2009 2011 2013 2015 2017 2019 2021 rate
(%)
Beijing 0.5504 0.5650 0.5460 0.5950 0.5585 0.6957 0.5369 0.5156 0.5213 0.4680
Tianjin 0.4831 0.4333 0.5176 0.5571 0.5267 0.5729 0.4287 0.4292 0.4467 0.4072
Hebei 0.2459 0.2556 0.2458 0.2499 0.2583 0.2192 0.2401 0.2394 0.2538 0.2429
Shanghai  0.6213 0.7603 0.7324 0.6731 0.6792 0.6531 0.5712 0.5277 0.5113 0.4838
East region Jiangsu 0.7374 0.6028 0.6200 0.6298 0.6008 0.7024 0.8001 0.8645 0.9280 0.9044 17.52
Zhejiang 0.5866 0.3904 0.3527 0.4749 0.5640 0.6536 0.6526 0.6719 0.7313 0.7529 :
Fujian 0.3156 0.2509 0.2768 0.3308 0.3114 0.3277 0.2922 0.3286 0.3054 0.2893
Shandong  0.5340 0.4651 0.4779 0.5013 0.5022 0.5363 0.5854 0.5793 0.5825 0.5461
Guangdong  0.7335 0.5473 0.5316 0.6452 0.6430 0.7340 0.8579 0.8858 0.8697 0.9068
Hainan 0.0746 0.0126 0.1165 0.1601 0.1647 0.0499 0.0649 0.0659 0.0531 0.0322
Shanxi (1) 0.1129 0.0968 0.0956 0.1009 0.1445 0.1245 0.1238 0.1127 0.1090 0.0957
Anhui 0.2430 0.1681 0.1720 0.1840 0.1771 0.2057 0.2615 0.3243 0.3495 0.3756
C . Jiangxi 0.1541 0.1257 0.1123 0.1284 0.1636 0.1658 0.1563 0.1740 0.1683 0.2186
entral region 52.10

Henan 0.3025
Hubei 0.2882
Hunan 0.2464

Liaoning  0.2743
Jilin 0.2042
Heilongjiang  0.1510
Neimenggu 0.1056
Guangxi  0.1555
Chongging  0.2721
Sichuan 0.2597
Guizhou  0.0545

0.2556 0.2518 0.2529 0.2887 0.2708 0.3218 0.3198 0.3747 0.3628
0.2891 0.2804 0.2580 0.2555 0.2769 0.2893 0.2909 0.3263 0.3224
0.1980 0.1887 0.2002 0.1922 0.1998 0.2509 0.3077 0.3333 0.3486

0.2715 0.2990 0.2903 0.3024 0.2753 0.2719 0.2537 0.2651 0.2090
0.1700 0.1439 0.1109 0.2319 0.2433 0.2427 0.2310 0.1827 0.2185 -11.20
0.1602 0.1687 0.1703 0.1724 0.1436 0.1543 0.1306 0.1243 0.1069
0.0561 0.0538 0.0947 0.0975 0.0997 0.1286 0.1364 0.1450 0.1341
0.1663 0.1268 0.1531 0.1329 0.1430 0.1717 0.1721 0.1578 0.1622
0.2289 0.2639 0.2746 0.2291 0.3375 0.3104 0.2332 0.2816 0.3120
0.3140 0.2958 0.2709 0.2797 0.2703 0.2367 0.2202 0.2357 0.2222
0.0558 0.0564 0.0541 0.0620 0.0428 0.0536 0.0517 0.0548 0.0584

