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Tis paper investigates the metric dimensions of the polygonal networks, particularly, the subdivided honeycomb network, Aztec
diamond as well as the subdivided Aztec diamond network. A polygon is any two-dimensional shape formed by straight lines.
Triangles, quadrilaterals, pentagons, and hexagons are all representations of polygons. For instance, hexagons help us in many
models to construct honeycomb network, where n is the number of hexagons from a central point to the borderline of the
network. A subdivided honeycomb network (SHCN(n)) is obtained by adding additional vertices on each edge of HCN(n). An
Aztec diamond network (AZN(n)) of order n is a lattice comprises of unit squares with center (a, b) satisfying |a| + |b|≤ n. Te
subdivided Aztec diamond network (SAZN(n)) is obtained by adding additional vertices to each edge of AZN(n). In this
work, our main aim is to establish the results to show that the metric dimensions of SHCN(n) and AZN(n) are 2 and 3 for n � 1
and n≥ 2, respectively. In the end, some open problems are listed with regard to metric dimensions for k-subdivisions of HCN(n)

and AZN(n).

1. Introduction

Graph theory is used as an important mean for modeling
real-world problems, including physicochemical property
testing [1]. Inspired by the problem of evaluating the po-
sition of an individual across the defned network precisely,
Slater [2] presented the concept of the metric dimension of
a graph, where the metric generators are referred to as lo-
cating sets. Coming after Slater’s concept, Harary andMelter
[3] extended the work on metric dimension by defning
metric generators as resolving sets. It has many applications
in diferent felds of life, for example, image processing,
network theory, pattern recognition, optimization, and
robot navigation. Troughout the graph, a traveling point
can be identifed after measuring the length between the
point and sound stations that have been precisely located in
the graph.

Te mathematical illustration of various chemical
structures is of vital importance for the chemists to discover

drugs. A labeled graph is used to describe the composition of
a chemical compound, edges indicate atomic bonds and
vertices represent atoms [4, 5]. In a navigation network,
a robot that needs to fnd its current position during nav-
igation in space is modeled by a graph. It may send signals in
order to measure its distance from each of a set of defned
destinations. Here, the problem is to measure the minimum
number of destinations with their locations, as the robots
can likely decide their positions. Te set of nodes repre-
senting destinations and the number of destinations are
known as the metric basis and the metric dimension of the
graph, respectively.

Te metric dimension is formally initiated after con-
sidering a connected graph G � (V, E), carrying set V of
vertices/nodes and set E of edges. Let v1, v2 ∈ V be two
distinct vertices, then the length of the shortest (v1v2)-path
denotes the distance for them that is symbolized by d(v1, v2).
A set Nk(v) � u | d(u, v) � k{ } is the k-neighborhood of
vertex v ∈ V, where k is a positive integer. If
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M � m1, m2, . . . , mk  is the ordered subset of vertices and
v ∈ G, then r(v | M) � d(v, m1), d(v, m2), . . . , d(v, mk)  is
called the code of v in relation with M. If there exist separate
codes for two vertices in G, then M is the resolving set [3] (or
locating set [6]) for G. Te minimum cardinality of a re-
solving (or locating) set refers as metric dimension of G

symbolized by dim(G). While a locating (or resolving) set
with a minimum number of vertices is called basis for G [7].

