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Te periodical application of androgen deprivation therapy, immunotherapy, or chemotherapy is an efective method for cancer
treatment, but few studies combine them. To explore such comprehensive treatment mechanisms, this paper establishes a pulsed
stochastic hybrid dynamics model considering tumor antigenicity and density-dependent mortality. In addition to analyzing the
basic properties of solutions such as the tumor-free periodic solution and global attraction of the model, the threshold conditions
for the persistence and extinction of prostate cancer cells and efector cells are obtained by using stochastic diferential equation
theory. Besides, sufcient conditions for the existence of stationary distribution of the system are established. Te results reveal
that comprehensive therapy or white noise can determine tumor dynamics and suggest that the treatment of prostate cancer
should be individualized according to the state of tumor development. Finally, biological signifcance is discussed and conclusions
are given.

1. Introduction

Prostate cancer is the second leading cause of cancer death
and the most common type of cancer in American men
[1, 2]. Prostate specifc antigen (PSA) is a protein secreted by
prostate cells. It is the main index to detect the presence of
malignant tumors [3–5]. Prostate cancer is a hormone-
dependent cancer [6]. Prostate cancer cells include andro-
gen dependent (AD) and androgen independent (AI) cells
during evolution. Surgery, chemotherapy, and radiotherapy
are traditional methods, but these treatments often cannot
eliminate cancer cells completely and may have side efects
[7]. To this end, androgen deprivation therapy (ADT) and
immunotherapy came into being. ADT has become the main
treatment for prostate cancer because it afects the pro-
liferation rate and mortality of tumor cells [8, 9]. Besides,
ADT includes intermittent androgen deprivation (IAD) and
continuous androgen deprivation (CAD) therapy [3].
However, ADT is often accompanied by the emergence of

drug-resistant cells, then, an additional treatment is needed
to introduce. Since immunotherapy has become the most
efective method for the treatment of prostate cancer by
stimulating a massive immune response in the target tumor
and enhancing the immune system of patients [1, 7, 10–12].
It is reasonable and efective to add immunotherapy to ADT
to treat prostate cancer. Moreover, CAD therapy is one of
the endocrine therapies for advanced prostate cancer, and
there is no clear medical evidence that IAD is better than
CAD therapy [3, 13].

Mathematical modeling and analysis of ADT and im-
munotherapy have devoted to the development of mecha-
nisms for tumor progression [1, 8, 9, 14–20]. Ideta et al.
established a deterministic model of IAD therapy, illus-
trating that how the net growth rate of AI cells afects tumor
growth and recurrence [16]. Jain and Friedman proposed
a mathematical model to simulate prostate cancer response
to ADT [17]. In addition, the interaction between tumors
and immune cells has been studied by many mathematical
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models [7, 10–12, 21–24]. Since many studies have shown
that single chemotherapy or immunotherapy is far less ef-
fective than comprehensive therapy, the therapeutic efect of
single chemotherapy is also very limited [1, 10, 25, 26]. Yang
et al. pointed out that tumor cells can be eradicated or
controlled with comprehensive therapy [11]. Hence, the
mathematical model of the combination of ADT and im-
munotherapy has been studied. Portz and Kuang then de-
veloped a model of advanced prostate cancer to test the
efcacy of immunotherapy combined with ADT. Teir re-
sults suggest that comprehensive treatment can stabilize the
disease [1]. Moreover, Rutter and Kuang confrmed that IAD
therapy can delay the occurrence of drug resistance and
improve the quality of life of patients [20].

Nevertheless, most of these models are all deterministic
[1, 11, 16, 17, 20], but the growth of cancer cells is easily
afected by temperature, nutrition, radiation, and other
environmental interferences [3, 7, 10, 27–33]. Naturally, the
deterministic system of Ideta et al. was developed into the
stochastic system of Tanaka and collaborators [16, 27]. In
2018, Hening and Nguyen studied the coexistence and ex-
tinction of stochastic Kolmogorov systems and gave sharp
conditions under which populations converge exponentially
to their unique stationary distributions [32]. Benaim in-
vestigated the stochastic persistence and extinction of
populations, and the results greatly generalized the results of
various stochastic models of population dynamics given by
stochastic diferential equations or pure jump processes [33].
Zazoua and Wang introduced the stochastic model of
prostate cancer and showed the stability of the system that
can be determined by white noise [3]. Furthermore, clinical
data have shown that immunotherapy can promote che-
motherapy [7, 25, 26, 34]. Tereafter, Yang established
random tumor-immunemodels combining immunotherapy
and chemotherapy, and observed that all dynamic processes
of tumors can be realized by changing environmental noise
[7, 10]. In 2021, Chen et al. proposed a mathematical model
describing the threshold dynamics of tumors under random
interference of tumor antigenicity and white noise [35].
Yang et al. studied stochastic impulsive tumor models
combining ADT and immunotherapy to analyze the elim-
ination and persistence of tumor cells [23, 24]. Moreover,
Rihan and Alsakaji proposed a stochastic epidemic model
with time delay. It is proved that the stochastic delay model
is consistent with the physical sensitivity and volatility of the
actual observation [29]. Rihan and Rajivganthi introduced
a stochastic tumor-immune model with random noise in
epidemiology and immunology, and concluded that white
noise is a key factor in treating infectious diseases [28]. In
2022, Alsakaji et al. expanded the SEIR epidemic model by
combining stochastic perturbation with time delay, estab-
lished a mathematical model considering vaccination, time
delay and random noise, and studied the dynamics of

COVID-19 in the UAE [30]. Furthermore, the dynamics of
delayed diferential model of tumor-immune system with
random noise was investigated by Rihan and Alsakaji. Teir
results showed that in some cases, random noise can
completely inhibit the growth of tumors [31]. In addition,
the idea of randomness is also widely used in numerical
calculation, which is of great signifcance for the develop-
ment of stochastic computing procedure [36–42].

As our knowledge, immunotherapy combined with
chemotherapy or ADT has been widely studied, but there are
few scholars combining these three therapies to establish
models [1, 7, 10, 20, 34]. Actually, it is necessary to consider
the infuence of tumor antigenicity on its growth, because it
always exists in the whole life cycle of the tumors [11]. In
addition, some cancer cells will die due to limited living
space and insufcient resources and nutrition [14]. For the
purpose, considering both antigenicity and density-
dependent mortality of tumors, we propose a pulsed sto-
chastic model combining CAD therapy, immunotherapy,
and chemotherapy to explore hybrid dynamics and cancer
therapy strategies. We mainly answered the following
questions: (1) How do the periods, dosages, and frequencies
of in pulse comprehensive therapy afect tumor dynamics?
(2) Does the system have a unique ergodic stationary dis-
tribution? (3)What is the diference between comprehensive
treatment and single treatment and what are the medication
strategies for clinical medicine?

Te rest of this paper is arranged as follows. In Section 2,
a pulsed stochastic model is proposed and some useful basic
knowledge of ISDEs (Impulsive stochastic diferential
equations) is presented. In Section 3, the expression of
a tumor-free solution and the global attraction and
boundness of the system are showed. In Section 4, threshold
conditions for persistence and extinction of prostate cancer
cells and efector cells are obtained. In Section 5, the exis-
tence of a unique ergodic stationary distribution of the
hybrid system is analyzed. Te numerical simulations are
given out to verify the theoretical results in Section 6. Finally,
this paper is concluded in Section 7.

2. Preliminaries and Mathematical Model

2.1.Model Formation. In 2017, Rutter and Kuang developed
a deterministic model of prostate cancer dendritic cell
vaccine combined with hormone therapy to explore its
global dynamics [20]. To separate the infuence of stochastic
noise from immune response, Zazoua and Wang did not
include the state variables of efector cells and cytokines
related to immunotherapy. Inspired by Tanaka et al. [27],
they proposed a stochastic mathematical model to explore
the evolution of prostate cancer cells [3, 20]. Let A be the
concentration of androgen in the blood. Z1 and Z2 are AD
and AI cells, respectively. Teir model is as follows:
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dA

dt
� − c A − a0( 􏼁 − ca0u􏼂 􏼃,

dZ1 � r1A 1 −
Z1 + αZ2

K
􏼒 􏼓 − p1 + m1( 􏼁 1 −

A

a0
􏼠 􏼡􏼨 􏼩Z1dt + σ1Z1dB1(t),

dZ2 � r2 1 −
βZ1 + Z2

K
􏼠 􏼡Z2 + m1 1 −

A

a0
􏼠 􏼡Z1􏼨 􏼩dt + σ2Z2dB2(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Since the single treatment can easily make prostate
cancer cells develop drug resistance, and AD cells eventually
develop into AI cells. It is particularly critical to add new
treatments to reduce drug resistance [25, 26]. In 1994,
Kuznetsov et al. developed an infuential deterministic
tumor-immune model [43]. Moreover, some experimental
and clinical studies have shown that pulsed immunotherapy
combined with chemotherapy is more practical than single
therapy for treating cancer [44, 45]. Based on the above-
mentioned considerations, Yang incorporated the white

noise into the model of Kuznetsov et al. [43], and studied
a stochastic model of chemotherapy combined with im-
munotherapy, which showed that the larger white noise can
lead to the extinction of tumors and the combination
therapy could avoid the shortcomings of a single therapy
[34, 43–45]. Ten, taking immunotherapy as an auxiliary
treatment to prevent drug resistance is reasonable. Let X(t)

and Y(t) be the prostate cancer cells and efector cells,
respectively. H is the concentration of a chemotherapeutic
drug at time t. Te system is written as follows [10]:

dX � r(1 − ηX)X − aXY − k1H(t)X􏼂 􏼃dt + δ1XdB1(t),

dY �
bXY

1 + υX
− cXY − dY − k2H(t)Y􏼢 􏼣dt + δ2YdB2(t),

dH � − μHdt,

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT,

H nT
+

( 􏼁 � H(nT) + ι,

Y nT
+

( 􏼁 � (1 + e(nT))Y(nT),

⎫⎪⎬

⎪⎭
t � nT.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

However, few scholars have explored the dynamic be-
haviors of complex dynamical systems that combine ADT
with immunotherapy and chemotherapy. It is very mean-
ingful to study how dosages, periods (or frequencies) of drug
use under pulse comprehensive treatment afect tumor
dynamics and provide theoretical guidance for clinical

treatment. Inspired by CAD in system (1) and immuno-
therapy and chemotherapy in system (2), we take tumor
antigenicity and white noise into consideration to investigate
the evolution of prostate cancer cells under comprehensive
treatment [3, 7, 10, 11, 14, 35]. Ten, our model is described
by

dX � r[ )A 1 −
X

K
􏼒 􏼓X − d1 1 −

A

a0
􏼠 􏼡 + d2􏼠 􏼡X − k1H(t)X

− aX Y( ] dt + δ1XdB1(t),

dY � (C − d)Y − k2H(t)Y − cXY􏼂 􏼃dt + δ2YdB2(t),

dA � − c A − a0( 􏼁 − ca0u􏼂 􏼃dt,

dH � − μHdt,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT,

H nT
+

( 􏼁 � H(nT) + ι,

Y nT
+

( 􏼁 � (1 + e(nT))Y(nT),

⎫⎪⎬

⎪⎭
t � nT,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)
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where Bi(t)(i � 1, 2) is an independent Brownian motion.
Te biological meanings of other parameters are the same as
systems (1) and (2), and all of these parameters in system (3)
are positive. Te biological meanings of other parameters
from system (1) to system (3) are shown in Table 1.

