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Tis paper presents synchronization of mixed continuous-discrete complex network via impulse-quantizing approach. A delay-
partitioning group strategy is proposed and impulse-quantizing control is designed to derive theoretical criteria ensuring scale-
type synchronization of complex networks. Our results show that synchronization of mixed continuous-discrete complex
networks can be realized by controlling delay-partitioning subgroup nodes with impulsive quantization. Te theoretical results
give scale-limited sufcient conditions for quantized synchronization relying on control gains, impulsive intervals, and delays. A
numerical simulation is given to demonstrate the efectiveness of the theoretical results.

1. Introduction

A complex network is a dynamical system composed of
a large number of nodes with various interconnection and
active interaction. Since complex networks have intrinsic
characteristics of dynamic evolution, connection diversity,
and structural complexity, many researchers from diferent
disciplines have paid increasing attention to complex net-
works in the past few decades [1–3]. Meanwhile, the syn-
chronization control of complex networks has been
extensively studied due to its broad and cross-border ap-
plications in the felds of social networks, power grids, digital
encryption communications, brain science, electronics, and
so on [4]. By synthetically employing the control theory,
various synchronization control strategies have been
implemented for complex networks [5–9].

In recent ten years, many scholars have obtained a large
number of constructive results on the synchronization of
complex networks, and put forward many efective methods,
such as feedback control [10], pinning control [11, 12], and
impulsive control [13]. In fact, in the real world, there are
often interference factors such as channel congestion, fre-
quency change, and delays [14, 15].Terefore, it is important
to focus on the interactions of nodes in complex networks.
In [16], the authors proposed that a complex network can be

considered as the composition system with the two coupled
dynamic subsystems: the nodes subsystem (NS) and the links
subsystem (LS). Te links synchronization is defned and
synthesizes the adaptive control scheme to realize it. In [17],
the authors described the dynamic behaviour of LS with the
outgoing links vector at every node, and a double tracking
control for the directed complex dynamic network via the
state observer of outgoing links is presented. Coupling
confgurations between network nodes will have impulsive
discontinuity, that is, the topology of the network is dynamic
and may subject to instantaneous transmission. In [18],
fnite-time synchronization problem of uncertain nonlinear
complex networks with time-varying delay is studied.

Te traditional synchronous control often relies on the
state or output feedback continuous signal, but in reality, the
control system is based on digital equipment such as
computers with limited accuracy. Te signals between
network nodes and controllers are transmitted through the
network with limited capacity, and the feedback control
signal usually needs to be quantifed before transmission
[19–24]. Te quantization errors will afect the synchroni-
zation of the network. In [25], quantization and cyclic
protocols are used to solve the problem of limited com-
munication channel capacity, and then intermittent control
strategy is used to improve the efciency of communication
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channel and controller. In [26], quantization and trigger
errors are combined to discuss the synchronization of Lur’e
form driven response system in fnite channel. Due to the
solution, space of the high-dimensional dynamic system
described by the dynamic network with quantized signal is
more complex than the general continuous or discrete
dynamic system, and its theoretical analysis is also more
attractive and challenging.

However, in many network systems, the interaction
among subsystems would occur at any diferent time do-
mains including discrete-time sequences or continuous time
intervals, respectively [27, 28]. To avoid adopting separate
dynamical analysis, it makes sense to discuss these systems
on time scales [28, 29] which can unify continuous and
discrete dynamics under a unifed framework. In [30], based
on the time scale theory of calculus and linear matrix in-
equality (LMI), some sufcient conditions are obtained to
ensure the global synchronization of the complex networks
with delays. In [31], the synchronization problem of linear
dynamical networks on time scale was deal through node-
based pinning control. Inspired by existing ones [31–33], we
incorporate impulse-quantizing control strategy into com-
plex networks and discuss scale-type synchronization on
time scales.

Te novelty of our contribution is three-fold, which is
shown as follows:

(1) Unlike the existing traditional quantized control
[19–24], we propose a delay-partitioning group
strategy and impulse-quantizing controller to
achieve complex network synchronization, which
can better reduce signal transmission burden and
decrease control costs.

(2) Owning to breaking the limitation of studying dis-
crete and continuous systems [27, 28] separately,
new synchronization criteria for mixed continuous-
discrete complex networks relying on control gains,
impulsive intervals, and delays are derived.

(3) It is the frst time that a fexible impulse-quantizing
controller is discussed in mixed continuous-discrete
complex networks [34]. Te proposed method
provides a framework for synchronization of mixed
continuous-discrete complex network with quan-
tized impulses.

Te main structure of this paper is as follows. In Section
2, we introduce some basic theories and present the
quantized synchronization problem of mixed continuous-
discrete complex networks. In Section 3, quantization scale-
synchronization criteria of complex networks are estab-
lished. In Section 4, the efectiveness of the proposed control
strategy is illustrated by numerical simulations. Finally,
Section 5 summarizes this paper.

2. Preliminaries and Model

In this section, we give some basic defnitions and related
Lemmas about time scale. For the theory of time scale, we
refer to the monograph [35].

Let T be a time scale (i.e., a nonempty closed subset ofR).
Te forward jump operator σ: T⟶ T is defned by σ(t): �

inf s ∈ T: s> t{ } for all t ∈ T, while the backward jump
operator ρ: T⟶ T is defned by ρ(t): � sup s ∈ T: s< t{ }

for all t ∈ T. If σ(t)> t, we say that t is right-scattered, while
if ρ(t)< t we say that t is left-scattered. Also, if σ(t) � t, we
say that t is right-dense, while if ρ(t) � t we say that t is left-
dense. Defne Tκ � T − M{ }, when T has a left-scattered
maximum M, otherwise Tκ � T. Te graininess function
μ: T⟶ [0,∞) is defned by μ(t) � σ(t) − t.

Defnition 1 (see [35]). Let f: T⟶ R and t ∈ Tκ. fΔ(t) is
said to be the delta derivative of f at t, given any ε> 0, if
there is a neighborhood U of t such that

f(σ(t)) − f(s) − f
Δ

(σ(t) − s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε|σ(t) − s|. (1)

Defnition 2 (see [35]). A function f: T⟶ R is rd-
continuous if it is continuous at right-dense points in T
and its left-sided limits exist at left-dense points in T.Te set
of all rd-continuous functions f: T⟶ R will be denoted by
Crd. A function p: T⟶ R is regressive provided
1 + μ(t)p(t) ≠ 0 for all ∈ Tκ. Denote by R the set of all
regressive, rd-continuous functions f: T⟶ R and
R+: � p ∈ R: 1 + μ(t)p(t) > 0,∀t ∈ T􏼈 􏼉.