Raj et al. studied metric dimensions of diferent chemical
networks as well as star of David network SDN(n) in [8, 9].
If the vertices of a connected graph are changed, then the
metric dimension of the graph will also be changed and
become infnite when the number of vertices is infnite; this
is called an unbounded metric dimension. Similarly, the
metric dimension remains fnite when changes in the
number of vertices is fnite and is called bounded metric
dimension. Finally, if the metric dimension remains the
same as the number of all vertices in a connected graph G,
then it is called a constant metric dimension [10].Temetric
dimension of a path graph is 1 in [5]; cycles have a metric
dimension 2 for every n≥ 3. Te rooted product of two
graphs F and J is stated as follows: take u � |V(F)| copies of
J, and for each vertex uj of F, identify ui with the root node
of the jth copy of J. Godsil and McKay [11], the rooted
product of Harary graphs H(m,n), Jahangir graphs, antiprism
An, and generalized Petersen graphs P(n, 2) by path and
cycle would be calculated as well as metric dimensions of line
graph of certain families of graphs would be determined. It is
also of interest to determine the rooted product of graphs
and then fnd out the metric dimension of the rooted
product of graphs by path and cycle. Imran et al. [12] have
established some results of the metric dimension for some
gear graphs. Manuel et al. [13] determined the constant
metric dimension of honeycomb networks. Moreover, in
[14–16], we determined the metric dimensions and edge
metric dimensions for honeycomb, hex-derived, and hex-
agonal networks. Zahid et al. determined the edge metric
dimension of the wheel graph, k multiwheel graph, and
Cayley graphs and its barycentric subdivisions in [17–19].
After gaining some idea of Manuel, the metric dimension of
the subdivided honeycomb network would be determined.

2. Honeycomb Network

In this section, frstly, the structural introduction of HCN(n)

[13] and SHCN(n) is given. Secondly, we have established
some results and showed that the metric dimensions of
SHCN(n) for n � 1 and n≥ 2 are 2 and 3, respectively.

Tere is a range of designs in which polygons play a role
to construct a honeycomb network HCN(n), where n de-
notes the number of hexagons from the center to the
boundary of the network. Given HCN(1), we will have to
add a layer of six hexagons to the exterior boundary of
HCN(1) in order to construct HCN(2). Consequently, after

coating HCN(n − 1) with 6(n − 1) hexagons, we get
HCN(n). While SHCN(n) is obtained by adding additional
vertices to each edge of HCN(n). Te honeycomb network is
very useful in navigation, computer graphics, image pro-
cessing, and cell phone.

Te diagrams in Fig (1) are examples of SHCN(2) with 1
subdivision.

Theorem 1. If G � SHCN(1), then the metric dimension of
G is 2.

Proof. SHC(1) is a cycle with 12 vertices; it is not a path so
its metric dimension is not 1 [4], and as it is C12, it has metric
dimension 2. □

Theorem  . If G � SHCN(n), then G has a metric di-
mension greater than 2 for n≥ 2.

Proof. Here, we have to show that G does not have any
resolving set M with two vertices. On the contrary, suppose
that G has metric dimension equal to 2.

For M � a1, ai , it implies that r(vi | M) � r(ui | M).
Hence, M is not a resolving set for the graph.

For M � v1, v8n−3 , it implies that r(c1i | M) �

r(ui+2 | M). Hence, M is not a resolving set.
For M � di

1, d1
i , it implies that r(t1i | M) � r(ui+2 | M).

Hence, M is not a resolving set.
For M � c

j
1, c

j
i , it implies that r(t

j
3 | M) � r(t

j
7 | M).

Hence, M is not a resolving set.
For M � u1, u8n−3 , it implies that r(t1i | M) �

r(vi+2 | M). Hence, M is not a resolving set.
For M � t

j
1, t

j
i , it implies that r(c

j
3 | M) � r(c

j
7 | M).

Hence, M is not a resolving set.
For M � v1, u1 , it implies that r(d1

1 | M) � r(u4 | M).
Hence, M is not a resolving set.

For M � v1, a1 , it implies that r(a1
1, | M) � r(v4 | M).

Hence, M is not a resolving set.
For M � u1, a1 , it implies that r(d1

1 | M) � r(u4 | M).
Hence, M is not a resolving set.

For M � v1, c11 , it implies that r(u5 | M) � r(v7 | M).
Hence, M is not a resolving set.

For M � u1, c11 , it implies that r(u12 | M) � r(t18 | M).
Hence, M is not a resolving set.

Terefore, with two vertices, there is no resolving set
M for SHCN(n), n≥ 2, so its metric dimension is greater
than 2. □

Theorem 3. If G � SHCN(n), n≥ 2, then the metric di-
mension of G is 3.