Te evolution of androgen dynamics takes less time to
reach equilibrium than cancer cells because androgen dy-
namics is faster than prostate cancer cells [3]. Tus, we let
androgen go into equilibrium A∗ � a0(1 − u), and let R1 �

rA∗ � ra0(1 − u), U1 � d1u + d2, then system (3) becomes

dX � R1X 1 −
X

K
􏼒 􏼓 − U1X − k1H(t)X − aXY􏼔 􏼕dt

+δ1XdB1(t),

dY � (C − d)Y − k2H(t)Y − cXY􏼂 􏼃dt + δ2YdB2(t),

dH � − μHdt,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT,

H nT
+

( 􏼁 � H(nT) + ι,

Y nT
+

( 􏼁 � (1 + e(nT))Y(nT),

⎫⎪⎪⎬

⎪⎪⎭
t � nT.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Next, we frst give the biological meaning and source of
the parameters involved in this paper, and then, give the
basic knowledge for further research.

2.2. Preliminaries. Let (Ω,F, Ft􏼈 􏼉t≥0,P) be a complete
probability space (Bi(t) is defned on this), which conforms
to the usual conditions and has a fltration Ft􏼈 􏼉t≥0, where
Bi(t) is the independent Brownian motion [7, 10, 47]. Ten,
we introduce some basic knowledge of the paper.

Defnition 1 (see [7, 10, 48]). Z t( ) � P( ) t( ), Q t( )T is a so-
lution of ISDE (4) with initial values P(0)≥ 0 and Q(0)≥ 0,
t ∈ R+, if

(1) Z(t) is absolutely continuous on (0,T] and
(nT, n( ) + 1)T]

(2) For any nT, Z(nT− ) � limt⟶ nT− Z(t) and
Z(nT+) � limt⟶ nT+ Z(t) and Z(nT) � Z(nT− )

hold true
(3) Z(t) follows system (4) for all t ∈ R+/ nT{ } and sat-

isfes the impulsive condition at the impulse point nT

Defnition 2. For the solution Z t( ) � P( ) t( ), Q t( )T with
initial conditions P(0) ∈ R2

+ and Q(0) ∈ R2
+, if for any

ϵ ∈ (0, 1), there is a solutionwith a positive constant S such that

limsup
t⟶∞

P |Z(t)|> S{ }< ϵ. (5)

Ten, the solutions of ISDE (4) are stochastically ulti-
mately bounded.

Defnition 3 (see [7, 49]). Let Z t( ) � P( ) t( ), Q t( )T be
a solution of ISDE (4):

(1) When limt⟶ +∞Q(t) � 0, Q(t) is extinctive.
(2) When limt⟶ +∞1/t 􏽒

t

0 Q(s)ds � 0, Q(t) is non-
persistent in the mean.

(3) When limt⟶ +∞sup1/t 􏽒
t

0 Q(s)ds > 0, Q(t) is weakly
persistent in the mean.

(4) If for each ε ∈ (0, 1), there exist β> 0 and δ > 0 so that

liminf
t⟶+∞

P Q(t)≥ β􏼈 􏼉≥ 1 − ε, liminf
t⟶+∞

P Q(t)≤ δ{ }≥ 1 − ε.

(6)

then Y(t) is stochastically persistent.

Defnition 4 (see [7]). Assume Z1(t) � (P1(t), Q1(t)) and
Z2(t) � (P2(t), Q2(t)) are any two solutions of system (4)
with Pi(0)> 0, Qi(0)> 0, i � 1, 2, if

lim
t⟶+∞

P1(t) − P2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0, (7)

and
lim

t⟶+∞
Q1(t) − Q2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0. (8)

Ten, ISDE (4) is called globally attractive.

Defnition 5 (see [3]). If

g(t) �
1
t

􏽚
t

0
g(s)ds  for  t> 0, (9)

then

g∗(t) � liminf
t⟶∞

1
t

􏽚
t

0
g(s)ds  for  t> 0, (10)

and
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g
∗
(t) � limsup

t⟶∞

1
t

􏽚
t

0
g(s)ds  for  t> 0. (11)

Lemma 1 (see [7, 10]). Let g(t) ∈ C(Ω × R+,R+ − 0).

(1) If there exist η0, t1 and η≥ 0 such that g(t) satisfes

lng(t)≤ ηt − η0 􏽚
t

0
g(s)ds + 􏽘

n

i�1
βiBi(t), (12)

for any t≥ t1, βi is a constant, then

limsup
t⟶+∞

1
t

􏽚
t

0
g(s)ds≤

η
η0

. (13)

(2) If there exist η0, t1 and η≥ 0 such that g(t) satisfes

lng(t)≥ ηt − η0 􏽚
t

0
g(s)ds + 􏽘

n

i�1
βiBi(t), (14)

for any t≥ t1, then

limsup
t⟶+∞

1
t

􏽚
t

0
g(s)ds≥

η
η0

. (15)

Lemma 2 (see [3]). Assume F � F(t)t≥0 is a real-valued
continuous local martingale vanishing at time zero. If

limsup
t⟶+∞

〈F, F〉t

t
<∞a.s., (16)

then,

limsup
t⟶+∞

〈Ft〉
t

� 0. (17)

3. Global Positive Solution

3.1. Tumor-free Solution. It is obvious that the dynamics of
chemotherapeutic drugs can be described by

dH(t) � − μH, t≠ nT,

H nT
+

( 􏼁 � H(nT) + ι, t � nT.
􏼨 (18)

Let us compute the expression for theT periodic solution
HT(t) as the following:

H
T

(t) �
ιe− μ(t− nT)

1 − e
− μT

, (19)

where t ∈ n( T, n( + 1)T], HT(nT+) � ι/(1 − e− μT).

Lemma 3 (see [10, 50, 51]). A unique positive periodic so-
lution of system (5) can be expressed by HT(t), and it holds
that limt⟶∞H(t) � HT(t), then for any ϵ> 0 yields

Table 1: Biological meaning and source of parameters.

Parameters Biological meaning Source
c Te clearance and production rate of androgen [3]
u Te efcacy of CAD therapy [3]
r1 Te proliferation rate of AD cells [3]
r2 Te proliferation rate of AI cells [3]
α Te competition coefcient of AD cells [3]
β Te competition coefcient of AI cells [3]
p1 Te mortality of AD cells [3]
a0 Te normal androgen concentration [3]
T Te periods of therapy [3]
K Te carrying capacity of cancer cells [3]
m1 Te mutation rate from AD to AI cells [3]
σ21 Te intensities of white noise on the AD cells [3]
σ22 Te intensities of white noise on the AI cells [3]
1/η Carrying capacity of the tumor cells [10]
d Te mortality of efector cells [10]
b Te maximum accumulation rate of tumors [10]
υ Te steepness of efector cells [10]
c Te inactivation rate of efector cells [10]
a Te rate at which the efector cells bind to the tumor cells [10]
e(nT) Te net growth rate of efector cells stimulated by immunotherapy [10]
μ Te degradation rate of chemotherapy [10]
ι Te dosages at impulsive point series nT(n � 1, 2, 3, · · ·) [10]
r Te growth rate of cancer cells [10]
d1 Te death rate of prostate cancer cells [3]
d2 Te density-dependent mortality of prostate cancer cells [46]
δ21 Te intensities of white noise on prostate cancer cells [3]
δ22 Te intensities of white noise on efector cells [10]
k1 Te inhibitory rate of chemotherapy drugs on prostate cancer cells [10]
k2 Te inhibitory rate of chemotherapy drugs on efector cells [10]

Discrete Dynamics in Nature and Society 5



H
T
(t) − ϵ<H(t)<H

T
(t) + ϵ  and  lim

t⟶∞

1
t

􏽚
t

0
H

T
(s)ds �

ι
μT

. (20)

For the convenience of writing, we use H(t) instead of
HT(t). Suppose that the prostate cancer cells can be erad-
icated, then let X(t) � 0, and system (4) becomes

dY � (C − d)Y − k2H(t)Y􏼂 􏼃dt + δ2YdB2(t),

dH � − μH,
􏼩t≠ nT,

H nT
+

( 􏼁 � H(nT) + ι,

Y nT
+

( 􏼁 � (1 + e(nT))Y(nT),

⎫⎬

⎭t � nT.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

Since the explicit expression of H(t) is given, then

dY � (C − d)Y − k2H(t)Y􏼂 􏼃dt + δ2YdB2(t), t≠ nT,

Y nT
+

( 􏼁 � (1 + e(nT))Y(nT), t � nT.
􏼨

(22)

Theorem 1. Tere exists a unique global positive solution
Y(t) of system (8) for any initial value Y(0+) � Y(0), where

Y(t) � 􏽙
0<nT<t

(1 + e(nT))Y(0) exp C − d − k2H(t) −
δ22
2

􏼠 􏼡t + δ2B2(t)􏼢 􏼣. (23)