Defnition 3 (see [35]). If p ∈ R, the exponential function
ep(t, s): � exp(􏽒

t

s
ξμ(t)(p(τ))Δτ) for t, s ∈ T, where the

cylinder transformation ξh(z) �
log(1 + hz)/h, h≠ 0
z, h � 0􏼨

and Log is the natural logarithm function.

Remark 4. Let α ∈ R be constant. If T � Z, then eα(t, t0) �

(1 + α)t− t0 for all t ∈ T. If T � R, then eα(t, t0) � eα(t− t0) for
all t ∈ T. If α≥ 0, then eα(t, s)≥ 1 for t≥ s and t, s ∈ T.

Lemma 5 (see [35]). If f ∈ Crd and ∈ Tκ, then
􏽒
σ(t)

t
f(τ)Δτ � μ(t)f(t).

Lemma 6 (see [35]). Let f ∈ Crd and p ∈ R. For all t ∈ T,
the dynamic inequality yΔ(t)≤p(t)y(t) + f(t) implies
that y(t)≤y(t0)ep(t, t0) + 􏽒

t

t0
ep(t, σ(τ))f(τ)Δτ.

Let Rn be the n-dimensional Euclidean space with norm
‖ · ‖. Let Z+ denote the set of positive integer numbers, N is
the set of natural numbers, Rn×n is the set of all n × n real
matrices. Te superscript T stands for the transpose of
a matrix. I is an appropriately dimensioned identity matrix.
Te notionX≥Y (respectively,X≥Y) means that thematrix
X − Y is positive semidefnite (respectively, positive
defnite).

Lemma 7 (see [35]). If p ∈ R, c ∈ T, and f, g: T⟶ R are
diferentiable at t ∈ Tκ, then

ep(c, ·)􏽨 􏽩
Δ

� −p ep(c, ·)􏽨 􏽩
σ
,

(fg)
Δ

(t) � f
Δ
(t)g(t) + f(σ(t))g

Δ
(t)

� f(t)g
Δ
(t) + f

Δ
(t)g(σ(t)).

(2)
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In this paper, assume that Q: R⟶ R is a logarithmic
quantization function, the set of logarithmic quantization
levels is described by the following equation:

U ≔ ± ui, ui � ρi
u0, i � ± 1, ± 2, · · ·􏽮 􏽯∪ ± u0􏼈 􏼉∪ 0{ }, 0< ρ< 1, u0 > 0. (3)

Te associated quantizer is defned as follows:

Q(a) �

ui, if
1

1 + δ
ui < a≤

1
1 − δ

ui, a> 0,

0, if a � 0,

−Q(−a), if a< 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where δ � (1 − p)/(1 + p) and Q(a) � (1 + Θ)a with
Θ ∈ [−S,S].

Consider the following mixed continuous-discrete
complex dynamic networks (CDNs) with N identical
nodes on time scale T as follows:

xi
Δ

(t) � Axi(t) + Bf xi(t)( 􏼁 + c 􏽘
N

j�1
gijΓxj(t), i � 1, 2, . . . , N,

(5)

where xi(t) ∈ Rn denotes the state vector of the i th node,

c> 0 is the coupling strength, f( xi(t)􏼁 � 􏼒f1( xi1(t)􏼁,

f2( xi2(t)􏼁, · · · , fn( xin(t)􏼁􏼓
T

is a nonlinear function,

A, B ∈ Rn×n are constant matrices, G � (gij)N×N represents

the network connection topology, which is defned as fol-
lows: if there is a connection between the i th node and the j

th node (i≠ j), then gij � gji � 1; otherwise, gij � gji � 0,
and the diagonal elements are defned as gii � −􏽐

N
j�1,j≠igij.

Γ � diag c1, c2, · · · , cn􏼈 􏼉> 0 is the inner coupling matrix
between nodes. For system (5), we introduce an isolated
node as synchronization target, which is described as
follows:

y
Δ
(t) � Ay(t) + Bf(y(t)), (6)

where y(t) � ( y1(t), y2(t), · · · yn(t)􏼁
T and f( y(t)􏼁 �

􏼒f1( y1(t)􏼁, f2( y2(t)􏼁, · · · fn( yn(t)􏼁􏼓
T

.
Consider system (5) with feedback control as follows:

xi
Δ

(t) � Axi(t) + Bf xi(t)( 􏼁

+ c 􏽘
N

j�1
gijΓxj(t) + ui(t), i � 1, 2, · · · , N,

(7)

where the impulse-quantizing controller is designed as
follows:

ui(t) � 􏽘
∞

k�1
Q qjei(t) + qjei(t) + qjei t − τj􏼐 􏼑􏼐 􏼑δ t − tk( 􏼁. i ∈ Nj. (8)

Each ei(t) � xi(t) − y(t) is an error vector of i th node,
δ(·) is the Dirac delta function, qj and qj are the designed
impulsive control gain.

Nj denotes a delay-partitioning subgroup which
allows τi-delay impulse imposed on all nodes in
Nj, N1 ∪N1 ∪ · · · ∪Nm � N, and Ni ∩Nj � ∅, i≠ j.

tk􏼈 􏼉
∞
k�0 ⊂ T is a strictly increasing impulse sequence with

tn⟶∞, n⟶∞. Tere exists a constant τ > 0 such that
τj < τ for all j ∈ 1, 2, · · · , m{ }, the discrete sequence tk − τj􏽮 􏽯

satisfes ti − τ ≥ t0 and tk − τj ∈ T.
Ten, system (7) can be described as follows:

As i ∈ Nj,
x
Δ
i (t) � Axi(t) + Bf xi(t)( 􏼁 + c 􏽘

N

j�1
gijΓxj(t), t≠ tk,

Δxi(t) � Q qjei(t) + qjei t − τj􏼐 􏼑􏼐 􏼑, t � tk,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

where Δxi(tk) � xi(t+
k ) − xi(t−

k ) and xi(t−
k ) − xi(tk).
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From equations (6) and (9), one can get the following
error system:

As i ∈ Nj,
e
Δ
i (t) � Aei(t) + Bf ei(t)( 􏼁 + c 􏽘

N

j�1
gijΓej(t), t≠ tk,

Δei(t) � Q qjei(t) + qjei t − τj􏼐 􏼑􏼐 􏼑, t � tk,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

where f(ei(t)) � f(xi(t)) − f(y(t)).