Proof. Te SHCN(n) with one vertex between every two
vertices has a vertex set,
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V(SHCN(n)) � vi: 1≤ i≤ 8n − 3 ∪ ai: 1≤ i≤ 2n ∪ a
j
i : 1≤ i≤ 2n − j + 1, 1≤ j≤ n − 1 

∪ d
j

i : 1≤ i≤ 2n − j + 1, 1≤ j≤ n − 1 ∪ c
j

i : 1≤ i≤ 8n − 4j − 3, 1≤ j≤ n − 1 ∪ ui: 1≤ i≤ 8n − 3 

∪ t
j
i : 1≤ i≤ 8n − 4j − 3, 1≤ j≤ n − 1 .

(1)

Now, let M � v1, u1, v8n−3  be the resolving set for the
above graph.

r vi

 M  � (i − 1, i + 1, 8n − i − 3), 1≤ i≤ 8n − 3,

r ai

 M  � (4i − 3, 4i − 3, 8n − 4i + 1), 1≤ i≤ 2n,

r a
j
i

 M  � (4(i + j) − 5, 4(i + j) − 3, 8n − 4i − 1), 1≤ i≤ 2n − j + 1, 1≤ j≤ n − 1,

r d
j
i

 M  � (4(i + j) − 3, 4(i + j) − 5, 8n − 4i + 1), 1≤ i≤ 2n − j + 1, 1≤ j≤ n − 1,

r c
j
i

 M  � (4j + i − 1, 4j + i + 1, 8n − i − 3), 1≤ i≤ 8n − 4j − 3,  1≤ j≤ n − 1,

r c
j
i

 M  � (4j + i − 1, 4j + i + 1, 8n − i − 3), 1≤ i≤ 8n − 4j − 3, 1≤ j≤ n − 1,

r ui

 M  � (i + 1, i − 1, 8n − i − 1), 1≤ i≤ 8n − 3,

r t
j
i

 M  � (4j + i + 1, 4j + i − 1, 8n − i − 1), 1≤ i≤ 8n − 4j − 3, 1≤ j≤ n − 1.

(2)

Let vl and vp be two distinct vertices from V(SHCN(n)),
then r(vl | M) � r(vp | M)⇒(l − 1, l + 1, 8n − l − 3) �

(p − 1, p + 1, 8n − p − 3)⇒l � p, l � p, l � p which is
contradiction.

Let a
j

l and a
j
p be two distinct vertices from V(SHCN(n)),

then r(a
j

l | M) � r(a
j
p | M)⇒(4(l + j) − 5, 4(l + j) − 3, 8n −

4l − 1) � (4(p + j) − 5, 4(p + j) − 3, 8n − 4p − 1)⇒l � p,
l � p, l � p which is contradiction.

Let d
j

l and dj
p be two distinct vertices from V(SHCN(n)),

then r(d
j

l | M) � r(dj
p | M)⇒(4(l + j) − 3, 4(l + j) − 5, 8 n −

4l + 1) � (4(p + j) − 3, 4(p + j) − 5, 8n − 4p + 1)⇒l � p,
l � p, l � p which is contradiction.

Let ul and up be two distinct vertices from V(SHCN(n)),
then r(ul | M) � r(up | M)⇒(l + 1, l − 1, 8n − l − 1) � (p +

1, p − 1, 8n − p − 1)⇒l � p, l � p, l � p which is
contradiction.

Similarly, now that we will consider two diferent ver-
tices from opposite sides, we will again get contradiction.

Let vl and ap be two distinct vertices from V(SHCN(n)),
then r(vl | M) � r(ap | M)⇒(l − 1, l + 1, 8n − l− 3) � (4p −

3, 4p − 3, 8n − 4p + 1)⇒l � 2(2p − 1), l � 4(p − 1), l � 4
(p− 1) which is contradiction.