Proof. For any t ∈ n( T, n( + 1)T], defne a Lyapunov
function V(t) � lnY(t). Applying Itô’s formula gives

dl nY(t) � C − d − k2H(t) − 0.5δ22􏼐 􏼑dt + δ2dB2(t). (24)

We integrate the above equation from nT to t, then

lnY(t) − lnY(nT) � C − d − k2H(t) − 0.5δ22􏼐 􏼑(t − nT) + δ2 B2(t) − B2(nT)( 􏼁. (25)

Terefore,

Y(t) � Y(nT)exp C − d − k2H(t) − 0.5δ22􏼐 􏼑(t − nT) + δ2 B2(t) − B2(nT)( 􏼁􏽨 􏽩. (26)

When t � nT+, after a single immunotherapy, we have

Y(t) � 􏽙
0< nT< t

(1 + e n( T))Y n( T) exp C − d − k2H(t) −
δ22
2

􏼠 􏼡 t( − nT) + δ2 B2( t( ) − B2 n( T􏼡􏼢 􏼣. (27)

An application of mathematical induction yields

Y(t) � 􏽙
0<nT<t

(1 + e n( T))Y(0) exp C − d − k2H(t) −
δ22
2

􏼠 􏼡t + δ2B2(t)􏼢 􏼣. (28)

Tis completes the proof. □

3.2.GlobalPositive Solutionof System(4). Now, we will study
the global dynamics of ISDE (4). Based on reference [7], we

just need to explore the following system (29), which is
equivalent to the original system (4). Since the dynamics of
CAD drugs and chemotherapy drugs have been studied,
then

6 Discrete Dynamics in Nature and Society



dX � R1X 1 −
X

K
􏼒 􏼓 − k1H(t)X − aXY − U1X􏼔 􏼕dt

+δ1XdB1(t),

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

t≠ nT,

dY � (C − d)Y − k2H(t)Y − cXY􏼂 􏼃dt + δ2YdB2(t),

Y nT
+

( 􏼁 � (1 + e(nT))Y(nT), t � nT.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

It is expedient to defne a SDE (Stochastic Diferential
Equation) without pulsed efects:

dX1 � X1 R1􏼂 1 −
X1

K
􏼒 􏼓 − k1H(t) + U1( 􏼁

− a 􏽙
0<nT<t

(1 + e n( T))Y1􏼃 dt + δ1X1dB1 t( ), dY1 � Y1 C − d − k2H(t) − cX1􏼂 􏼃dt + δ2Y1dB2(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)

with (X1(0), Y1(0)) � (X(0), Y(0)) ∈ R2
+.

Theorem 2. For any initial value (X(0),Y(0)), system (9)
has a unique positive solution (X(t),Y(t)) and the solution
(X(t),Y(t)) will remain in R2

+.

Proof. According to Yang et al. [10, 52], system (10) has
a unique global positive solution (X1(t), Y1(t)). Setting

(X(t), Y(t)) � X1 t( ), 􏽙
0<nT<t

(1 + e n( T))Y1 t( )⎛⎝ ⎞⎠, (31)

thereafter, since (X1(t), Y1(t)) is absolute continuous,
which results in the absolute continuity of (X(t), Y(t)) for
any t ∈ (nT, (n + 1) T( ] ⊂ [0, +∞), n ∈ ℵ.

When t≠ nT, the derivatives of (31) with respect to (30)
lead to the following:

dX(t) � dX1 t( ) � X1 R1􏼂 1 −
X

K
􏼒 􏼓 − a 􏽙

0< nT< t

(1 + e n( T))Y1 t( )

− k1H(t) + U1( 􏼁] dt + δ1X1dB1(t),

dY(t) � 􏽙
0< nT< t

(1 + e n( T))dY1 t( )

� Y − cX1 + C − d − k2H(t)􏼂 􏼃dt + δ2Y1dB2(t)

� − cXY +(C − d)Y − k2H(t)Y􏼂 􏼃dt + δ2YdB2(t).

(32)
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Once t � nT,

X nT
+

( 􏼁 � lim
t⟶ nT+

X1(t) � X1(nT) � X(nT),

Y nT
+

( 􏼁 � lim
t⟶ nT+

􏽙
0<iT<t

(1 + a i( T))Y1 t( )

� (1 + e n( T)) 􏽙
0<iT<nT

(1 + a i( T))Y1 n( )T

� (1 + e(nT))Y(nT).

(33)

Consequently, system (29) has a global unique positive
solution. Tis completes the proof of Teorem 2. □

Theorem 3. If C − d − k2H(t)< 0, then the positive solu-
tions Z(t) � (X(t),Y(t)) of system (4) are stochastically ul-
timately bounded.

Proof. We also defne equations without respect to the
pulsed immunotherapy, then

dX1 � R1 1 −
X1

K
􏼒 􏼓 − k1H t( ) − a 􏽙

0<nT<t
(1 + e n( T))Y1 − U1

⎡⎣ ⎤⎦X1dt

+ δ1XdB1(t),

dY1 � (C − d)Y1 − k2H(t)Y1 − cX1Y1􏼂 􏼃dt + δ2Y1dB2(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

To prove the boundedness of the solutions of system (4),
we just need to illustrate that the solutions of system (34) are
stochastically ultimately bounded.

For X1, we let V(t, X1) � etX
q
1 where q> 0. Applying

Itô’s formula yields

dV X1( 􏼁 � e
t 1 + q R1 1 −

X1R1 + Ka􏽑0<nT<t(1 + e n( T))Y1

R1K
􏼠 􏼡􏼠􏼠

− k1H(t) + U1( 􏼁 +
q − 1
2

δ21􏼓􏼓X
q
1dt + qe

tδ1X
q
1dB1(t)

≤ e
t 1 + q R1 +

q − 1
2

δ21􏼒 􏼓􏼒 􏼓X
q
1 − q

R1

K
X

q+1
1􏼚 􏼛dt

+ qe
tδ1X

qdB1(t)

≤ e
t
X

q− 1
1 1 + q R1 +

q − 1
2

δ21􏼒 􏼓􏼒 􏼓X1 − q
R1

K
X

2
1􏼚 􏼛dt

+ qe
tδ1X

q
1dB1(t)

≤M1e
t
dt + qe

tδ1X
q
1dB1(t),

(35)

where M1 is a positive constant. By some calculations,

E e
t
X

q
1(t)􏽨 􏽩≤X

q
1(0) + M1 e

t
− 1􏼐 􏼑. (36)

Ten,

E X
q
1(t)􏼂 􏼃≤

X
q
1(0)

e
t + M1 1 − e

− t
􏼐 􏼑. (37)

Consequently,

limsup
t⟶+∞

E X
q
1(t)􏼂 􏼃≤M1. (38)

For Y1, note that

dY1 ≤ C − d − k2H(t)􏼂 􏼃Y1dt + δ2Y1dB2(t). (39)

Let φ(t) be the solution of

dφ(t) � C − d − k2H(t)􏼂 􏼃φdt + δ2φdB2(t), for all  t≥ 0.

(40)

Ten, for φ(t), using the same method as previous yields
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E[φ(t)] � φ(0) +
1
2

E C − d − k2H(t)( 􏼁Y
2

􏽨 􏽩. (41)

Due to C − d − k2H(t)< 0,

E Y1􏼂 􏼃≤E[φ(t)]≤φ(0)≤N1, (42)

where N1 is a positive constant, and then

E Y1􏼂 􏼃≤E[φ(t)]≤φ(0)≤N1. (43)

Tat is to say,

limsup
t⟶+∞

E Y
q
1(t)􏼂 􏼃≤N

p
1≐M2, (44)

where M2 is a positive constant. Note that

X1 t( )
2

+ Y1 t( )
2q/2 ≤ 2q/2

X1( t(
q

+ Y1 t(
q
􏼁.􏼐 (45)

It follows from systems (38) and (44) that

limsup
t⟶+∞

E ∣ Z ∣ q( 􏼁≤ 2q/2
M1 + M2􏼂 􏼃<∞. (46)

From Chebychev’s inequality, this proof is
completed. □

Theorem  . Te solution of system (4) is globally attractive.

Proof. Without loss of generality, we let
Z1(t) � (P1(t), Q1(t)) and Z2(t) � (P2(t), Q2(t)) be any
two solutions of system (9), which have initial values
Pi(0)> 0, Qi(0)> 0, i � 1, 2. First of all, defne the Lyapunov
function as follows:

V(t) � lnP1(t)
􏼌􏼌􏼌􏼌 − lnP2(t)

􏼌􏼌􏼌􏼌 + lnQ1(t)
􏼌􏼌􏼌􏼌 − lnY2(t)

􏼌􏼌􏼌􏼌, (47)

where t> 0 and t≠ nT. Ten, we compute the upper right
derivative d+V(t) of V(t) and apply the Itô’s formula to
system (29),

d
+
V(t) � sign P1(t) − P2(t)( 􏼁d lnP1(t) − lnP2(t)( 􏼁

+ sign Q1(t) − Q2(t)( 􏼁d lnQ1(t) − lnQ2(t)( 􏼁

� sign P1(t) − P2(t)( 􏼁 −
R1

K
P1(t) − P2(t)( 􏼁 − a Q1(t) − Q2(t)( 􏼁􏼒 􏼓

dt + sign Q1(t) − Q2(t)( 􏼁 − c P1(t) − P2(t)( 􏼁( 􏼁dt

� −
R1

K
+ c􏼒 􏼓 P1(t)

􏼌􏼌􏼌􏼌 − P2(t)
􏼌􏼌􏼌􏼌 − a Q1(t)

􏼌􏼌􏼌􏼌 − Q2(t)
􏼌􏼌􏼌􏼌􏼔 􏼕dt

≤ − π P1(t)
􏼌􏼌􏼌􏼌 − P2(t)

􏼌􏼌􏼌􏼌 + Q1(t)
􏼌􏼌􏼌􏼌 − Q2(t)

􏼌􏼌􏼌􏼌􏼐 􏼑dt

≐ − πV(t)dt,

(48)

where π � min R1/K + c, a􏼈 􏼉. Second, when t � nT,

V nT
+

( 􏼁 � lnP1 nT
+

( 􏼁
􏼌􏼌􏼌􏼌 − lnP2 nT

+
( 􏼁

􏼌􏼌􏼌􏼌 + lnQ1 nT
+

( 􏼁
􏼌􏼌􏼌􏼌 − lnQ2 nT

+
( 􏼁

􏼌􏼌􏼌􏼌

� lnP1(nT)
􏼌􏼌􏼌􏼌 − lnP2(nT)

􏼌􏼌􏼌􏼌 + ln (1 + e(nT))Q1(nT)
􏼌􏼌􏼌􏼌

− ln (1 + e(nT))Q2(nT)
􏼌􏼌􏼌􏼌

� lnX1(nT)
􏼌􏼌􏼌􏼌 − lnP2(nT)

􏼌􏼌􏼌􏼌 + lnQ1(nT)
􏼌􏼌􏼌􏼌 − lnQ2(nT)

􏼌􏼌􏼌􏼌

� V(nT).