Remark 8. Due to the limitation of network broadband, data
transmission between nodes in networks will arouse delays
[36] and needs to be quantifed, and the quantization will
afect the performance of the system [24, 32]. Terefore, an
impulse-quantizing multigroup strategy is proposed for
equation (9) and it has a very important impact on the
system synchronization.

Defnition 9. System (7) is said to achieve impulse-
quantizing synchronization with system (6), if

lim
t⟶∞

xi(t) − y(t)
����

���� � 0 for all i � 1, 2, · · · , N. (11)

Lemma 10. Given any vector x, y, a positive defnite matrix
H, and ε is a positive defnite constant and satisfes ε> 0, then
the following inequality holds:

2x
T
y≤ εxT

Hx + ε− 1
y

T
H

− 1
y. (12)

In this paper, we always assume that each fi(·) satisfes
the Lipschitz condition, i.e., there exists a positive constant li,
(i � 1, 2, · · · , n), such that |fi(x1) − fi(x2)|≤ li|x1 − x2|

holds for x1, x2 ∈ R. For simplifcation, denote L: � diag
l1, l2, · · · , ln􏼈 􏼉.

3. Main Results

In the section, we give some criteria for impulse-quantizing
synchronization of system (5) with delayed impulses.

Theorem 11. If there exist scalars α> 0, v> 0, βi > 0
(i � 1, 2, 3), εi > 0(i � 1, · · · , m) and matrices PT � P> 0,
Q1 > 0, and Q2 > 0 satisfying the following inequalities, then

A1( 􏼁: G
T
G􏼐 􏼑⊗ ΓTPΓ􏼐 􏼑≤ β1IN( 􏼁⊗P, G

T
G􏼐 􏼑⊗ ΓTA

T
PΓ􏼐 􏼑≤ β2IN( 􏼁⊗ A

T
P􏼐 􏼑,

G
T
G􏼐 􏼑⊗ ΓTB

T
PΓ􏼐 􏼑≤ β3IN( 􏼁⊗ B

T
P􏼐 􏼑.

(13)

A2( 􏼁:

Ξ PB
��μ√

A
T
PB

∗ −Q1 0
∗ ∗ −Q2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠≤ 0, (14)

where 􏽥Ξ: � μATPA + μLTQ2L + cμLTPBL + cμ((ccβ1 + β2
AT + β3BT)P + PA􏼁 and Ξ: � ATP + PA + c(1 + β1)P + LT

Q1L + 􏽥Ξ − αP. (A3): (dM + 􏽐
m
i�1die

vτi )ev(tk+1− tk)eα (tk+1, tk)

≤ 1, where di � (1 + ε−1
i )(1 + Θ)2q2i , i � 1, 2, · · · , m and

dM � maxi∈ 1,···,m{ } (1 + εi)((1 + Θ)qi + 1􏼁
2

􏽮 􏽯.

Then, system (9) can achieve impulse-quantizing syn-
chronization with system (6).

Proof. Set e(t) � (e1
T(t), e2

T(t), · · · en
T(t))T and f(e(t)) �

(fT(e1(t)), fT(e2(t)), · · · , fT(eN(t)))T, then system (10)
can be rewritten as follows:

As i ∈ Nj,
e
Δ

(t) � IN ⊗A( 􏼁e(t) + IN ⊗B( 􏼁f(e(t)) + c(G⊗Γ)e(t), t≠ tk,

Δei(t) � Q qjei(t) + qjei t − τj􏼐 􏼑􏼐 􏼑, t � tk.

⎧⎪⎨

⎪⎩
(15)

Consider Lyapunov function V(t) � eT(t)(IN ⊗P)e(t).
Calculating the Δ-derivative of V(t) over impulsive interval

t ∈, k ∈ Z+ along the trajectory of system (10), we get the
following equation:
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V
Δ

(t) � 􏽘
N

i�1
e

T
i􏼐 􏼑
Δ
Pei + e

T
i􏼐 􏼑

σ
Pei
Δ

􏼔 􏼕

� 􏽘
N

i�1
e

T
i􏼐 􏼑
Δ
Pei + ei + μei

Δ
􏼐 􏼑

T
Pei
Δ

􏼔 􏼕

� 􏽘
N

i�1

⎡⎣e
T
i A

T
P + PA + μA

T
PA􏼐 􏼑ei + 2e

T
i PBf ei( 􏼁 + 2μe

T
i A

T
PBf ei( 􏼁

+ μf
T

ei( 􏼁B
T
PBf ei( 􏼁 + 2c 􏽘

N

j�1
gije

T
i PΓej + 2cμ􏽘

N

j�1
gije

T
i A

T
PΓej

+2cμ􏽘
N

j�1
gijf

T
ej􏼐 􏼑B

T
PΓej + c

2μ􏽘
N

j�1
gijej

TΓTPΓ􏽘
N

j�1
gijej

⎤⎥⎥⎦.

(16)

It can be obtained from Lemma 10 that

2e
T
i PBf ei( 􏼁 + 2μe

T
i A

T
PBf ei( 􏼁

≤ e
T
i PBQ

− 1
B

T
Pei + f

T
ej􏼐 􏼑Q1f ei( 􏼁 + μe

T
i A

T
PBQ

−1
2 B

T
PAei + μf

T
ei( 􏼁Q2f ei( 􏼁

≤ e
T
i PBQ

− 1
B

T
P + L

T
Q1L + μA

T
PBQ

−1
2 B

T
PA + μL

T
Q2L􏼐 􏼑ei.

(17)

Similarly, according to condition (A1), we have the
following equation:

2c 􏽘
N

i�1
􏽘

N

j�1
gije

T
i PΓej + 2cμ􏽘

N

i�1
􏽘

N

j�1
gije

T
i A

T
PΓej + 2cμ􏽘

N

i�1
􏽘

N

j�1
gijf

T
ei( 􏼁B

T
PΓej

+ c
2μ􏽘

N

i�1
􏽘

N

j�1
gije

T
j Γ

T
PΓ􏽘

N

j�1
gijej

⎛⎝ ⎞⎠

� 2ce
T
(G⊗ (PΓ))e + 2cμe

T
G⊗ A

T
PΓ􏼐 􏼑􏼐 􏼑e + 2cμf

T
(e) G⊗ B

T
PΓ􏼐 􏼑􏼐 􏼑e

≤ ce
T

IN ⊗P( 􏼁e + ce
T

G
T
G􏼐 􏼑⊗ ΓTPΓ􏼐 􏼑􏼐 􏼑e + cμe

T
IN ⊗ (PA)( 􏼁e

+ cμe
T

G
T
G􏼐 􏼑⊗ ΓTA

T
PΓ􏼐 􏼑􏼐 􏼑e + cμf

T
(e) IN ⊗ (PB)( 􏼁f(e)