Let vl and a
j
p be two distinct vertices from V(SHCN(n)),

then r(vl | M) � r(a
j
p | M)⇒(l − 1, l + 1, 8n − l − 3) �

(4(p + j) − 5, 4(p + j) − 3, 8n − 4p − 1)⇒l � 4(p + j − 1),

l � 4(p + j − 1), l � 2(2p − 1) which is contradiction.
Let vl and c

j
p be two distinct vertices from V(SHCN(n)),

then r(vl | M) � r(c
j
p | M)⇒(l − 1, l + 1, 8n − l − 3) � (4j +

p − 1, 4j + p + 1, 8n − p − 3)⇒l � 4j + p, l � 4j + p, l � p

which is contradiction.
Let a

j

l and dj
p be two distinct vertices fromV(SHCN(n)),

then r(a
j

l | M) � r(d
j
p | M)⇒(4(j + l) − 5, 4(j + l) − 3, 8

Figure 1: Honeycomb HCN(2) and subdivided honeycomb network SHCN(2) with 1 subdivision.
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n − 4l − 1) � (4(p + j) − 3, 4(p + j) − 5, 8n − 4p + 1)⇒l �

4p+ 2/4, l � 4p − 2/4, l � 4p − 2/4 which is contradiction.
Let a

j

l and up be two distinct vertices from V(SHCN(n)),
then r(a

j

l | M) � r(up | M)⇒(4(j + l) − 5, 4(j + l) − 3, 8
n − 4l − 1) � (p + 1, p − 1, 8n − p − 1)⇒l � p − 4j + 6/4, l �

p − 4j + 2/4, l � p/4 which is contradiction.
Let a

j

l and t
j
p be two distinct vertices from V(SHCN(n)),

then r(a
j

l | M) � r(t
j
p | M)⇒(4(j + l) − 5, 4(j + l)− 3, 8n −

4l − 1) � (4j + p + 1, 4j + p − 1, 8n − p − 1)⇒l � p + 6/4, l

� p + 2/4, l � p/4 which is contradiction.
Let d

j

l and c
j
p be two distinct vertices from V(SHCN(n)),

then r(d
j

l | M) � r(c
j
p | M)⇒(4(j + l) − 3, 4(j + l)− 5, 8n −

4l + 1) � (4j + p − 1, 4j + p + 1, 8n − p − 3)⇒l � p + 2/4, l

� p + 6/4, l � p + 4/4 which is contradiction.
Let c

j

l and t
j
p be two distinct vertices from V(SHCN(n)),

then r(c
j

l | M) � r(t
j
p | M)⇒ (4j + l − 1, 4j + l + 1, 8n − l −

3) � (4j + p − 1, 4j + p + 1, 8n − p − 1)⇒l � p + 2, l �

p − 2, l � p − 2 which is contradiction.
If we consider the following options of two vertices and

continue the process in this way, we will get contradiction, aj

l ,
t
j
p, c

j

l , dj
p, t

j

l , a
j
p, ul, dj

p, ul, t
j
p, ul, a

j
p, vl, t

j
p, vl, dj

p, c
j

l , vp, a
j

l ,
c

j
p, c

j

l , vp, c
j

l , and a
j
p.

So, every vertex has distinct representation with respect
to M, so M is a resolving set for SHCN(n), n≥ 2. □

Te following Figure 2 represents the justifcation for the
abovementioned Teorems 2 and 3.

3. Aztec Diamond and Subdivided Aztec
Diamond Network

In this section, frstly, the structural introduction of AZN(n)

is given. Secondly, we have established some results and
showed that the metric dimensions of AZN(n) and
SAZN(n) for n � 1 and n≥ 2 are 2 and 3, respectively. Te
area derived from staircase shapes of height n when glued
together by the straight edges is known as the Aztec diamond
network AZN(n) [20] of order n. So, we can defne it as
a lattice comprises of unit squares centered at (a, b) such that
|a| + |b|≤ n. AZN(n) with order n is composed of 2n(n + 1)

number of unit squares. An AZN(n) with diferent pro-
portions is portrayed and further studied in [21, 22]. Te
diagrams in the following Figure 3 depict AZN(1), AZN(2),
and AZN(3), respectively. Te subdivided Aztec diamond
network (SAZN(n)) is obtained by adding additional ver-
tices on each edge of AZN(n).