(49)

From 0 to t, we integrate system (48) and compute the
expectation of both sides, and we have

V(t)≤V(0) − π 􏽚
t

0
V(s)ds. (50)

Hence,

V(t) + π 􏽚
t

0
V(s)ds≤V(0)<∞. (51)

V(t)> 0 is always valid which gives rise to
limt⟶+∞V(t) � 0.

Tat is to say,

lim
t⟶∞

P1(t)
􏼌􏼌􏼌􏼌 − P2(t)

􏼌􏼌􏼌􏼌 � 0  and  lim
t⟶∞

Q1(t)
􏼌􏼌􏼌􏼌 − Q2(t)

􏼌􏼌􏼌􏼌 � 0.

(52)

Tis completes the proof. □
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Theorem 5. For 0≤ s< t, if 􏽑s≤nT<t(1 + e n( T))≤M M( > 0)

and 1 + C − d − k2(ιe− μT)/(1 − e− μT)≤ 0, then, the solution
x(t) � (X(t),Y(t)) of system (9) satisfes

lim
t⟶∞

E|X(t)| ≤MN, (53)

where N � cK/4R1(R1 + 1 − k1ιe− μT/1 − e− μT)2.

Proof. Defne V1(t) � e1X(t) + e2Y(t), here e1 � c> 0 and
e2 � − a< 0. For any t ∈ ( n( − 1)T, nT], by use of Itô’s for-
mula for system (9), we have

dV1(t) � e1dX + e2dY � LV(t)dt + e1δ1XdB1(t) + e2δ2YdB2(t), (54)

with

LV(t) � e1X R1 1 −
X

K
􏼒 􏼓 − aY − k1H(t) − U1􏼔 􏼕 + e2Y − cX + C − d − k2H(t)􏼂 􏼃. (55)

Moreover, we defne Lyapunov function V2(t) � etV1(t)

and employ Itô’s formula, so one can get that

dV2(t) � e
t
V1(t)dt + e

t
dV1(t)

� e
t
V1(t)dt + e

t
LV(t)dt + e1δ1X(t)dB1(t) + e2δ2Y(t)dB2(t)􏼈 􏼉.

(56)

Integrating the abovementioned equation from (n − 1)T

to t and computing the expectations,

E e
t
V1(t)􏽨 􏽩 � e

(n− 1)T
V1((n − 1)T) + E 􏽚

t

(n− 1)T
e

s
V1(s) + LV(s)􏼂 􏼃ds. (57)

Note that

LV + V1 � e1 R1X 1 −
X

K
􏼒 􏼓 − U1X − aXY − k1H(t)X􏼔 􏼕

+ e2 (C − d)Y − cXY − k2H(t)Y􏼂 􏼃 + e1X + e2Y

≤ e1 R1X −
R1X

2

K
− k1H(t)X + X􏼢 􏼣 + − ae1 − ce2( 􏼁XY

+ e2Y 1 + C − d − k2H(t)􏼂 􏼃

≤
cK

4R1
R + 1 −

k1ιe− μT

1 − e− μT
􏼠 􏼡

2

− aY 1 + C − d −
k2ιe

− μT

1 − e
− μT

􏼠 􏼡

≤N.

(58)
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From systems (57) and (58), we deduce that

e
t
EV1(t)≤ e

(n− 1)T
V1((n − 1)T) − N( 􏼁 + e

t
N. (59)

Taking both sides of the derivative of system (59) leads to
the following:

dEV1(t)≤ N − EV1(t)( 􏼁dt. (60)

When t � nT,

EV1 nT
+

( 􏼁 � e1E X nT
+

( 􏼁( 􏼁 + e2E Y nT
+

( 􏼁( 􏼁

� e1E(X(nT)) + e2(1 + e(nT))E(Y(nT))

≤ (1 + e(nT)) e1E(X(nT)) + e2E(Y(nT))( 􏼁

� (1 + e(nT))EV1(nT).

(61)

By systems (60) and (61),

dEV1(t)≤ N − EV1(t)( 􏼁dt, t≠ nT,

EV1 nT
+

( 􏼁≤ (1 + e(nT))EV1(nT), t � nT.
􏼨 (62)

To prove EV1(t) is bounded, consider the following
impulsive system:

dw(t) � (N − w(t))dt, t≠ nT,

w nT
+

( 􏼁 � (1 + e(nT))w(nT), t � nT.
􏼨 (63)

Te unique solution of system (63) is deduced by

w(t) � w(0)n(t, 0) + N 􏽚
t

0
n(t, s)ds, (64)

where n(t, s) � 􏽑s≤nT<t(1 + e n( ) T( ))e− (t− s). Te methods of
references [7, 10] give rise to limt⟶+∞w(t) � MN. Based
on the comparison theorem of impulsive diferential
equations [7, 10, 53, 54],

lim
t⟶+∞

EV1(t)≤ lim
t⟶+∞

w(t) � MN. (65)

Tis completes the proof. □

Remark 1. Under certain conditions, Teorem 5 indicates
that there is an upper bound on the expectation of the
solution of ISDE (4). Biologically, when the pulse immu-
notherapy or pulsed perturbations are bounded, the number
of prostate cancer cells is controllable.

4. Extinction and Persistence

To investigate the threshold conditions for extinction and
persistence of efector cells and prostate cancer cells. Let
V(t) � lnX1(t) and set X(t) � X1(t), Y(t) � 􏽑0<nT<t(1 +

e n( ) T( ))Y1 t( ), then using Itô’s formula to the frst equation
of system (30) gives

d lnX1(t) � R1􏼂 −
R1

K
X1 − a 􏽙

0< nT< t

(1 + e n( ) T( ))Y1

− k1H(t) − U1 −
δ21
2

] dt + δ1dB1(t)

� R1􏼂 −
R1

K
X − aY − k1H(t)

− U1 −
δ21
2

] dt + δ1dB1(t).

(66)

Lemma  . Defne Mi(t) � 􏽒
t

0 δidBi(t)(i � 1, 2), then in-
tegrating the abovementioned equation from 0 to t yields

lnX(t) − lnX(0) � R1 − U1 −
1
2
δ21􏼒 􏼓t −

R1

K
􏽚

t

0
X(s)ds

− k1 􏽚
t

0
H(s)ds − a 􏽚

t

0
Y(s)ds + M1(t).

(67)

Similarly,

lnY(t) − lnY(0) � 􏽘
0<nT<t

ln(1 + e(nT)) − d − C +
1
2
δ22􏼒 􏼓t

− c 􏽚
t

0
X(s)ds − k2 􏽚

t

0
H(s)ds + M2(t).

(68)

Theorem 6

(1) If

R1 − U1 −
1
2
δ21 −

k1ι
μT
< 0, (69)

then the prostate cancer cells X(t) are extinct.
(2) If

R1 − U1 −
1
2
δ21 −

k1ι
μT

� 0, (70)

then the prostate cancer cells X(t) become non-
persistent in the mean.

(3) If
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R1 − U1 −
1
2
δ21 −

k1ι
μT
> 0, (71)

lim
t⟶+∞

sup
􏽐0<nT<t ln (1 + e(nT))

t
< d − C +

1
2
δ22 +

k2ι
μT

,

(72)

then the prostate cancer cells X(t) are weakly per-
sistent in the mean.

Proof

(1) From system (25),

1
t
ln

X(t)

X(0)
� R1 − U1 −

1
2
δ21􏼒 􏼓 −

R1

K

􏽒
t

0 X(s)ds

t
− k1

􏽒
t

0 H(s)ds

t

− a
􏽒

t

0 Y(s)ds

t
+

M1(t)

t
.

(73)

Due to <Mi(t), Mi(t)> � 􏽒
t

0 δ
2
i ds, and in the light of

Lemma 2, we have

lim
t⟶+∞

Mi(t)

t
� 0. (74)

Taking the superior limit of equality (27) yields

lim
t⟶+∞

sup
lnX(t)

t
≤R1 − U1 −

1
2
δ21 −

k1ι
μT

−
R1

K
X∗(t) − aY∗(t)< 0.

(75)

It indicates that limt⟶+∞X(t) � 0, and the prostate
cancer cells become extinct.

(2) For any fxed ε> 0, there is a constant t1 so that for all
t≥ t1,

k1
􏽒

t

0 H(s)ds

t
>

k1ι
μT

−
ε
2
,
M1(t)

t
≤
ε
2

. (76)

Based on system (73),

1
t
ln

X(t)

X(0)
� R1 − U −

1
2
δ21􏼒 􏼓 −

R1

K

􏽒
t

0 X(s)ds

t
− k1

􏽒
t

0 H(s)ds

t

− a
􏽒

t

0 Y(s)ds

t
+

M1(t)

t

≤ R1 − U −
1
2
δ21􏼒 􏼓 −

k1ι
μT

−
R

K

􏽒
t

0 X(s)ds

t
+

M1(t)

t
+ ε.

(77)

Owing to Lemma 1, if ε is small enough, then

limsup
t⟶+∞

1
t

􏽚
t

0
X(s)ds≤

K R1 − U1 − 1/2δ21 − k1ι/μT􏼐 􏼑

R
� 0.