+ cμe
T

G
T
G􏼐 􏼑⊗ ΓTB

T
PΓ􏼐 􏼑􏼐 􏼑e + c

2μe
T

G
T
G􏼐 􏼑⊗ ΓTPΓ􏼐 􏼑􏼐 􏼑e

≤ ce
T

IN ⊗P( 􏼁e + ce
T β1IN( 􏼁⊗P( 􏼁e + cμe

T
IN ⊗ (PA)( 􏼁e

+ c
2μe

T
G

T
G􏼐 􏼑⊗ ΓTPΓ􏼐 􏼑􏼐 􏼑e + cμe

T β2IN( 􏼁⊗ A
T
P􏼐 􏼑􏼐 􏼑e + cμf

T
(e) IN ⊗ (PB)( 􏼁f(e)

+ cμe
T β3IN( 􏼁⊗ B

T
P􏼐 􏼑􏼐 􏼑e + c

2μe
T β1IN( 􏼁⊗P( 􏼁e

≤ 􏽘
N

i�1
e

T
i cP + cβ1P + cμPA + cμβ2A

T
P + cμL

T
PBL + cμβ3B

T
P + c

2μβ1P􏼐 􏼑ei􏽨 􏽩.

(18)

It follows from equations (16)–(18) and condition (A2)
that

Discrete Dynamics in Nature and Society 5



V(t)≤ 􏽘
N

i�1
e

T
i A

T
P + PA + μA

T
PA + PBQ

−1
1 B

T
P + L

T
Q1L􏽨 􏼐

+ μA
T
PBQ

−1
2 B

T
PA + μL

T
Q2L + cP + cβ1P + cμPA

+cμβ2A
T
P + cμL

T
PBL + cμβ3B

T
P + c

2μβ1P)ei􏽩

≤ αV(t).

(19)

Due to 1 + μ(t)α> 0 for t ∈ (tk, tk+1), by Lemma 6, it
implies that

V(t)≤V t
+
k( 􏼁eα t, tk( 􏼁. (20)

Next, there are two cases for us to show that

V tk+1( 􏼁≤V t
+
k( 􏼁eα tk+1, tk( 􏼁. (21)

□

Case 12. If tk+1 is left-dense, then by the continuity of V(t)

and eα(t, tk), we have the following equation:

V tk+1( 􏼁 � lim
t⟶ t−

k+1

V(t)≤ lim
t⟶ t−

k+1

V t
+
k( 􏼁eα t, tk( 􏼁

� V t
+
k( 􏼁eα tk+1, tk( 􏼁.

(22)

Case 13. If tk+1 is left-scattered, then

V tk+1( 􏼁 � V ρ tk+1( ( 􏼁􏼁 + μ ρ tk+1( ( 􏼁􏼁V
Δ ρ tk+1( ( 􏼁􏼁

≤V ρ tk+1( ( 􏼁􏼁 + μ ρ tk+1( ( 􏼁􏼁αV ρ tk+1( ( 􏼁􏼁

≤ 1 + μ ρ tk+1( ( 􏼁􏼁α􏼂 􏼃V ρ tk+1( ( 􏼁􏼁

≤ eα tk+1, ρ tk+1( 􏼁( 􏼁V t
+
k( 􏼁eα ρ tk+1( 􏼁, tk( 􏼁

≤V t
+
k( 􏼁eα tk+1, tk( 􏼁.

(23)

From Case 12 and Case 13 that equation (21) holds for
k ∈ N and we can get the following equation:

V t
+
k( 􏼁 � 􏽘

i∈N1

e
T
i t

+
k( 􏼁Pei t

+
k( 􏼁 + 􏽘

i∈N2

e
T
i t

+
k( 􏼁Pei t

+
k( 􏼁 + · · · + 􏽘

i∈Nm

e
T
i t

+
k( 􏼁Pei t

+
k( 􏼁

� 􏽘
i∈N1

(1 + Θ)q1 + 1( 􏼁
2eT

i tk( 􏼁Pei tk( 􏼁 +(1 + Θ)
2
q
2
1e

T
i tk − τ1( 􏼁Pei tk − τ1( 􏼁 + 2 (1 + Θ)q1 + 1( 􏼁(1 +Θ)q1e

T
i tk( 􏼁Pei tk − τ1( 􏼁􏽨 􏽩

+ 􏽘
i∈N2

(1 +Θ)q2 + 1( 􏼁
2eT

i tk( 􏼁Pei tk( 􏼁 +(1 +Θ)
2
q
2
2e

T
i tk − τ2( 􏼁Pei tk − τ2( 􏼁 + 2 (1 +Θ)q2 + 1( 􏼁(1 + Θ)q2e

T
i tk( 􏼁Pei tk − τ2( 􏼁􏽨 􏽩 + · · ·

+ 􏽘
i∈Nm

(1 +Θ)qm + 1( 􏼁
2eT

i tk( 􏼁Pei tk( 􏼁 +(1 + Θ)
2
q
2
me

T
i tk − τm( 􏼁Pei tk − τm( 􏼁 + 2 (1 + Θ)qm + 1( 􏼁(1 +Θ)qme

T
i tk( 􏼁Pei tk − τm( 􏼁􏽨 􏽩.

(24)

Hence, we get the following equations:

V t
+
k( 􏼁≤ 􏽘

i∈N1

1 + ε1( 􏼁 (1 +Θ)q1 + 1( 􏼁
2eT

i tk( 􏼁Pei tk( 􏼁 + 1 + ε−1
1􏼐 􏼑(1 + Θ)

2
q
2
1e

T
i tk − τ1( 􏼁Pei tk − τ1( 􏼁􏽨 􏽩

+ 􏽘
i∈N2

1 + ε2( 􏼁 (1 + Θ)q2 + 1( 􏼁
2eT

i tk( 􏼁Pei tk( 􏼁 + 1 + ε−1
2􏼐 􏼑(1 + Θ)

2
q
2
2e

T
i tk − τ2( 􏼁Pei tk − τ2( 􏼁􏽨 ] + · · ·

+ 􏽘
i∈Nm

1 + εm( 􏼁 (1 + Θ)qm + 1( 􏼁
2eT

i tk( 􏼁Pei tk( 􏼁 + 1 + ε−1
m􏼐 􏼑(1 + Θ)

2
q
2
me

T
i tk − τm( 􏼁Pei tk − τm( 􏼁􏽨

≤ dMV tk( 􏼁 + 􏽘
m

i�1
diV tk − τi( 􏼁.