Theorem 4. If G � AZN(1), then the metric dimension of G

is 2.

Proof. An AZN(n) has a vertex set

V(AZ(n)) � vi: 1≤ i≤ 3 ∪ ai: 1≤ i≤ 3 ∪ ui: 1≤ i≤ 3 . (3)

Now, let M � v1, u1  be the resolving set for the
abovementioned graph.

r vi

 M  � (i − 1, i + 1), 1≤ i≤ 3,

r ai

 M  � (i, i), 1≤ i≤ 3,

r ui

 M  � (i + 1, i − 1), 1≤ i≤ 3.

(4)

Let vl and vp be two distinct vertices from V(AZN(n)),
then
r(vl | M) � r(vp | M)⇒(l − 1, l + 1) � (p − 1, p + 1)⇒l � p,
l � p which is contradiction.

Let al and ap be two distinct vertices from V(AZN(n)),
then r(al | M) � r(ap | M)⇒(l, l) � (p, p)⇒l � p, l � p

which is contradiction.
Let ul and up be two distinct vertices from V(AZN(n)),

then r(ul | M) � r(up | M)⇒(l + 1, l − 1) � (p + 1, p − 1)

⇒l � p, l � p which is contradiction.
Let vl and ap be two distinct vertices from V(AZN(n)),

then r(vl | M) � r(ap | M)⇒(l − 1, l + 1) � (p, p)⇒l � p +

1, l � p − 1 which is contradiction.
Let vl and up be two distinct vertices from V(AZN(n)),

then r(vl | M) � r(up | M)⇒(l − 1, l + 1) � (p + 1, p − 1)

⇒l � p + 2, l � p − 2 which is contradiction.
Let al and up be two distinct vertices from V(AZN(n)),

then r(al | M) � r(up | M)⇒(l, l) � (p + 1, p − 1)⇒l � p +

1, l � p − 1 which is contradiction.
Hence, every vertex has a distinct representation with re-

spect to M, so M is a resolving set for AZN(n) and n � 1. □

Theorem 5. If G � AZN(n), then G has a metric dimension
greater than 2 for n≥ 2.

Proof. Suppose on contrary AZN(n) has D as its resolving
set with cardinality 2. Let M � v1, v2n+1  be a resolving set.
Here, r(c1i | M) � r(ai+1 | M), i � 1, 2, . . . , 2n, which is
contradiction.

Let M � u1, u2n+1  be a resolving set. Here, r(p1
i | M) �

r(ai+1 | M), i � 1, 2, . . . , 2n, which is contradiction.
Let M � ai, a2n+1  be a resolving set. Here, r(vi | M) �

r(ui | D) which is contradiction.

cn–28n–4j–3

cn–18n–4j–3 an–2
2n–j+1

an–1
2n–j+1

cn–21

cn–11 an–1
1

an–2
1

v1 a1 u1

dn–2
1 tn–21

dn–1
1 tn–11

v8n–3 u8n–3

a2n

dn–1
2n–j+1

dn–2
2n–j+1

tn–28n–4j–3

tn–18n–4j–3

Figure 2: Structure of subdivided honeycomb network SHCN(n).
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Let M � c
j
1, c

j
i  be a resolving set. Here, r(v1 | M) �

r(a2 | M) which is contradiction.
Let M � p

j
1, p

j
i  be a resolving set. Here, r(u1 | M) �

r(a2 | M) which is contradiction.
Let M � ui, v2n+1  be a resolving set. Here, r(vi | M) �

r(ai+1 | M), i � 1, 2, . . . , 2n, which is contradiction.
Let M � v2n+1, p

j
1  be a resolving set. Here,

r(vi+1 | M) � r(ai+2 | M) which is contradiction.
Let M � u2n+1, c

j
1  be a resolving set. Here,

r(ui+1 | M) � r(ai+2 | M), i � 1, 2, . . . , 2n − 1, which is
contradiction.

Let M � a1, v2n+1  be a resolving set. Here, r(vi | M) �

r(ai+1 | M), i � 1, 2, . . . , 2n, which is contradiction.