Northeast
region

mEoEmmOENEo OO0 00Om | OwmTdOdmeErwe > 0w

Western region Yunnan 0.0924 0.0951 0.0935 0.0940 0.0927 0.0775 0.0804 0.0908 0.0988 0.1074 —8.78
Shanxi (2)  0.2010 0.2854 0.2403 0.1995 0.2091 0.1778 0.1959 0.1662 0.1770 0.1601
Gansu 0.0683 0.0873 0.0625 0.0572 0.0719 0.0606 0.0698 0.0806 0.0739 0.0406
Qinghai 0.0061 0.0134 0.0071 0.0042 0.0201 0.0018 0.0000 0.0003 0.0002 0.0030
Ningxia 0.0214 0.0272 0.0114 0.0182 0.0177 0.0095 0.0237 0.0337 0.0259 0.0185
Xinjiang 0.0640 0.0723 0.0701 0.0742 0.0697 0.0560 0.0610 0.0546 0.0609 0.0602
*Category division criteria, A: 0.5-1; B: 0.26-0.5; C: 0.2-0.26; D: 0.1-0.2; E: 0-0.1. Growth Ratespgs_2021 = (RGICz021 = RGIC5005)/RGICxgs.
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FIGURE 4: Trends of green innovation efficiency in the four major economic regions.
particularly prominent, with a growth rate of 52.10% growth rates of —11.20% and —8.78%, respectively.
and an increase of 17.52% in the east, both greater Both the northeast and west have seen negative
than the national average growth rate of 15.50%. Both growth. This is because the lack of national guidance

the northeast and the west have experienced negative and support for R&D directions and key points is
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TaBLE 3: China’s provincial green innovation efficiency global Moran index.
Years Moran’s I Z value
2005 0.303*** 2.775
2006 0.361%** 3.238
2007 0.377*** 3.368
2008 0.405*** 3.564
2009 0.414**~ 3.633
2010 0.364""* 3.221
2011 0.419*** 3.668
2012 0.387*** 3.408
2013 0.349** 3.104
2014 0.263*** 2.420
2015 0.293*** 2.699
2016 0.321%**~ 2.932
2017 0.326"** 2.993
2018 0.328*** 2.999
2019 0.323*** 2.961
2020 0.300"** 2.783
2021 0.312**~ 2.885

Note. *** p<0.01, ** p<0.05, and *p<0.1. The same is given as in the following table.

TABLE 4: LM test and Hausman test.

Eastern region (SLM)

Central region (SLM) Northeast and western

Tests regions (SEM)

Statistics P value Statistics P value Statistics P value
LM lag 7.787 0.005 12.84 0.001 2.443 0.018
Robust LM lag — — 7.138 0.008 — —
LM error 1.226 0.268 6.165 0.013 7.851 0.005
Robust LM error — — 0.460 0.498 — —
Hausman 32.975 0.001 45.993 0.001 22.099 0.050
Note. “—” means no inspection is required.

even more serious although the northeast has strong
R&D personnel and high-level infrastructure, and
most of the northeast manufacturing companies are
old companies. It is still difficult to form new growth
poles by using traditional technologies. Due to
economic strength, historical reasons, resource en-
dowments, and other reasons, the western region’s
green innovation research and development lags. The
weak technological transformation capacity of the
western region is a bottleneck, restricting the de-
velopment of green innovation.

4.2. Spatial Autocorrelation Test. We use the exploratory
spatial data analysis method to calculate the global Moran
index of China’s provincial green innovation efficiency
through Stata 15.0 software, and the Monte Carlo simulation
method is used to test the significance of Moran’s I. The
results are shown in Table 3.

The analysis of the form is as follows.

Moran’s I fluctuated between 0.263 and 0.419, and both
were significant at the 1% level, rising first and then rising
and rising (N-type), indicating that there is a significant
positive spatial correlation in regional green innovation. In
order to further show a spatial correlation, Moran scatter-
plots were drawn for 2005, 2010, 2014, 2018, and 2021. There
are obviously four quadrants in the Moran scatterplots: the

first quadrant is high-value clustering (H-H), the second
quadrant is a low value surrounded by a high value (L-H),
the third quadrant is low-value clustering (L-L), and the
fourth quadrant is surrounded by a low value (H-L). Most of
the provinces fall in the first and third quadrants. The result
rejects the hypothesis that green innovation efficiency is
spatially randomized, which further confirms the agglom-
eration of China’s provincial green innovation efficiency in
the geospatial space.

4.3. Spatial Spillover Effect. After reshaping the indicators of
the green evaluation system, green innovation efficiency
(EIE) was selected as the explanatory variable and gov-
ernment R&D investment and green regulations were used
as the explanatory variable to test the spatial spillover effect
of green innovation efficiency in the eastern, central,
northeastern, and western regions of China. It also analyzes
the spatial and temporal differentiation characteristics of
green innovation efficiency in the four major economic
regions.