(25)

When t1 − τ ∈ [t0, t1], we have the following equation:
V(t)≤He− v t− t0( ), t ∈ t0, t1􏼂 􏼃, (26)
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where H � ev(t1− t0) supt∈[t0 ,t1] V(t){ }.

Now, we shall show that

V(t)≤He− v t− t0( ), t ∈ t1,∞( 􏼁. (27)

For t ∈ (t1, t2], it follows from condition (A3) that

V t
+
1( 􏼁≤dMV t1( 􏼁 + 􏽘

m

i�1
diV tk − τi( 􏼁≤HdMe

− υ t1− t0( ) + H 􏽘
m

i�1
die

−υ t1−τi−t0( )

� H dM + 􏽘
m

i�1
die

υτi⎛⎝ ⎞⎠e
− υ t1− t0( ) ≤H

e
− υ t2− t0( )

eα t2, t1( 􏼁
.

(28)

Together with equation (20), one can get the following
equation:

V(t)≤V t
+
1( 􏼁eα t, t1( 􏼁≤H

e
− v t2− t0( )

eα t2, t( 􏼁

≤He
− v t2− t0( ) ≤He

− v t− t0( ), t ∈ t1( , t2􏼃.

(29)

Tus, equation (27) holds for t ∈ (t1, t2]. Assume that
equation (27) holds for t ∈ (tn, tn+1], n ∈ Ζ+, which implies
that equation (27) holds for t ∈ (t1, tn+1]. Next, we claim that
equation (27) holds for t ∈ (tn+1, tn+2]. For each
i ∈ 1, 2, · · · , m{ }, there are two cases for us to estimate
V(tn+1 − τi).

Case 14. When tn+1 − τi ≤ t1, it holds that

V tn+1 − τi( 􏼁≤He
− v tn+1− τi− t0( ). (30)

Case 15. When tn+1 − τi > t1, there exist an integer η< n such
that tn+1 − τi ∈ (tn, tn+1].

V tn+1 − τi( 􏼁≤He
− v tn+1− τi− t0( ). (31)

Case 14 and Case 15 lead toV(tn+1 − τi)≤He− v(tn+1− τi− t0)

which holds for all i ∈ 1, 2, · · · , m{ }. Hence, we have the
following equation:

V t
+
n+1( 􏼁≤dMV tn+1( 􏼁 + 􏽘

m

i�1
diV tn+1 − τi( 􏼁≤HdMe

− υ tn+1− t0( ) + H 􏽘
m

i�1
die

−υ tn+1−τi−t0( )

� H dM + 􏽘
m

i�1
die

υτi⎛⎝ ⎞⎠e
− υ tn+1− t0( ) ≤H

e
− υ tn+2− t0( )

eα tn+2, tn+1( 􏼁
.

(32)

For t ∈ (tn+1, tn+2], one gets from equations (20) and (32)
that

V(t)≤V t
+
n+1( 􏼁 + eα tn+2, tn+1( 􏼁≤H

e
− v tn+2− t0( )

eα tn+2, t( 􏼁

� He− v tn+2− t0( ) ≤He− v t− t0( ), t ∈ tn+1( , tn+2􏼃.

(33)

Tus, equation (27) holds for t ∈ (tn+1, tn+2]. Terefore,
by mathematical induction that equation (27) holds for all
t ∈ (t1,∞). Ten,

V(t)≤He
− v t− t0( ), t ∈ t0􏼂 ,∞), (34)

which implies V(t)⟶ 0 as t⟶∞, thus impulse-
quantizing synchronization between system (9) and sys-
tem (6) can be achieved.

Remark 16. System (7) is defned on hybrid time domains
which include continuous time and discrete-time ones as its
special cases. When T�Z, then μ(t) ≡ 1 for all t ∈ Ζ, then
(A2) reduces to the following equation:

Ξ PB A
T
PB

∗ −Q1 0

∗ ∗ −Q2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠≤ 0, (35)

where 􏽥Ξ: � ATPA + LTQ2L + cLTPBL+ c((cβ1 + β2AT+

β3BT)P + PA) and Ξ: � ATP + PA + +c(1 + β1)P + LT

Q1L + 􏽥Ξ − αP When Τ � R, then μ(t) ≡ 0 for all t ∈ R, then
(A2) reduces to the following equation:

Ξ PB

∗ −Q1
􏼠 􏼡≤ 0, (36)
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where Ξ: � ATP + PA + +C(1 + β1)P + LTQ1L − αP.

Remark 17. Compared to the existing results in [31], our
delay-partitioning group strategy avoids the complexity of
incorporating a mechanism such as index set Dk, which
reorders the states at impulsive instants. Additionally, based
on the pinning control method, we have developed
a quantized impulse efect that can enhance the control efect
and lower the cost. Tere are quantitative control strategies
that just take output measurements into account, we can
refer to ones in [32]. However, introducing impulse-
quantizing into the hybrid domains is still a vacancy in
the existing literature and this paper is to fll the vacancy.

Remark 18. For the existing methods in [37, 38], the main
diferences and advantages of our impulse-quantizing

approach for complex networks lie in two aspects: (1) In
[37, 38], their control strategies are aimed at the continuous
time domain and it will become inapplicable once the state
synchronization arises in mixed time domain. (2) In [37, 38],
networks information can be communicated without any
loss. However, the amount of data that can be transmitted
per unit time in complex networks is frequently constrained.
To lessen the strain on the communication channel during
transmission, the quantization efect [39] is introduced in
the controller in this study.

Corollary 19. Under the condition of Teorem 11, when
qj � 0, there exist some scalars α> 0, v> 0, βi > 0, (i � 1, 2, 3),

εi(i � 1, · · · , m), PT � P> 0, Q1 > 0, Q2 > 0 that satisfy the
following inequalities:

B1( 􏼁: G
T
G􏼐 􏼑⊗ ΓTPΓ􏼐 􏼑≤ β1IN( 􏼁⊗P, G

T
G􏼐 􏼑⊗ ΓTA

T
PΓ􏼐 􏼑≤ β2IN( 􏼁⊗ A

T
P􏼐 􏼑, G

T
G􏼐 􏼑⊗ ΓTB

T
PΓ􏼐 􏼑≤ β3IN( 􏼁⊗ B

T
P􏼐 􏼑,

B2( 􏼁:

Ξ PB
��μ√

A
T
PB

∗ −Q1 0

∗ ∗ −Q2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠≤ 0,

(37)

where 􏽥Ξ: � μATPA + μLTQ2L + cμLTPBL + cμ ((cβ1 + β2
AT + β3BT)P + PA) and Ξ: � ATP + PA + +c(1 + β1)P+

LTQ1L + 􏽥Ξ − αP.