(78)

Since X∗(t)≥ 0, it indicates that limt⟶+∞
sup1/t 􏽒

t

0 X(s)ds≥ 0.
Ten, limt⟶∞sup1/t 􏽒

t

0 X(s)ds � 0; thus, the
prostate cancer cells become nonpersistent in
the mean.

(3) When limt⟶∞supX(t)/t< 0, the superior limit of
system (27) gives rise to
R1

K
X
∗
(t) + aY

∗
(t)

≥R1 − U1 −
1
2
δ21 −

k1ι
μT

− limsup
t⟶∞

lnX(t)

t
> 0.

(79)

As a result, X∗(t)≥ 0. Else, for any t∗ ∈ X∗(t, t∗) � 0{ },
then Y∗(t, t∗)> 0. If X∗(t, t∗) � 0, we use the same method
mentioned previously,
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limsup
t⟶+∞

lnY t, t
∗

( 􏼁

t
≤ limsup

t⟶+∞

􏽐0<nT<t ln (1 + e(nT))

t

− d − C +
1
2
δ22􏼒 􏼓 −

k2ι
μT
< 0,

(80)

which means that Y∗(t, t∗) � 0; it is a contradiction that
Y∗(t, t∗)> 0, i.e., limt⟶∞X(t)/t> 0. Ten, the prostate
cancer cells are weakly persistent in the mean. Tis com-
pletes the proof. □

Theorem 7

(1) If

R1 − U1 −
1
2
δ21 −

k1ι
μT
< 0 (81)

limsup
t⟶∞

􏽐0<nT<t ln (1 + e(nT))

t
<d − C +

1
2
δ22 +

k2ι
μT

,

(82)

then the efector cells Y(t) are extinct.
(2) If

R1 − U1 −
1
2
δ21 −

k1ι
μT

� 0, (83)

then the efector cells Y(t) become nonpersistent in
the mean.

(3) If

limsup
t⟶+∞

􏽐0<nT<t ln (1 + e(nT))

t
− d − C +

1
2
δ22 +

k2ι
μT

􏼠 􏼡

−
cK

R1
R1 − U1 −

1
2
δ21 −

k1ι
μT

􏼠 􏼡> 0,

(84)

then the efector cells Y(t) are weakly persistent in
the mean.

Proof

(1) According to system (26), we can deduce
1
t
ln

Y(t)

Y(0)
�

􏽐0<nT<t ln (1 + e(nT))

t
− d − C +

1
2
δ22􏼒 􏼓

− c
1
t

􏽚
t

0
X(s)ds − k2

1
t

􏽚
t

0
H(s)ds +

M2(t)

t
.

(85)

Taking the superior limit of system (85) gives

limsup
t⟶+∞

lnY(t)

t
≤ limsup

t⟶∞

􏽐0<nT<t ln (1 + e(nT))

t

− d − C +
1
2
δ22 +

k2ι
μT

􏼠 􏼡 − cX∗(t).

(86)

Ten,

limsup
t⟶∞

lnY(t)

t
≤ 0. (87)

Hence, limt⟶+∞Y(t) � 0; then, the efector cells are
extinct.

(2) For any fxed ε> 0, there is a t2 so that for all t≥ t2,
one can obtain

k1
􏽒

t

0 H(s)ds

t
>

k1ι
μT

−
ε
2
,
M1(t)

t
≤
ε
2

, (88)

in the light of system (73) yields

a
1
t

􏽚
t

0
Y(s)ds � −

1
t
ln

X(t)

X(0)
+ R1 − U1 −

1
2
δ21􏼒 􏼓

−
R1

K

􏽒
t

0 X(s)ds

t

− k1
􏽒

t

0 H(s)ds

t
+

M1(t)

t

≤ R1 − U1 −
1
2
δ21 −

k1ι
μT

􏼠 􏼡 + ε.

(89)

As ε is small enough, we take the superior limit that
leads to the following:

limsup
t⟶+∞

1
t

􏽚
t

0
Y(s)ds≤ 0. (90)

Tus, limsupt⟶∞1/t 􏽒
t

0 Y(s)ds � 0; then, the ef-
fector cells become nonpersistent in the mean.

(3) From system (30), we know

1
t
ln

Y(t)

Y(0)
�

􏽐0<nT<t ln (1 + e(nT))

t

− d − C +
1
2
δ22􏼒 􏼓 − c

1
t

􏽚
t

0
X(s)ds

− k2
1
t

􏽚
t

0
H(s)ds +

M2(t)

t
.

(91)

Adding systems (73) and (85) and taking the superior
limit, there is a t3 > 0 so that
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lnY(t)

t
≥ lim

t⟶+∞
sup

􏽐0<nT<t ln (1 + e(nT))

t
− d − C +

1
2
δ22 +

k2ι
μT

􏼠 􏼡

+ R1 − U1 −
1
2
δ21 −

k1ι
μT

􏼠 􏼡

−
R1

K
+ c􏼒 􏼓X

∗
(t) − aY

∗
(t).

(92)

It follows from system (78), and then

aY
∗
(t)≥ lim

t⟶+∞
sup

􏽐0<nT<t ln (1 + e(nT))

t
− d − C +

1
2
δ22 +

k2ι
μT

􏼠 􏼡

−
cK

R1
R1 − U1 −

1
2
δ21 −

k1ι
μT

􏼠 􏼡> 0.

(93)

Hence, Y∗(t) � limsupt⟶+∞1/t 􏽒
t

0 Y(s)ds≥ 0; then, the
efector cells are weakly persistent in the mean. Tis com-
pletes the proof. □

Assumption 1. Tere are two positive constants m1 and M1
such that m1 ≤􏽑0<nT<t(1 + e n( ) T( ))≤M1.

Theorem 8. Based on Assumption 1, if ς � mint≥0 [R1 − U1 −

0.5δ21 − k1ι/μT − aM1y0]> 0, the prostate cancer cells become
stochastically permanent.

Proof. First, we want to show that there are two constants
β> 0 and ϱ > 0 so that liminf t⟶+∞P X(t) ≥ β􏼈 􏼉≥ 1 − ε and
liminf t⟶+∞P X(t)≤ ϱ􏼈 􏼉≥ 1 − ε for any ε ∈ (0, 1). For one
thing, defning a Lyapunov function V1(x) � 1/X1(X1 > 0)

and using Itô’s formula to the frst equation of system (10)
lead to the following:

dV
1

X1( 􏼁 � − V
1

X1( 􏼁 R1 − U1 −
R1

K
X1 − k1H(t)􏼔

− a 􏽙
0<nT<t

(1 + e n( ) T( ))Y1
⎤⎦dt + V

1
X1( 􏼁δ21dt − V

1
X1( 􏼁δ1dB1(t).

(94)

Select a constant ω> 0 which satisfes ς> 0.5ωδ21 and
establish V2(X1) � (1 + V1(X1)

ω. An application of Itô’s
formula yields

dV
2

X1( 􏼁 � ω 1 + V
1

X1( 􏼁􏼐 􏼑
ω− 1

dV
1

X1( 􏼁

+ 0.5ω(ω − 1) 1 + V
1

X1( 􏼁􏼐 􏼑
ω− 2

dV
1

X1( 􏼁􏼐 􏼑
2

� ω 1 + V
1

X1( 􏼁􏼐 􏼑
ω− 2

− V
1

X1( 􏼁 − V
1

X1( 􏼁􏼐 􏼑 R1 − U1 −
R1

K
X1􏼔􏼚

− k1H(t) − a 􏽙
0<nT<t

(1 + e(nT))Y1
⎤⎦ + V

1
X1( 􏼁 + V

1
X1( 􏼁􏼐 􏼑

2
􏼒 􏼓δ21
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+0.5(ω − 1) V
1

X1( 􏼁􏼐 􏼑
2
δ21􏼛dt − ω 1 + V

1
X1( 􏼁􏼐 􏼑

ω− 1
V

1
X1( 􏼁δ1dB1(t)

� ω 1 + V
1

X1( 􏼁􏼐 􏼑
ω− 2

− V
1

X1( 􏼁􏼐 􏼑
2

R1 − U1 − 0.5δ21 − k1H(t)􏽨􏼚

− 0.5ωδ21 − a 􏽙
0<nT<t

(1 + e(nT))Y1
⎤⎦ + V

1
X1( 􏼁 − R1 + U1 +

R1

K
􏼔

+a 􏽙
0<nT<t

(1 + e(nT))Y1 + k1H(t) + δ21⎤⎦ +
R1

K

⎫⎬

⎭dt

− ω 1 + V
1

X1( 􏼁􏼐 􏼑
ω− 1

V
1

X1( 􏼁δ1dB1(t)

≤ω 1 + V
1

X1( 􏼁􏼐 􏼑
ω− 2

− V
1

X1( 􏼁􏼐 􏼑
2
ς − 0.5ωδ21􏽨 􏽩 + V

1
X1( 􏼁 U1􏼂􏼚

+
R1

K
+ aM1Y0 + δ21 +

k1ι
μT

􏼣 +
R1

K
􏼩dt

− ω 1 + V
1

X1( 􏼁􏼐 􏼑
ω− 1

V
1

X1( 􏼁δ1dB1(t).

(95)

Tereafter, choose a sufciently small ϱ such that

ς − 0.5ωδ21 >
ϱ
ω
> 0. (96)

Defning V3(X1) � exp (ϱt)V2(X1) and employing Itô’s
formula give

dV
3

X1( 􏼁 � ϱ exp (ϱt)V2
X1( 􏼁dt + exp (ϱt)dV

2
X1( 􏼁

≤ω exp ϱ( 􏼁t)(1 + V
1

X1( 􏼁
ω− 2 ϱ(1 + V

1
X1( 􏼁

2

ω
􏼨

− V
1

􏼐 X1( 􏼁
2 ς − 0.5ωδ21􏽨 􏽩

+V
1

X1( 􏼁 U1 +
R1

K
+ aM1Y0 + δ21 +

k1ι
μT

􏼢 􏼣 +
R1

K
􏼩dt

− ω exp (ϱt)(1 + V
1

X1( 􏼁
ω− 1

V
1

X1( 􏼁δ1dB1 t( 􏼑

≐ exp (ϱt)P X1( 􏼁dt

− ω exp (ϱt)(1 + V
1

X1( 􏼁
ω− 1

V
1

X1( 􏼁δ1dB1 t( ),

(97)

where

P X1( 􏼁 � ω 1 + V
1

X1( 􏼁􏼐 􏼑
ω− 2

− ς − 0.5ωδ21 −
ϱ
ω

􏼔 􏼕 V
1

􏼐 X1( 􏼁
2

+ U1 +
R1

K
+ aM1Y0 + δ21 +

k1ι
μT

+
2ϱ
ω

􏼢 􏼣V
1

X1( 􏼁+
R1

K
+
ϱ
ω

􏼛􏼨 . (98)

Let E1 � ς − 0.5ωδ21 − ϱ/ω, E2 � U1 + R1/K + aM1Y0
+δ21 + k1ι/μT + 2ϱ/ω, and E3 � R1/K + ϱ/ω; from (96), we
know that E1 > 0, E2 > 0, and E3 > 0. Tus, we can rewrite
P(X1) as follows:

P X1( 􏼁 � ω 1 +
1

X1
􏼠 􏼡

ω− 2

−
E1

X
2
1

+
E2

X1
+ E3􏼨 􏼩≐P1 X1( 􏼁.