The Moran index can test whether the sample data have
spatial autocorrelation but cannot determine the specific
form of the spatial model. Therefore, it is necessary to select
the appropriate model through the spatial measurement
model screening rule. According to Elhorst et al and Anselin
et al. judgment rules, the LM test and the Hausman test were
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TABLE 6: Direct and indirect effect coeflicients.

Eastern region (SLM)

Central region (SLM)

Northeast and western regions (SEM)

Variables Direct Indirect Total Direct Indirect Total Direct Indirect Total
effect effect effect effect effect effect effect effect effect
InGRD ~0.554***  —0.088"**  0456"**  0.580"**  0267°**  0313***  0305"**  0925***  0.619***
InSOO 0.121*** -0.019 0.102 —0.342°**  0.597°**  0254"**  —0.334"*  0234"**  —0.567°*"
InUSD 0.029 —-0.005 0.024 -0.172*** 0.185*** 0.013 0.053 0.189 -0.137
InEP 0.378*** —0.060 0.317*** 0.059** 0.169** —0.008 -0.024 0.036 —0.059

carried out on the indicators of green innovation efficiency
in different regions (Table 4). According to the Hausman
test, the spatial spillover effect of green innovation efficiency
needs to adopt the fixed-effect model. Which fixed effect
model is used? It can be seen from the LM test that the SLM,
SLM, and SEM models are more advantageous as the spatial
measurement model in the eastern, central, northeast, and
western regions. Mixed regression effects, spatially fixed
effects, time-fixed effects, and double-fixed effects tests were
performed on the selected models, see Table 5. It is judged by
combining the goodness of fit (R2) and the log-likelihood
value. It can be seen in Table 5 that relatively high R2 and
log-L are the double fixed-effect model, the mixed fixed-
effect model, and the double fixed-effect model and that the
goodness of fit and natural log-likelihood function values of
these three models are 0.868 and -36.882, 0.876 and
—110.078, and 0.886, and —146.98, respectively, indicating
that the overall interpretation ability of model (14), model
(23), and model (32) is stronger. To further illustrate the
interaction mechanism between the explanatory variables
and the explained variables, the direct and indirect effect
coefficients were calculated using the three selected models,
as shown in Table 6.

The analysis of the form could be conducted according to
the following perspectives:

@ The perspective of government R&D investment has
an enormous impact on the efficiency of green in-
novation and has significant spatial spillover effects.
Nonetheless, the spatial spillover effects between
varied regions are quite different, and influence
strength varies. For example, for the eastern region,
government R&D investment inhibits green in-
novation (—0.410), while central and northeastern
and western government R&D inputs will promote
green innovation efficiency, with correlation co-
efficients of 0.553 and 0.594, respectively. The spatial
spillover effect of government R&D investment
shows the same pattern. For the eastern region to
improve the R&D investment of the provincial
government, it will inhibit the green innovation ef-
ficiency of neighboring provinces and cities and
promote the R&D investment of the provincial and
municipal governments in the central, northeast, and
western regions. The efficiency of green innovation in
neighboring provinces and cities has surged. On the
other hand, the influence of R&D investment from
the eastern region to the central region to the western
region on the efficiency of green innovation has

gradually increased, and the spatial spillover effect
has gradually increased. The main reason that could
explain for the fact is that the economic base and
innovation resources in the eastern region are rela-
tively sufficient and that enhancing government R&D
investment will not significantly promote the effi-
ciency of green innovation. On the contrary, it may
cause a waste of resources and corporate speculation.

® The perspective of green supervision: It can be seen

from the results of the spatial measurement model
test that different types of green supervision have
different mechanisms for green innovation efficiency.
The command-based green regulation and the
public-participating green regulation have a signifi-
cant impact on green innovation efficiency, both at
a level of 1%. However, the impact of different re-
gional green regulations on the efficiency of green
innovation is diametrically opposed. For example,
the directive green regulations (0.165) in the eastern
region promoted green innovation, while the central,
northeastern, and western regions did inhibit green
innovation, with correlation coefficients of —0.228
and -0.360, respectively. From the perspective of
spatial spillover effects, R&D investment and man-
datory green regulations in the eastern region have
negative spillover effects. The command-type green
regulation and the incentive-type green regulation in
the central region have positive spillover effects and
incentive green regulations in the northeast and
western regions, and public participation in green
regulations has a positive spillover effect. From the
eastern region to the central region to the northeast
and western regions, the spatial spillover effect in-
tensity gradually weakened.