B3( 􏼁: dMe
v tk+1− tk( ) + eα tk+1 − tk( 􏼁≤ 1, dM � max

i∈ 1,···,m{ }
1 + εi (1 +Θ)qi + 1( 􏼁

2
􏼐􏽮 􏽯. (38)

Ten, system (9) can achieve impulse-quantizing syn-
chronization with system (6).

4. Numerical Simulations

In the section, we present a numerical example to illustrate
the proposed results. Consider the following mixed
continuous-discrete complex networks on time scale
T � ∪∞j�0[0.3j, 0.3j + 0.2]:

x
Δ
i (t) � Axi(t) + Bf xi(t)( 􏼁 + c 􏽘

3

j�1
gijΓxj(t), i � 1, 2, 3,

(39)

where c � 0.1, f(x) � tanh(x), and

A �

0.2 0.4 1.2

0 0.1 0.1

0.3 1.1 0.1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, B �

0.5 0.2 1

0.2 0.4 0

0.1 0.7 0.2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, G �

−2 1 1

1 −2 1

1 1 −2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (40)
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For the phase space and state trajectories of system (39)
with initial conditions x1(0) � [0.25, −0.45, −1.05]T,

x2(0) � [0.1, −0.55, −0.85]T, andx3(0) � [0.8, 0.15, 0.02]T,

we can refer to Figures 1(a) and 1(b).Te graininess function
of T is given by the following equation:

μ(t) �
0, t ∈ ∪

∞

j�0
[0.3j, 0.3j + 0.2],

0.1, t � 0.3j + 0.2, j ∈ Z
+
,

⎧⎪⎨

⎪⎩
(41)

which implies that μ(t)≤ 0.1 for all t ∈ T.
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Figure 1: Te phase space and trajectories of xi(t), i � 1, 2, 3 without impulsive control. (a) Te phase space of xi(t), i � 1, 2, 3. (b) Te
trajectories of xi(t), i � 1, 2, 3.

−5
0

5
10

−2

0

2

4

e i1
 (t)ei2 (t)

e i3
 (t

)

−1

0

1

2

3

4

5

e1 (t)
e2 (t)
e3 (t)

(a)

e i (t
),i

=1
,2

,3

0.5 1 1.5 2 2.5 3 3.5 40
t

−2

−1

0

1

2

3

4

5

6

7

e1 (t)
e2 (t)
e3 (t)

(b)

Figure 2: Te phase space and trajectories of ei(t), i � 1, 2, 3 for Case 20. (a) Te phase space of error variables. (b) Te trajectories of error
variables.
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Choose N1 � 1, 2{ }, N2 � 3{ }, α � 3, v � 1, εi � 1 (i �

1, 2), m � 2, and impulsive instants tk � 0.1k, for k ∈ N. It is
easy to estimate the exponential function eα(tk+1− tk) ≈ 1.35
and

dM + 􏽘
m

i�1
die

vτi⎛⎝ ⎞⎠e
s tk+1− tk( )eα tk+1, tk( 􏼁< 0.7< 1, (42)

which can satisfy (A3) in Teorem 11.
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Figure 3: Te impulsive efect of ei(t), i � 1, 2, 3, under diferent impulsive controllers. (a) Te impulsive magnitudes of ei(t), i � 1, 2, 3,
for Case 20. (b) Te impulsive quantized magnitudes of ei(t), i � 1, 2, 3, for Case 21. (c) Te impulsive magnitudes of ei(t), i � 1, 2, 3, for
Case 22. (d) Te impulsive quantized magnitudes of ei(t), i � 1, 2, 3 for Case 23.
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Moreover, let u0 � 1, δ � 0, and ρ � (9/11); all assump-
tions of Teorem 11 are satisfed.

Ten, the feasible solutions of LMIs in Teorem 11 can
be obtained, showing that

P �

0.3282 0.0104 0.0415

0.0104 0.6148 0.1401

0.0415 0.01401 0.4438

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Q1 �

1.2586 0 0

0 1.2586 0

0 0 1.2586

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Q2 �

1.2586 0 0

0 1.2586 0

0 0 1.2586

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (43)

Next, consider impulsive controller as follows:

ui(t) � 􏽘
∞

k�1
Q qjei(t) + qjei t − τj􏼐 􏼑􏼐 􏼑δ t − tk( 􏼁, i ∈ Nj, (44)

and choose q1 � −0.6, q2 � −0.8, τ1 � 1, and τ2 � 2, and
there are four cases for impulsive control gains.

Case 20. When q1 � 0, q2 � 0, and ui(t) � 􏽐
∞
k�1qjei(t)

δ(t − tk), i ∈ Nj, the error system (10) is impulsively syn-
chronous. For phase space and trajectories of ei(t), i � 1, 2, 3,
we can refer to Figures 2(a) and 2(b). Figure 3(a) shows the
impulsive magnitude of error variables.

Case 21. When q1 � 0, q2 � 0, and ui(t) � 􏽐
∞
k�1Q

(qjei(t))δ(t − tk), i ∈ Nj, the error system (10) can achieve
impulse-quantizing synchronization. For phase space and
trajectories of ei(t), i � 1, 2, 3, we can refer to Figures 4(a)
and 4(b). Figure 3(b) shows the impulsive quantized mag-
nitude of error variables.

Case 22. When q1 � −0.08, q2 � −0.06, and

ui(t) � 􏽘
∞

k�1
qjei(t) + qjei t − τj􏼐 􏼑􏼐 􏼑δ t − tk( 􏼁, i ∈ Nj, (45)

the error system (10) can achieve impulsive synchronization.
For phase space and trajectories of ei(t), i � 1, 2, 3, we can
refer to Figures 5(a) and 5(b). Figure 3(c) shows the im-
pulsive magnitude of error variables.

Case 23. When q1 � −0.08, q2 � −0.06, and

ui(t) � 􏽘

∞

k�1
Qqjei(t) + qjei t − τj􏼐 􏼑􏼐 􏼑δ t − tk( 􏼁, i ∈ Nj, (46)

the error system (10) can achieve impulse-quantizing syn-
chronization. For phase space and trajectories of
ei(t), i � 1, 2, 3, we can refer to Figures 6(a) and 6(b).
Figure 3(d) shows the impulsive quantized magnitude of
error variables.