(99)
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We show that P(X1) is upper bounded when X1 > 0. If
1/X1 ≥ (E2 +

����������

E2
2 + 4E1E3

􏽱

)/2E1≐λ1, then P(X1)≤ 0. If
0< 1/X1 ≤ λ1, then P1(X1)≤ (4E1E3 + E2

2)/4E1. Besides, if
ω≥ 2, then ω(1 + 1/X1)

ω− 2 ≤ω(1 + λ1)
ω− 2; if ω< 2, then

ω(1 + 1/X1)
ω− 2 ≤ω. Terefore, for X1 > 0, we always have

P(X1)≤P0 � λ2(4E1E3 + E2
2)/4E1, where λ2 � max ω,{

ω(1 + λ1)
ω− 2}. Clearly, P(X1) is always upper bounded.

Furthermore,

dV
3

X1( 􏼁≤ exp ϱ( t)P X1( 􏼁 dt − ω exp ϱ( t)(1 + V
1

X1( 􏼁
ω− 1

V
1

X1( 􏼁δ1dB1 t( 􏼑

≤P0 exp ϱ( t) dt − ω exp ϱ( t)(1 + V
1

X1( 􏼁
ω− 1

V
1

X1( 􏼁δ1dB1 t( ).
(100)

From 0 to t, integrating the previous inequality and
taking the expectation,

E V
3

X1(t)( 􏼁􏽨 􏽩≤V
3

X1(0)( 􏼁 +
P0

ϱ
exp (ϱt). (101)

Since V3(X1 t( )) � exp ϱ( t( )(1 + V1(X1 t( ))ω, then we
have

E V
3

X1(t)( 􏼁􏽨 􏽩 � E exp ϱ( t)(1 + V
1

X1( t( ))
ω

􏽨 􏽩

≤V
3

X1(0)( 􏼁 +
P0

ϱ
exp (ϱt)

� (1 + V
1

X1( (0))
ω

+
P0

ϱ
exp ϱ( t).

(102)

Taking the superior limit, then

limsup
t⟶ +∞

E
1

X1(t)
ω􏼢 􏼣 � limsup

t⟶ +∞
E V

1
X1 t( ))

ω
(􏼐 􏽩≤ limsup

t⟶ +∞
E 1 + V

1
X1( t( ))

ω
􏼐􏽨 􏽩≤

P0

ϱ
.􏼢 (103)

From system (31), one can obtain X(t) � X1(t),

limsup
t⟶+∞

E
1

X(t)
ω􏼢 􏼣 � limsup

t⟶+∞
E

1
X1(t)

ω􏼢 􏼣≤
P0

ϱ
≐PM. (104)

Furthermore, using the same method as in references
[7, 10], then

limsup
t⟶+∞

E
1

X(t)
ω􏼢 􏼣≤

P0

ϱ
≐PM. (105)

For arbitrary ε> 0, we denote β � ε1/ω/P1/ω
M . Making use

of Chebyshev’s inequality gives

limsup
t⟶+∞

P X(t)< β􏼈 􏼉 � limsup
t⟶+∞

P
1

X
ω
(t)
>

1
βω

􏼨 􏼩

≤ limsup
t⟶+∞

E 1/Xω
(t)􏼂 􏼃

β− ω

� limsup
t⟶+∞

βωE
1

X
ω

(t)
􏼢 􏼣 � ε.

(106)

Tus,

liminf
t⟶+∞

P X(t)≥ β􏼈 􏼉≥ 1 − ε. (107)

For another, defning a Lyapunov function V3(X1(t)) �

X
q
1(t)(X1 > 0) and in terms of Itô’s formula with the frst

equation of system (30), it indicates that

dV3 X1(t)( 􏼁 � qV3 X1(t)( 􏼁 R1 − U1 −
R1

K
X1 − k1H(t)􏼔

− a 􏽙
0< nT<t

(1 + e n( ) T( ))Y1 t( )

+0.5(q − 1)δ21􏽩dt + qδ1V3 X1(t)( 􏼁dB1(t)

≤ qV3 X1(t)( 􏼁

R1 − U1 −
R1

K
X1 −

k1ι
μT

+ 0.5(q − 1)δ21􏼢 􏼣dt

+ qδ1V3 X1(t)( 􏼁dB1(t).

(108)

Integrating it from 0 to t and then taking the expectation
lead to
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E V3 X1(t)( 􏼁􏼂 􏼃 − E V3 X1(0)( 􏼁􏼂 􏼃≤ q 􏽚
t

0
E V3 X1(s)( 􏼁 R1 − U1 −

R1

K
X1􏼔 −

k1ι
μT

+ 0.5(q − 1)δ21􏼣􏼩􏼨 ds. (109)

Te derivative of the upper formula gives

dE V3 X1(t)( 􏼁􏼂 􏼃

dt
≤ qE V3 X1(t)( 􏼁􏼂 􏼃 R1 − U1 −

k1ι
μT

+ 0.5(q − 1)δ21􏼢 􏼣

− q
R1

K
E X

q+1
1 (t)􏽨 􏽩.

(110)

On account of Hölder’s inequality, it can be obtained
that

dE V3 X1(t)( 􏼁􏼂 􏼃

dt
≤ qE V3 X1(t)( 􏼁􏼂 􏼃 R1 − U1 −

k1ι
μT

+ 0.5(q − 1)δ21􏼢 􏼣

− q
R1

K
E X

q
1(t)􏼂 􏼃

q + 1
q .

(111)

Let m(t) � E[V3(X1(t))], one can obtain that

dm(t)

dt
≤ qm(t) R1 − U1 −

k1ι
μT

+ 0.5(q − 1)δ21 −
R1

K
m

1
q(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ qm(t) R1 − U1 −
k1ι
μT

+ 0.5qδ21 −
R1

K
m

1
q(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(112)

From the standard comparison theorem, we conclude that

limsup
t⟶+∞

E X
q
1(t)􏼂 􏼃 � limsup

t⟶+∞
E V3 X1(t)( 􏼁􏼂 􏼃

� limsup
t⟶+∞

m(t)

≤
R1 − U1 − k1ι/μT + 0.5qδ21

R1/K
􏼠 􏼡

q

.

(113)

Since X(t) � X1(t),

limsup
t⟶+∞

E X
q
(t)􏼂 􏼃 � limsup

t⟶+∞
E X

q
1(t)􏼂 􏼃

≤
K R1 − U1 − k1ι/μT + 0.5qδ21􏼐 􏼑

R1

⎛⎝ ⎞⎠

q

.

(114)

Similarly, it follows from Chebyshev’s inequality that

liminf
t⟶+∞

P X(t)≤ ϱ􏼈 􏼉≥ 1 − ε. (115)

As a consequence, it follows from system (4) of Def-
nition 3. Tis completes the proof of Teorem 8. □

5. Stationary Distribution and Ergodicity of
System (4)

Here, we wonder the existence of a unique ergodic stationary
distribution of ISDE (4). If g is a bounded function on R+, we
defne gu � supt∈R+

g(t). For more details, readers can refer
to references [3, 46, 55].

Defne a SDE that equivalents to the original system (4)
without pulsed efects:
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dX � X R1 1 −
X1

K
􏼒 􏼓 − k1H(t) + U1( 􏼁􏼔

− a 􏽙
0<nT<t

(1 + e n( ) T( ))Y⎤⎦dt + δ1XdB1(t),

dY � Y C − d − k2H(t) − cX􏼂 􏼃dt + δ2YdB2(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(116)

With (X(t), Y(t)) ∈ R2
+.

Theorem 9. Assume

R1 − U1 − k1H(t) −
1
2
δ21 > 0,

C − d − k2H(t) −
1
2
δ22 > 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(117)

Ten, system (4) has a unique ergodic stationary
distribution.

Proof. Let

V1(X, Y) � lnX + lnY. (118)

Ten,

LV1(X, Y) � R1 − U1 − k1H(t) −
1
2
δ21 −

R1X

K

− a 􏽙
0<nT<t

(1 + e( n( )T)Y

+ C − d − k2H t( ) −
1
2
δ22 − cX.

(119)

Defne

V2(X, Y) �
1

X
θ +

1
Y
θ, 0< θ< 1. (120)

By some calculations, we obtain

LV2(X, Y) � − θX
− θ

R1􏼂 − U1 − k1H t( ) − a 􏽙
0< nT< t

(1 + e n( ) T( ))Y

−
θ + 1
2

δ21􏽩 +
R1θ
K

X
1− θ

− θY
− θ

C[ ) − d − k2H(t) − cX −
θ + 1
2

δ22􏼣

≤ − θX
− θ

R1 − U1 − k1H(t) −
θ + 1
2

δ21􏼢 􏼣 +
R1θ
K

X
1− θ

− θY
− θ

C − d − k2H(t) −
θ + 1
2

δ22􏼢 􏼣.