® The perspective of direct and indirect effects: The

direct effect value and significance reflect the re-
lationship between each explanatory variable and the
regional innovation efficiency, and the indirect effect
reflects whether the variable has a spatial spillover
effect. Through the direct effect, it is found that the
R&D input and the command-type green regulation
coefficient of the eastern region are negative, in-
dicating that it has a negative direct effect on the
efficiency of green innovation. The R&D input co-
efficients of the central, northeastern, and western
regions are positive, indicating that they have
a positive direct effect on the efficiency of green
innovation, and the command-type green regulation
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coefficient is negative, demonstrating a negative di-
rect effect on the efficiency of green innovation.
Through the indirect effect, it is found that the R&D
input coefficient of the eastern region is negative,
indicating that it has a negative spatial spillover effect
on green innovation. The R&D input and green
regulation coeflicients of the central, northeastern,
and western regions are positive, indicating that they
have a positive spatial spillover effect on green
innovation.

5. Conclusion and Measures

5.1. Conclusion. In order to analyze the spatial and temporal
differentiation characteristics of China’s provincial green
innovation efliciency, this paper uses the entropy weight
TOPSIS model and the spatial econometric model to
measure the green innovation efficiency of 30 provinces in
China and tests the R&D investment, green regulation, and
green innovation of China’s four major economic zones. The
benefit spatial spillover effect is as follows:

@ The efficiency of green innovation in China’s prov-
inces is changing volatility year by year, and the
overall trend is increasing year by year. Over time, the
efficiency of green innovation in each province has
improved to varying degrees, and the degree of
difference is also diverse. In addition, from the point
of view of time, in the vicinity of 2008, most prov-
inces have experienced a small decline in green in-
novation efficiency, which is mainly affected by the
financial crisis. On the other hand, China’s provincial
green innovation efficiency is generally low, and
overall development is uneven and uncoordinated,
showing a low trend in the east, high, middle, and
west. The gap between green innovation efficiency
among provinces is very prominent, and the indi-
vidual provinces are almost zero. Finally, China’s
provincial green innovation efficiency descends from
east to west, east (0.4882), national (0.2720), central
(0.2245), northeast (0.2098), and western (0.1182)
regions. Through testing the green efliciency growth
rate of the four major economic regions, it is found
that the growth in the central region is particularly
prominent, with a growth rate of 52.10% and an
increase of 17.52% in the east, both greater than the
national average growth rate of 15.50%. Both the
northeast and the west have experienced negative
growth rates of —11.20% and —8.78%, respectively.

®@ According to the results of the spatial autocorrelation
test, the Moran index fluctuates between 0.263 and
0.419, and both are significant at the 1% level, which
grows continuously, which fully shows that there is
an obvious positive spatial correlation for China’s
provincial green innovation efficiency. In order to
further show a spatial correlation, Moran scatterplots
were drawn for 2005, 2010, 2014, 2018, and 2021. We
found that the Moran scatterplots of China’s pro-
vincial green innovation efficiency clearly have four
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quadrants: the first quadrant is a high-value cluster
(H-H), the second quadrant is a low value sur-
rounded by a high value (L-H), the third quadrant is
a low-value cluster (L-L), and the fourth quadrant is
a high value surrounded by a low value (H-L). It can
be seen from the Moran scatterplots that most of the
provinces fall in the first and third quadrants. This
result rejects the hypothesis that green innovation
efficiency is spatially randomly distributed, further
confirming the existence of China’s provincial green
innovation efficiency in the geospatial space and
agregation phenomenon.

® In different regions, the spatial spillover effects and

impact mechanisms of government R&D investment,
green regulations, and green innovation are quite
different. From the eastern region to central region to
northeast and western regions, the impact of gov-
ernment R&D investment on green innovation has
gradually increased and the impact of green regu-
lations on green innovation has gradually weakened,
so the spatial spillover effect has gradually increased.