Comparing Case 20 and Case 21, it can be seen from
Figures 2(b) and 4(b) that the error system achieves syn-
chronization with or without the infuence of the quanti-
zation efect when delayed impulses do not exist, but the
quantization increases the error magnitude. Comparing
Case 22 and Case 23, it can be seen from Figures 5(a) and
6(b) that the quantization efect increases the error ampli-
tude when delayed impulses exist, and the quantization will
make the error system reach the synchronization state faster
than the simple impulsive control.
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Figure 4: Te phase space and trajectories of ei(t), i � 1, 2, 3 for Case 21. (a) Te phase space of error variables. (b) Te error trajectories.
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From the above analysis, it can be seen that impulse-
quantizing synchronization proposed in this paper can be
achieved more economically and efectively than existing ones.

5. Conclusion

In this paper, we studied impulse-quantizing synchroniza-
tion problem of mixed continuous-discrete complex net-
works. A delay-partitioning group-based impulsive

controller which can include delays and logarithmic
quantizer is designed. Multigroup pinning control and
impulsive quantization can be selected to fexibly realize
synchronization according to diferent situations. Scale-type
sufcient conditions concerning the upper bound of im-
pulses and the communication delays have been derived and
analyzed. Our simulations show the interesting synchroni-
zation schemes with or without impulsive and quantized
control efects.

−5
0

5
10

−2

0

2

4

e i1
 (t)ei2 (t)

e i3
 (t

)

−1

0

1

2

3

4

5

e1 (t)
e2 (t)
e3 (t)

(a)

e i (t
),i

=1
,2

,3

−2

−1

0

1

2

3

4

5

6

7

0.5 1 1.5 2 2.5 3 3.5 40
t

e1 (t)
e2 (t)
e3 (t)

(b)

Figure 5: Te phase space and trajectories of ei(t), i � 1, 2, 3, for Case 22. (a) Te phase space of error variables. (b) Te error trajectories.

−5
0

5
10

−2

0

2

4

e i1
 (t)ei2 (t)

e i3
 (t

)

−5

0

5

10

15

e1 (t)
e2 (t)
e3 (t)

(a)

e i (t
),i

=1
,2

,3

e1 (t)
e2 (t)
e3 (t)

−2

0

2

4

6

8

10

12

14

0.5 1 1.5 2 2.5 3 3.5 40
t

(b)

Figure 6: Te phase space and trajectories of ei(t), i � 1, 2, 3, for Case 23. (a) Te phase space of error variables. (b) Te error trajectories.

12 Discrete Dynamics in Nature and Society



Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Disclosure

Tis paper consists of part of the preprint [34] posted on
Research Square.

Conflicts of Interest

Te authors declare that they have no conficts of interest
regarding this study.

References

[1] Z.-K. Gao, P.-C. Fang, M.-S. Ding, and N.-D. Jin, “Multi-
variate weighted complex network analysis for characterizing
nonlinear dynamic behavior in two- phase fow,” Experi-
mental Termal and Fluid Science, vol. 60, pp. 157–164, 2015.

[2] P. Pedro, S. D. Eppinger, and A. M. Maier, “Information fow
through stages of complex engineering design projects:
a dynamic network analysis approach,” IEEE Transactions on
Engineering Management, vol. 64, no. 4, pp. 604–617, 2015.

[3] Y.-H. Lan, H.-B. Gu, C.-X. Chen, Y. Zhou, and Y.-P. Luo, “An
indirect Lyapunov approach to the observer-based robust
control for fractional-order complex dynamic networks,”
Neurocomputing, vol. 136, no. 20, pp. 235–242, 2014.

[4] W. K. Wong, W.-B. Zhang, Y. Tang, and X.-T. Wu, “Sto-
chastic synchronization of complex networks with mixed
impulses,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 60, no. 10, pp. 2657–2667, 2013.

[5] S.-Q. Jiang, G.-L. Cai, S.-M. Cai, L.-X. Tian, and X.-B. Lu,
“Adaptive cluster general projective synchronization of
complex dynamic networks in fnite time,” Communications
in Nonlinear Science and Numerical Simulation, vol. 28, no. 1-
3, pp. 194–200, 2015.

[6] S.-M. Cai, P.-P. Zhou, and Z.-R. Liu, “Synchronization
analysis of hybrid-coupled delayed dynamical networks with
impulsive efects: a unifed synchronization criterion,” Journal
of the Franklin Institute, vol. 352, no. 5, pp. 2065–2089, 2015.

[7] J.-S. Wu and L.-C. Jiao, “Synchronization in dynamic net-
works with nonsym- metrical time-delay coupling based on
linear feedback controllers,” Physica A: Statistical Mechanics
and Its Applications, vol. 387, no. 8-9, pp. 2111–2119, 2008.

[8] J.-T. Sun, Y.-P. Zhang, F. Qiao, and Q.-D. Wu, “Some im-
pulsive synchronization criterions for coupled chaotic sys-
tems via unidirectional linear error feedback approach,”
Chaos, Solitons & Fractals, vol. 19, no. 5, pp. 1049–1055, 2004.

[9] Y.-J. Zhang, W.-J. Yan, and Q. Yang, “Synchronization
control of time-varying complex dynamic network with
nonidentical nodes and coupling time-delay,” Mathematical
Problems in Engineering, vol. 2014, Article ID 461635, 8 pages,
2014.

[10] X. Wang, J.-A. Fang, A. Dai, W.-X. Cui, and G. He, “Mean
square exponential synchronization for a class of Markovian
switching complex networks under feedback control and M-
matrix approach,” Neurocomputing, vol. 144, no. 20,
pp. 357–366, 2014.

[11] J.-Q. Lu, J. Kurths, J. D. Cao, N. Mahdavi, and C. Huang,
“Synchronization control for nonlinear stochastic dynamical
networks: pinning impulsive strategy,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 23, no. 2,
pp. 285–292, 2012.

[12] X.-F. Wang and G.-R. Chen, “Pinning control of scale-free
dynamical networks,” Physica A: Statistical Mechanics and Its
Applications, vol. 310, no. 3-4, pp. 521–531, 2002.

[13] Q.-J. Zhang and J.-C. Zhao, “Projective and lag synchronization
between general complex networks via impulsive control,”
Nonlinear Dynamics, vol. 67, no. 4, pp. 2519–2525, 2012.

[14] Y.-S. Lu, R.-C. Luo, and Y.-F. Zou, “Morphological analysis for
three- dimensional chaotic delay neural networks,” Journal of
Mathematics, vol. 2020, no. 4, Article ID 4302505, 6 pages, 2020.

[15] Y.-Q. Li and W.-H. Jiang, “Nonlinear waves in complex
oscillator network with delay,” Communications in Nonlinear
Science and Numerical Simulation, vol. 18, no. 11, pp. 3226–
3237, 2013.