(121)

Let

V(X, Y) � V1(X, Y) + V2(X, Y) � lnX + lnY +
1

X
θ +

1
Y
θ .

(122)

We obtain

LV(X, Y) � LV1 + LV2

≤ −
R1

K
+ c􏼒 􏼓X + R1 − U1 − k1H(t) −

1
2
δ21

− a 􏽙
0<nT<t

(1 + e n( ) T( ))Y + C − d − k2H t( ) −
1
2
δ22

≤ − θX
− θ

R1 − U1 − k1H(t) −
θ + 1
2

δ21􏼢 􏼣 +
R1θ
K

X
1− θ

− θY
− θ

C − d − k2H(t) −
θ + 1
2

δ22􏼢 􏼣.

(123)
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It is easy to obtain that

LV(X, Y)≤ ϕ1(X) + ϕ2(Y), (124)

where

ϕ1(X) � −
R1

K
+ c􏼒 􏼓X + R1 − U1 − k1H(t) −

1
2
δ21

− θX
− θ

R1 − U1 − k1H(t) −
θ + 1
2

δ21􏼢 􏼣 +
R1θ
K

X
1− θ

,

ϕ2(Y) � − a 􏽙
0<nT<t

(1 + e n( ) T( ))Y + C − d − k2H t( ) −
1
2
δ22

− θY
− θ

C − d − k2H(t) −
θ + 1
2

δ22􏼢 􏼣.

(125)
□

Case 1. If X⟶ 0+, then

LV � ϕ1(X) + ϕ2(Y)≤ϕ1(X) + ϕu
2⟶ − ∞. (126)

If Y⟶ 0+, then

LV � ϕ1(X) + ϕ2(Y)≤ϕu
1 + ϕ2(Y)⟶ − ∞. (127)

Case 2. If X⟶ +∞, then

LV � ϕ1(X) + ϕ2(Y)≤ϕ1(X) + ϕu
2⟶ − ∞. (128)

If Y⟶ +∞, then

LV � ϕ1(X) + ϕ2(Y)≤ ϕu
1 + ϕ2(Y)⟶ − ∞. (129)

Using the analysis method of Teorem 5.1 in reference
[46], we conclude that when X⟶ 0+ or Y⟶ 0+ or
X⟶ +∞ or Y⟶ +∞, we can get LV⟶ − ∞.
Hence, we take sufciently small ]> 0 and let U: � [], 1/]] ×

[], 1/]], then

LV(X, Y)≤ − 1  for all(X, Y) ∈
IntR2

+

U
. (130)

Moreover,

􏽘

2

i,j�1
bij(X, Y)ξiξj � δ21X

2ξ21 + δ22Y
2ξ22

≥ min
(X,Y)∈U

δ21X
2
, δ22Y

2
􏽮 􏽯‖ξ‖

2

for  all(X, Y) ∈ U, ξ1, ξ2( 􏼁 ∈ R2
.

(131)

It follows from Teorem 9, which completes the proof.

6. Numerical Simulations

Next, numerical simulations are conducted to verify our
results by the Milstein higher order method [7, 35, 56]. Te
approximate solution system (4) is obtained and the dis-
cretization equations of system (4) are as follows:

dXk+1 � Xk + Xk rAk 1 −
Xk

K
􏼒 􏼓 − d1 1 −

Ak

a0
􏼠 􏼡 + d2􏼠 􏼡 − k1Hk − aYk􏼢 􏼣∆t

+δ1Xk

����

∆tξk

􏽱

+
δ21
2

Xk ξ2k − 1􏼐 􏼑∆t,

dYk+1 � Yk + Yk (C − d) − k2Hk − cXk􏼂 􏼃∆t + δ2Yk

����

∆tηk

􏽱

+
δ22
2

Yk η2k − 1􏼐 􏼑∆t,

dAk+1 � Ak + − c Ak − a0( 􏼁 − ca0u􏼂 􏼃∆t,

dHk+1 � Hk − μHk∆t,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(132)

and when t � nT system (4) implements pulsed therapy, i.e.,
when mod (k, T) � 0, then

Yk+1 � 1 + ak( 􏼁Yk,

Hk+1 � Hk + bk,
􏼨 (133)

where ξk and ηk(k � 1, 2, 3, · · ·) have a distribution N(0, 1),
which represents independent Gaussian random variables.
We set time increment ∆t � 0.01. We replace the periodic
solution DT(t) with the maximum D∗, where
D∗ � ι/1 − e− μT.
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6.1. Extinction and Persistence of Tumor Cells and Efector
Cells. Te standard parameter values of the pulseless ran-
dom system are selected from the classical references
[3, 7, 10, 20], which are scientifc and reliable to a certain
extent.

In Figure 1(a), we fx parameters as in Figure 1(a). By
a simple calculation,

R1 − U1 −
1
2
δ21 −

k1ι
μT

� − 0.926< 0, (134)

and by Teorem 6, the prostate cancer cells are extinct
(Figure 1(a)). Set r � 1.663, and keep other parameters as in
Figure 1(a); it is easy to see

R1 − U1 −
1
2
δ21 −

k1ι
μT

� 0. (135)

In terms of Teorem 6, the prostate cancer cells are
nonpersistent in the mean (Figure 1(b)). Let
r � 1.85 andC � 0.4, then

R1 − U1 −
1
2
δ21 −

k1ι
μT

� 0.374> 0, (136)

and

limsup
t⟶∞

􏽐0<nT<t ln (1 + e(nT))

t
≈ 0.01< d − C +

1
2
δ22 +

k2ι
μT

� 0.026. (137)

From Teorem 6, the prostate cancer cells are weakly
persistent in the mean (Figure 1(c)). It is easy to see that as the
growth rate increases, the dynamic behaviors of prostate cancer
cells changes from extinction to persistence, which means that
the growth rate of tumors is positively correlated with their
persistence under certain conditions (Figures 1(a)–1(c)).

In Figure 1(d), set C � 0.4, by computing,

R1 − U1 −
1
2
δ21 −

k1ι
μT

� − 0.926< 0, (138)

and

limsup
t⟶∞

􏽐0<nT<t ln (1 + e(nT))

t
≈ 0.01< d − C +

1
2
δ22 +

k2ι
μT

� 0.026. (139)

According to Teorem 7, the efector cells are extinct. In
Figure 1(e), we set C � 0.7 and ak � 0.3 and keep all other
parameters as shown in Figure 1(b). One can get that

R1 − U1 −
1
2
δ21 −

k1ι
μT

� 0. (140)

FromTeorem 7, the efector cells become nonpersistent in
the mean. In Figure 1(f), r � 1.663, δ1 � 3, and ak � 0.3;
keeping all other parameters as shown in Figure 1(a), we obtain

lim
t⟶+∞

sup
􏽐0<nT<t ln (1 + e(nT))

t
− d − C +

1
2
δ22 +

k2ι
μT

􏼠 􏼡

−
cK

R1
R1 − U1 −

1
2
δ21 −

k1ι
μT

􏼠 􏼡 ≈ 1.3297> 0.

(141)

Teorem 7 suggests that the efector cells are weakly
persistent in the mean.

In Figure 2(a), setting r � 3 and δ1 � 2 and keeping all
other parameters as shown in Figure 1(c), then

ς � min
t≥0

R1 − U1 −
1
2
δ21 −

k1ι
μT

− aM1y0􏼢 􏼣 � 2.694> 0.

(142)

Teorem 8 means that the prostate cancer cells become
stochastically permanent (Figure 2(a)). In Figure 2(b), let
δ1 � 0.5 and it is easy to see that the amplitude becomes
smaller (Figure 2(b)), and then

ς � min
t≥0

R1 − U1 −
1
2
δ21 −

k1ι
μT

− aM1y0􏼢 􏼣 � 4.569. (143)

It is concluded that with the increase of ς, the stronger
the random persistence, the smaller the corresponding
amplitude (Figure 2).

6.2. Efects of RandomPerturbation on theDynamics of Tumor
Cells. To investigate how these disturbances afect the dy-
namical behaviors of prostate cancer cells, we do the fol-
lowing things.

In Figure 3(a), we set δ1 � 1 and fx all other parameters
as Figure 1(b) and then

ι � min
t≥0

R1 − U1 −
1
2
δ21 −

k1ι
μT

− aM1y0􏼢 􏼣 � 1.52> 0.

(144)

ByTeorem 8, the prostate cancer cells are stochastically
persistent (Figure 3(a)). If we set δ1 � 2.2, by some
computations,
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ι � min
t≥0

R1 − U1 −
1
2
δ21 −

k1ι
μT

− aM1y0􏼢 􏼣 � − 0.4< 0,

(145)

R1 − U1 −
1
2
δ21 −

k1ι
μT

� 0.705> 0, (146)

and

limsup
t⟶∞

􏽐0<nT<t ln (1 + e(nT))

t

≈ 0.01< d − C +
1
2
δ22 +

k2ι
μT

� 0.026.

(147)

In the light of Teorem 6, the dynamics of prostate
cancer cells changes from stochastically persistent to weakly
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Figure 1: (a–c) Te extinction, nonpersistence in the mean, and weakly persistence in the mean of prostate cancer cells. (d–f) Te
extinction, nonpersistence in the mean, and weakly persistence in the mean of efector cells. (a) r � 1.2, C � 0.47, δ1 � 2.5, and e(nT) � 0.05;
(b) C � 0.47, δ1 � 2.5, and e(nT) � 0.05; (c) δ1 � 2.5 and e(nT) � 0.05; (d) r � 1.2, δ1 � 2.5, and e(nT) � 0.1; (e) r � 1.663, δ1 � 2.5, and
e(nT) � 0.3; (f ) C � 0.47 and e(nT) � 0.3. Te initial values were fxed as (X(0), Y(0)) � (0.1, 0.5), red for (X(0), Y(0)) � (10, 0.5) and
blue for (X(0), Y(0)) � (300, 5), and other parameters were fxed as δ2 � 0.5, u � 0.5, ι � 0.1, T � 100, A(0) � 5, H(0) � 0.2, a0 � 4, a � 1,
d1 � 0.2, d2 � 0.1, d � 0.3, k1 � 0.5, k2 � 0.5, c � 0.08, μ � 0.5, K � 1000, and c � 0.00311.
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Figure 2: Stochastic permanence of prostate cancer cells. (a) r � 3 and δ1 � 2; (b) r � 3 and δ1 � 0.5. Other parameters were fxed as δ2 � 0.5,
u � 0.5, ι � 0.1, C � 0.4, e(nT) � 0.05, and T � 100.
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persistent in the mean (Figure 3(b)). If we set δ1 � 2.5, we
have

R1 − U1 −
1
2
δ21 −

k1ι
μT

� 0. (148)

Teorem 6 explains that the dynamic behaviors of
prostate cancer cells change from weakly persistent in the
mean to nonpersistent in the mean (Figure 3(c)). If we set
δ1 � 3, then

R1 − U1 −
1
2
δ21 −

k1ι
μT

� − 1.375< 0. (149)

By Teorem 6, the dynamics of prostate cancer cells
change from nonpersistent in the mean to extinct
(Figure 3(d)). It can be seen that white noise can determine
all the dynamic behaviors of prostate cancer cells. Increasing
the intensities of white noise can accelerate the death of
cancer cells, which indicates that white noise has a great
infuence on the evolution of tumors.