Let M � a1, u2n+1  be a resolving set. Here, r(ui | M) �

r(ai+1 | M), i � 1, 2, . . . , 2n, which is contradiction.
Let M � a1, c

j
1  be a resolving set. Here, r(vi | M) �

r(ai+1 | M), i � 1, 2, . . . , 2n − 1, which is contradiction.
Let M � a1, p

j
1  be a resolving set. Here, r(ui | M) �

r(ai+1 | M), i � 1, 2, . . . , 2n − 1, which is contradiction.
Tus, there is no resolving set with two basis elements. It

implies that dim(G)> 2 for n≥ 2. □

Theorem 6. If G � AZN(n), n≥ 2, then the metric di-
mension of G is 3.

Proof. Te AZN(n) has a vertex set

V(AZ(n)) � vi: 1≤ i≤ 2n + 1 ∪ ui: 1≤ i≤ 2n + 1 ∪ ai: 1≤ i≤ 2n + 1 ∪ c
j
i : 1≤ i≤ 2n − 2j + 1, 1≤ j≤ n − 1 

∪ p
j
i : 1≤ i≤ 2n − 2j + 1, 1≤ j≤ n − 1 .

(5)

Now, let M � v1, u1, v2n+1  be the resolving set for the
abovementioned graph.

r vi

 M  � (i − 1, i + 1, 2n − i + 1), 1≤ i≤ 2n + 1,

r ui

 M  � (i + 1, i − 1, 2n − i + 3), 1≤ i≤ 2n + 1,

r ai

 M  � (i, i, 2n − i + 2), 1≤ i≤ 2n + 1,

r c
j
i

 M  � (2j + i − 1, 2j + i + 1, 2n − i + 1), 1≤ i≤ 2n − 2j + 1,

r p
j
i

 M  � (2j + i + 1, 2j + i − 1, 2n − i + 3), 1≤ i≤ 2n − 2j + 1.

(6)

Figure 3: Structure of Aztec diamond networks AZN(1), AZN(2), and AZN(3) (from left to right), respectively.
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Let vx and vy be two distinct vertices from V(AZN(n)),
then r(vl | M) � r(vp | M)⇒(x − 1, x + 1, 2n − x + 1) �

(y − 1, y + 1, 2n − y + 1)⇒x � y, x � y, x � y which is
contradiction.

Let c
j
x and c

j
y are two distinct vertices from V(AZN(n)),

then r(c
j
x | M) � r(c

j
y | M)⇒(2j + x − 1, 2j + x + 1, 2n − x+

1) � (2j + y − 1, 2j + y + 1, 2n − y + 1)⇒x � y, x � y, x �

y which is contradiction.
Let p

j
x and p

j
y be two distinct vertices from V(AZN(n)),

then r(p
j
x | M) � r(p

j
y | M)⇒(2j + x + 1, 2j + x − 1, 2n − i+

3) � (2j + y + 1, 2j + y − 1, 2n − y + 3)⇒x � y, x � y, x �

y which is contradiction.
Now, we will consider those vertices that are on opposite

sides, as follows:
Let vx and uy be two distinct vertices from V(AZN(n)),

then r(vx | M) � r(uy | M)⇒(x − 1, x + 1, 2n − x + 1) �

(y + 1, y − 1, 2n − y + 3)⇒x � y + 2, x � y − 2, x � y − 2
which is contradiction.

Let vx and p
j
y be two distinct vertices from V(AZN(n)),

then r(vx | M) � r(p
j
y | M)⇒(x − 1, x + 1, 2n − x + 1) �

(2j + y + 1, 2j + y − 1, 2n − y + 3)⇒x � 2j + y + 2, x � 2j+

y − 2, x � y − 2 which is contradiction.
Let ux and ay be two distinct vertices from V(AZN(n)),

then r(ux | M) � r(ay | M)⇒(x � 1, x − 1, 2n − x + 3) �

(y, y, 2n − y + 2)⇒x � y − 1, x � y + 1, x � y + 1 which is
contradiction.