[16] P.-T. Gao, Y.-H. Wang, J.-X. Zhao, L.-L. Zhang, and Y. Peng,
“Links syn- chronization control for the complex dynamical
network,” Neurocomputing, vol. 515, no. 1, pp. 59–67, 2023.

[17] P.-T. Gao, Y.-H. Wang, L.-Z. Liu, L.-L. Zhang, and S.-P. Li,
“Double tracking control for the directed complex dynamic
network via the state observer of outgoing links,” In-
ternational Journal of Systems Science, vol. 2022, no. 24,
Article ID 2148495, 574 pages, 2022.

[18] Y.-P. Luo and Y.-J. Yao, “Finite-time synchronization of
uncertain complex dynamic networks with time-varying
delay,” Advances in Diference Equations, vol. 2020, no. 1,
pp. 32–327, 2020.

[19] F.-B. Li, P. Shi, L.-G. Wu, M. V. Basin, and C. C. Lim,
“Quantized control design for cognitive radio networks
modeled as nonlinear semi-markovian jump systems,” IEEE
Transactions on Industrial Electronics, vol. 62, no. 4,
pp. 2330–2340, 2015.

[20] X.-H. Liu and G.-Q. Ma, “Sliding mode control for quantized
semi-Markovian switching systems with bounded distur-
bances,” IMA Journal of Mathematical Control and In-
formation, vol. 36, no. 1, pp. 125–144, 2019.

[21] T. Wu, J. H. Park, L.-L. Xiong, X.-Q. Xie, and H.-Y. Zhang, “A
nov- el approach to synchronization conditions for delayed
chaotic Lur’e systems with state sampled-data quantized
controller,” Journal of the Franklin Institute, vol. 357, no. 14,
pp. 9811–9833, 2020.

[22] L.-X. Zhang, Z.-P. Ning, and W.-X. Zheng, “Observer-based
control for piecewise-afne systems with both input and
output quantization,” IEEE Transactions on Automatic Con-
trol, vol. 62, no. 11, pp. 5858–5865, 2017.

[23] J. Tao, R.-Q. Lu, H.-Y. Su, P. Shi, and Z.-G. Wu, “A syn-
chronous fltering of nonlinear Markov jump systems with
randomly occurred quantization via T-S fuzzy models,” IEEE
Transactions on Fuzzy Systems, vol. 26, no. 4, pp. 1–1877, 2017.

[24] H.-J. Gao and T.-W. Chen, “A new approach to quantized
feedback control systems,” Automatica, vol. 44, no. 2,
pp. 534–542, 2008.

[25] H.-X. Rao, L.-W. Zhao, Y. Xu, Z.-H. Huang, and R. Lu,
“Quasisynchronization for neural networks with partial
constrained state information via intermittent control ap-
proach,” IEEE Transactions on Cybernetics, vol. 52, no. 9,
pp. 8827–8837, 2022.

[26] T.-W. Zhou, Z.-Q. Zuo, and Y.-J. Wang, “Self-triggered and
event-triggered control for linear systems with quantization,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 50, no. 9, pp. 3136–3144, 2020.

[27] J. Cao, P. Li, and W.-W. Wang, “Global synchronization in
arrays of delayed neural networks with constant and delayed
coupling,” Physics Letters A, vol. 353, no. 4, pp. 318–325, 2006.

Discrete Dynamics in Nature and Society 13



[28] W.-L. Lu and T.-P. Chen, “Synchronization analysis of lin-
early coupled networks of discrete time systems,” Physica D:
Nonlinear Phenomena, vol. 198, no. 1-2, pp. 148–168, 2004.

[29] Q.-X. Cheng and J. Cao, “Global synchronization of complex
networks with discrete time delays on time scales,” Discrete
Dynamics in Nature and Society, vol. 2011, Article ID 287670,
19 pages, 2011.

[30] Y.-X. Tan and Z.-K. Huang, “Synchronization of drive-
response networks with delays on time scales,” IEEE/CAA
Journal of Automatica Sinica, vol. 2016, Article ID 7510043,
10 pages, 2017.

[31] X.-Z. Liu and K.-X. Zhang, “Synchronization of linear dy-
namical networks on time scales: pinning control via delayed
impulses,” Automatica, vol. 72, pp. 147–152, 2016.

[32] Y. Wan, J.-D. Cao, and G.-H. Wen, “Quantized synchroni-
zation of chaotic neural networks with scheduled output
feedback control,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 28, no. 11, pp. 2638–2647, 2017.

[33] Q. Xiao and Z.-G. Zeng, “Scale-limited Lagrange stability and
fnite-time synchronization for Memristive recurrent neural
networks on time scales,” IEEE Transactions on Cybernetics,
vol. 47, no. 10, pp. 2984–2994, 2017.

[34] N. H. L.-Y. Li, B. Hong-Hua, and Z.-K. Huang, “An impulse-
quantizing synchronization approach for mixed continuous-
discrete complex networks,” 2023, https://europepmc.org/
article/ppr/ppr689087.

[35] M. Bohner and A. Peterson, Dynamic Equations on Time
Scales: An Intero- Duction with Applications, Birkh¨auser,
Boston, MA, USA, 2001.

[36] B.-L. Zhou, Y.-Q. Yang, and X.-Y. Xu, “Te group-delay
consensus for second- order multi-agent systems by piece-
wise adaptive pinning control in part of time interval,” Physica
A: Statistical Mechanics and Its Applications, vol. 513,
pp. 694–708, 2019.

[37] Y.-H. Wang, W.-L. Wang, and L.-L. Zhang, “State synchro-
nization of controlled nodes via the dynamics of links for
complex dynamical networks,” Neurocomputing, vol. 167,
no. 2, pp. 429–447, 2020.

[38] P.-T. Gao, Y.-H. Wang, L.-Z. Liu, L.-L. Zhang, and X. Tang,
“Asymptotical state synchronization for the controlled di-
rected complex dynamic network via links dynamics,” Neu-
rocomputing, vol. 448, no. 2, pp. 60–66, 2021.

[39] Y.-X. Hong, B. Hong-Hua, and Z.-K. Huang, “Stabilization
analysis of impulsive state-dependent neural networks with
nonlinear disturbance: a quantization approach,” In-
ternational Journal of Applied Mathematics and Computer
Science, vol. 30, no. 2, pp. 267–279, 2020.

14 Discrete Dynamics in Nature and Society

https://europepmc.org/article/ppr/ppr689087
https://europepmc.org/article/ppr/ppr689087