6.3. Monotherapy and Comprehensive Terapy. In this
subsection, the initial values were fxed as (X(0), Y(0)) �

(10, 0.5), and other parameters are fxed as shown in
(Figure 1(c)).

If only CAD therapy is used, we just need to adjust the
value of u, and the feasible method of this therapy is to
increase its intensities (Figure 4). If only chemotherapy is
applied (Figures 5), the feasible methods of chemotherapy
include increasing the dosages of chemotherapy
(Figures 5(a) and 5(b)) and decreasing the pulsed periods
(Figures 5(c) and 5(d)). If only immunotherapy is initiated,

the feasible options of immunotherapy are to increase the
dosages of immunotherapy (Figures 6(a) and 6(b)) or reduce
the duration of immunotherapy (Figures 6(c) and 6(d)).

From (Figures 4–6), it has been observed that although the
extinction of prostate cancer cells can be achieved by any of the
previous single treatments under large stochastic fuctuations,
these three kinds of treatments have their drawbacks such as
resistance and toxic reaction [44, 45]. Hence, we will show how
combination therapy of immunotherapy and chemotherapy
together with CAD afects the evolution of prostate cancer cells.
It can be seen from (Figures 4–6) that appropriately increasing
the intensities of CAD therapy (or chemotherapy), increasing
the dosages of chemotherapy (or immunotherapy), or short-
ening the treatment periods of immunotherapy (or increasing
the frequencies of treatment) is more conducive to cancer
treatment. Furthermore, compared with (Figures 4–7), we
found that the tiny changes in hybrid therapy may cause big
changes, such as to shorten the death time of prostate cancer
cells (Figure 7).

Next, we will explore the development of prostate cancer
cells with diferent initial values under the same parameters,
we set ak � 1.3, u � 0.5, bk � 0.1, and T � 30, and other
parameters were fxed as shown in Figure 1(c).

In Figure 8, it is revealed that the treatment of prostate
cancer is associated with the initial tumor state of each
patient. Terefore, the medical profession should formulate
corresponding treatment strategies according to the devel-
opment of patients’ condition.

6.4. Existence of Stationary Distribution of System (4).
With the parameters as shown in Figure 9, one can see
that all conditions of Teorem 9 are satisfed. If we set
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Figure 3: Te efects of white noise on the evolution of prostate cancer cells. (a) r � 1.663 and δ1 � 1; (b) r � 1.663 and δ1 � 2.2; (c)
r � 1.663 and δ1 � 2.5; (d) r � 1.663 and δ1 � 3. Other parameters were fxed as δ2 � 0.5, u � 0.5, ι � 0.1, C � 0.47, e(nT) � 0.05, and
T � 100.
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Figure 5:Te efects of chemotherapy alone on the evolution of prostate cancer cells. (a) ι � 0.2, T � 50; (b) ι � 2, T � 50; (c) ι � 0.2, T � 20;
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δ1 � 0.1, δ2 � 0.1, u � 0.1, ak � 0.1, bk � 0.1, by a calcula-
tion, then

R1 − U1 − k1H(t) −
1
2
δ21 ≈ 6.485> 0, C − d − k2H(t) −

1
2
δ22 ≈ 0.045> 0. (150)

By Teorem 9, system (4) has a unique stationary dis-
tribution (Figure 9). Te existence of stationary distribution

shows that the dynamic behaviors of prostate cancer cells
fuctuate within a certain range when the white noise is small.

t

0

1000

2000

3000

4000

5000

X

0 1000 2000 3000 4000 5000

(a)

t

-1000
0

1000
2000
3000
4000
5000

X

0 1000 2000 3000 4000 5000

(b)

t

0

1000

2000

3000

4000

X

0 200 400 600 800 1000 1200

(c)

0

1000

2000

3000

4000

5000

X

t
0 1000 2000 3000 4000 5000

(d)

Figure 6: Te efects of immunotherapy alone on the evolution of prostate cancer cells. (a) e(nT) � 0.5, T � 50; (b) e(nT) � 1.7, T � 50;
(c) e(nT) � 0.5, T � 20; (d) e(nT) � 0.5, T � 80 (red for (c), (d)). Other parameters were fxed as r � 1.85, δ1 � 2.5, δ2 � 0.5, ι � 0, C � 0.4,
and u � 0.
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Figure 7: Te efects of comprehensive therapy on the evolution of prostate cancer cells. (a) T � 50, ι � 2, e(nT) � 1.7, and u � 0.6;
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δ2 � 0.5, and C � 0.4.
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Figure 8: Te dynamics of prostate cancer cells with diferent initial values under optimal strategy. (a) (X(0), Y(0)) � (0.1, 0.5);
(b) (X(0), Y(0)) � (10, 0.5); (c) (X(0), Y(0)) � (300, 5); other parameters were fxed as r � 1.85, δ1 � 2.5, δ2 � 0.5, T � 30, ι � 0.1, C � 0.4,
u � 0.5, and e(nT) � 1.3.
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Figure 9: Stationary distribution of deterministic model and stochastic model. (a) (X(0), Y(0)) � (0.1, 0.5); (b) (X(0), Y(0)) � (10, 0.5);
(c) (X(0), Y(0)) � (300, 5); other parameters were fxed as r � 1.85, C � 0.4, and T � 100.

Table 2: Te main theoretical results and corresponding conditions.

Conditions Teoretical results
R1 − U1 − 1/2δ21 − k1ι/μT< 0 X(t): extinct
R1 − U1 − 1/2δ21 − k1ι/μT � 0 X(t): nonpersistent in the mean
R1 − U1 − 1/2δ21 − k1ι/μT> 0 and
limt⟶+∞sup􏽐0<nT<t ln (1 + e(nT))/t<d − C + 1/2δ22 + k2ι/μT

X(t): weakly persistent in the mean

R1 − U1 − 1/2δ21 − k1ι/μT< 0 and
limt⟶∞sup􏽐0<nT<t ln (1 + e(nT))/t< d − C + 1/2δ22 + k2ι/μT

Y(t): extinct

R1 − U1 − 1/2δ21 − k1ι/μT � 0 Y(t): nonpersistent in the mean
limt⟶+∞sup􏽐0<nT<t ln (1 + e(nT))/t − (d − C + 1/2δ22 + k2ι/μT) − cK/R1(R1 −

U1 − 1/2δ21 − k1ι/μT)> 0 Y(t): weakly persistent in the mean

ς � mint≥0 [R1 − U1 − 0.5δ21 − k1ι/μT − aM1y0]> 0 X(t): stochastically permanent
R1 − U1 − k1H(t) − 1/2δ21 > 0 and C − d − k2H(t) − 1/2δ22 > 0 X(t): stationary distribution
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7. Conclusions

Many studies have pointed out that the development of
prostate cancer cells is inevitably afected by environmental
disturbances such as nutrients and temperature [3, 7, 10, 27].
To our knowledge, there is no conclusive evidence in the
medical feld that IAD therapy is better than CAD therapy,
and experiments have shown that immunotherapy can
promote chemotherapy [3, 7, 10, 13]. However, there are few
studies that combine CAD, immunotherapy and chemo-
therapy to study the dynamics of prostate cancer. Based on
these considerations, we proposed a pulsed stochastic model,
which combined the three treatments mentioned previously
by incorporating tumor antigenicity and density-dependent
mortality.

We frst explore the pharmacokinetics of chemotherapy
and obtain the expression of the tumor-free solution, in-
dicating that the system has a unique global positive solu-
tion. Ten, the global attraction of solution and the
boundness of expectation are proved, which indicates that
prostate cancer cells cannot grow indefnitely and can be
controlled under limited pulse immunotherapy. Further-
more, the threshold conditions of extinction and persistence
for prostate cancer cells and efector cells are provided by
using the theorems of ISDEs and Itô’s formula. Moreover,
the sufcient conditions of stochastically permanence of
prostate cancer cells and the existence of ergodic stationary
distribution of the system are established. Finally, numerical
simulations are carried out to confrm the theoretical results
and provide guidance for treatment. Te details of the
theoretical results are shown in Table 2.

Biologically, we obtain the following conclusions: (1)
White noise can change tumor dynamics and has a negative
efect on the evolution of prostate cancer cells. (2) Compared
with single treatment, comprehensive therapy can signif-
cantly reduce the time of tumor regression and prevent
tumor recurrence. Te results show that increasing the in-
tensities of CAD therapy (or chemotherapy), increasing the
dosages of chemotherapy (or immunotherapy), or short-
ening the treatment periods of immunotherapy (or in-
creasing the frequencies of treatment) are feasible treatments
for prostate cancer (Figures 4–7). (3) Tis paper investigates
the development of prostate cancer cells with diferent initial
values under the same parameter conditions, declaring that
the treatment of prostate cancer can be adjusted according to
the initial tumor state (Figure 8). (4) Te existence of sta-
tionary distribution shows that small noise means stochastic
stability, while large noise is destructive to stability of the
system and leads to cure (Figure 9).

Some interesting questions deserve further investigation,
and more efective but complex models can be studied.
Firstly, without using the traditional Lyapunov function
method, how to analyze the properties of impulsive-free
boundary stochastic diferential systems [32, 33]? Secondly,
Markov chain is often used to simulate random factors in
ecosystems. Based on the original model, what is the dy-
namic behaviours after considering such random factors?
Besides, it is interesting to investigate IAD with pulses. We
leave these questions for future work.
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