5.2. Future Research

@ The research in this paper does not involve the

analysis of influencing factors. Future research can
analyze the influence mechanism of green innovation
efficiency through models from different perspectives
of influencing factors.

® The sensor data collection model proposed in this

paper is relatively simple, but in reality, it is often
more complex. Future research can collect multi-
source data and integrate it more maturely through
the Internet of things technology.

® This paper takes China’s regional green innovation

efficiency as the research object and draws the
phenomenon of spatial aggregation of green in-
novation efficiency. Future research can choose
different research objects to demonstrate the con-
clusions of this research.

5.3. Measures. Based on the above conclusions, the fol-
lowing measures can be drawn:

® At present, the manufacturing enterprises of sensors

are mainly concentrated in the Yangtze River Delta
and gradually form a regional spatial layout domi-
nated by central cities such as Beijing, Shanghai,
Nanjing, Shenzhen, Shenyang, and Xi’an. Among
them, nearly half of the major sensor enterprises are
located in the Yangtze River Delta region, and the
others are in turn in the Pearl River Delta, Beijing-
Tianjin region, central region, and northeast region.
The government should speed up the standardiza-
tion, performance normalization, function in-
tegration, and structure standardization of sensor
products, accelerate the formulation of relevant
standards and specifications, and improve the
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product quality control capability with standardiza-
tion. The government should strengthen techno-
logical innovation in sensor material preparation and
special equipment, create a “diamond” for sensor
R&D and manufacturing, and provide tamp tool
support for improving the quality of sensor products.
The government should accelerate the research and
development of new sensor materials, new technol-
ogies, new processes, and new tools, strengthen
systematic management, and improve the product
quality control ability with refined management. The
government should strengthen the development of
special sensors under complex environmental con-
ditions, enhance stability, reliability, and durability,
and improve the sensor guarantee level under harsh
conditions and high-intensity operation conditions.

® The green innovation efficiency in the northeast and
western regions is relatively low, but most of them
belong to China’s key development areas and have
a strong resource and green-carrying capacity. To
improve the efficiency of green innovation in the
northeast and the west, the government should
support it from the policy level of R&D capital in-
vestment and green innovation subsidies, reduce the
burden of green innovation, and stimulate the vitality
of enterprise innovation. On the other hand, it is
necessary to establish a green and low-carbon de-
velopment concept and achieve pollution reduction
and emission promotion. The development of the
central region is in full swing, and the economic
foundation is strong. The government should give
guidance from the policy level. The western region is
a region of innovation and backwardness. We should
bear in mind that making rapid progress while
avoiding the old road of “the first pollution after
treatment” in developed areas. The eastern coastal
areas are economically developed and have high
efficiency in green innovation. Their pressure to
undertake green innovation costs is relatively small,
but their resource and green-carrying capacity have
begun to weaken. The government should strengthen
the economic structure and resource consumption,
etc., by building an open and innovative ecological
environment. The government should create a good
atmosphere for innovation and encourage enter-
prises to carry out more green innovation activities.

® A coordinated and open economic system should be
established to break the administrative barriers
among provinces. Green innovation efficiency has
a positive spatial spillover effect, and the existence of
administrative barriers among provinces hinders the
spatial spillover of green innovation. A coordinated
and open economic system not only promotes the
spatial balance of population, economy, resources,
and environment but also promotes the flow and
sharing of innovation factors among provinces and
contributes to the “strong alliance” of green in-
novation among provinces. The continuous spatial
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spillover effect produces positive radiation, which
drives the provinces with low green innovation ef-
ficiency to improve together.

® A multigreen regulation policy should be imple-
mented, combining appropriate provincial and re-
gional innovations and formulating appropriate
regulatory combinations. Command-based green
regulations can stimulate green product innovation
more than market-incentive green regulations. For
green process innovation, the incentive effect of the
market-incentive green regulation is relatively better,
because the incentive green regulation has greater
flexibility and stability, which enables enterprises to
have a certain degree of freedom of choice and
provides enterprises with green process innovation
and strong external economy incentives. In addition,
the public should be encouraged to participate in the
formulation of green regulations and become im-
plementers and supervisors of regulations and pol-

icies. Green laws and regulations of public
participation are an effective incentive for green
innovation.
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