Let ux and c
j
y be two distinct vertices from V(AZN(n)),

then r(ux | M) � r(c
j
y | M)⇒(x + 1, x − 1, 2n − x + 3) �

(2j + y − 1, 2j + y + 1, 2n − y + 1)⇒x � 2j + y − 2, x � 2j+

y + 2, x � y + 2 which is contradiction.
Let c

j
x and p

j
y be two distinct vertices from V(AZN(n)),

then r(c
j
x | M) � r(p

j
y | M)⇒(2j + x − 1, 2j + x + 1, 2n−

x + 1) � (2j + y + 1, 2j + y − 1, 2n − y + 3)⇒x � y + 2, x �

y − 2, x � y − 2 which is contradiction.
Under this process, by choosing any other options of two

vertices we will get contradiction as mentioned above.
Hence, every vertex has a distinct representation with

respect to M, so M is a resolving set for AZN(n); n≥ 2. □

Te following Figure 4 represents the justifcation for
Teorem 5 and Teorem 6.

Theorem 7. If G � SAZN(n), n≥ 2, then the metric di-
mension of G is 3.

Proof. Te SAZN(n) has a vertex set

V(SAZ(n)) � vi: 1≤ i≤ 4n + 1 ∪ ui: 1≤ i≤ 4n + 1 ∪ ci: 1≤ i≤ 4n + 1 ∪ di: 1≤ i≤ 2n + 1 ∪ fi: 1≤ i≤ 2n + 1 

∪ a
j
i : 1≤ i≤ 2n − 2j + 1 and 1≤ j≤ n − 1 ∪ b

j
i : 1≤ i≤ 4n − 4j + 1 

∪ g
j
i : 1≤ i≤ 2n − 2j + 1 and 1≤ j≤ n − 1 ∪ h

j
i : 1≤ i≤ 4n − 4j + 1 and 1≤ j≤ n − 1 .

(7)

Now, let M � v1, u1, v2n+1  be the resolving set for the
abovementioned graph. Ten,

r vi

 M  � (i − 1, i + 3, 4n − i + 1), 1≤ i≤ 4n + 1,

r ui

 M  � (i + 3, i − 1, 4n − i + 5), 1≤ i≤ 4n + 1,

r ci

 M  � (i + 1, i + 1, 4n − i + 3), 1≤ i≤ 4n + 1,

r di

 M  � (2i − 1, 2i + 1, 4n − 2i + 3), 1≤ i≤ 2n + 1,

r fi

 M  � (2i + 1, 2i − 1, 4n − 2i + 5), 1≤ i≤ 2n + 1,

r a
j
i

 M  � (4j + i − 1, 4j + i + 3, 4n − i + 1), 1≤ i≤ 2n − 2j + 1 and 1≤ j≤ n − 1,

r b
j
i

 M  � (4j + 2i − 3, 4j + 2i + 1, 4n − 2i + 1), 1≤ i≤ 4n − 4j + 1 and 1≤ j≤ n − 1,

r g
j

i

 M  � (4j + 2i + 1, 4j + 2i − 3, 4n − 2i + 5), 1≤ i≤ 2n − 2j + 1 and 1≤ j≤ n − 1,

r h
j

i

 M  � (4j + i + 3, 4j + i − 1, 4n − i + 5), 1≤ i≤ 4n − 4j + 1 and 1≤ j≤ n − 1.

(8)
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Let vl and vp be two distinct vertices from V(SAZN(n)),
then r(vl | M) � r(vp | M)⇒(l − 1, l + 3, 4n − l + 1) �

(p − 1, p + 3, 4n − p + 1)⇒l � p, l � p, l � p which is
contradiction.

Let cl and cp be two distinct vertices from V(SAZN(n)),
then r(cl | M) � r(cp | M)⇒(l + 1, l + 1, 4n − l + 3) �

(p + 1, p + 1, 4n − p + 3)⇒l � p, l � p, l � p which is
contradiction.

bn–11

bn–21

an–1
1

an–2
1

bn–31

an–3
1

bn–14n–4j+1

an–2
2n–2j+1

an–1
2n–2j+1

g2n–2j+1

gn–12n–2j+1

hn–3
4n–4j+1

hn–1
4n–4j+1

hn–2
4n–4j+1bn–24n–4j+1

bn–34n–4j+1

gn–1
1

gn–3
1

gn–2
1

hn–1
1

hn–2
1

hn–2
1

f1d1

d2n+1
f2n+1

u4n+1c4n+1v4n+1

v1 c1 u1

n–3
g2n–2j+1n–3

g2n–2j+1n–2

Figure 5: Subdivided SAZN(n).

cn–12n–2j+1

cn–22n–2j+1

cn–32n–2j+1 pn–32n–2j+1

pn–22n–2j+1

pn–12n–2j+1

v2n+1 a2n+1 u2n+1

cn–11

cn–21

cn–31 pn–31

pn–21

pn–11

a1v1 u1

Figure 4: Aztec diamond AZN(n).
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Let a
j

l and a
j
p be two distinct vertices from V(SAZN(n)),

then r(a
j

l | M) � r(a
j
p | M)⇒(4j + l − 1, 4j + l + 3, 4n−

l + 1) � (4j + p − 1, 4j + p + 3, 4n − p + 1)⇒l � p, l � p, l �

p which is contradiction.
Now, we will consider those vertices which are from

opposite sides, as follow.
Let vl and up are two distinct vertices from V(SAZN(n)),

then r(vl | M) � r(up | M)⇒(l − 1, l + 3, 4n − l + 1) �

(p + 3, p − 1, 4n − p + 5)⇒l � p + 4, l � p − 4, l � p − 4
which is contradiction.

Let cl and a
j
p be two distinct vertices from V(SAZN(n)),

then r(cl | M) � r(a
j
p | M)⇒(l + 1, l + 1, 4n − l + 3) � (4j +

p − 1, 4j + p + 3, 4n − p + 1)⇒l � 4j + p − 2, l � 4j + p + 2,
l � p + 2 which is contradiction.

Let fl and hj
p be two distinct vertices from V(SAZN(n)),

then r(fl | M) � r(hj
p | M)⇒(2l + 1, 2l + 1, 4n − 2l + 5) �

(4j + p + 3, 4j + p − 1, 4n − p + 5)⇒ l � 4j + p + 2/2, l �

4j + p − 2/2, l � p/2 which is contradiction.
Let b

j

l and g
j
p be two distinct vertices from V(SAZN(n)),

then r(b
j

l | M) � r(g
j
p | M)⇒(4j + 2l − 3, 4j + 2l + 1, 4n−

2l + 1) � (4j + 2p + 1, 4j + 2p − 3, 4n − 2p + 5)⇒l � p + 2,
l � p − 2, l � p − 2 which is contradiction.

Let a
j

l and hj
p be two distinct vertices from V(SAZN(n)),

then r(a
j

l | M) � r(hj
p | M)⇒(4j + l − 1, 4j + l + 3, 4n−

l + 1) � (4j + p + 3, 4j + p − 1, 4n − p + 5)⇒l � p + 4, l �

p − 4, l � p − 4 which is contradiction.
On continuing this process by choosing any other op-

tions of two vertices we will get contradiction as
mentioned above.

Hence, every vertex has a distinct representation with
respect to M, so M is a resolving set for SAZN(n); n≥ 2. □

Te following Figure 5 represents the justifcation for the
abovementioned Teorem 7.

4. Conclusions

In this paper, frstly, we investigated the structures of
HCN(n), SHCN(n), AZN(n), and SAZN(n). Ten, we
established the results and showed that the metric di-
mensions of SHCN(n), AZN(n), and SAZN(n) are 2 for n �

1 and 3 for n≥ 2, respectively. We are raising the following
problems for future perspective.

Open Problem 1. Determine the metric dimension of the
subdivided honeycomb network SHCN(n) for k

subdivision.

Open Problem 2. Determine the metric dimension of the
subdivided Aztec diamond network SAZN(n) for k

subdivision.
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