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Tis paper studies Lyapunov stability at a point and its application in the Cournot duopoly game.We frst explore the relationship
between Lyapunov stability at a point, nonsensitivity and non-Devaney chaos and fnd that a dynamical system is nonsensitive and
non-Devaney chaotic if there is a point in this system such that it is Lyapunov stable at that point. We next prove a group of
equivalent characterizations of Lyapunov stability at a point to deduce the composite theorems and product theorems of
Lyapunov stability at a point, and then we prove three equivalent characterizations of the Cournot duopoly system to demonstrate
that this system is Lyapunov stable at its unique nonzero fxed point (Cournot equilibrium point) when the unit costs of the
Cournot double oligarchies satisfy certain conditions. Terefore, we conclude that the Cournot duopoly system is safe relative to
both sensitivity and Devaney chaos. Te robustness of our results are also verifed by conducting numerical simulations in the
Cournot duopoly game.

1. Introduction

A general concept of Lyapunov stability at a point was
introduced by Ethan and Sergii in 2003 [1] through studies
of Li-York sensitivity that link the Li-York versions of
chaos with the notion of sensitivity to initial conditions.
Te Lyapunov stability (hereafter, L-stability) at a fxed
point was formally defned by Clark Robinson in 2012 [2]
for a state description of diferential equation solutions of
being close to an equilibrium point. In the following years,
this concept emerged in various studies, and these studies
mainly focused on diferent types of systems, for example,
topologic dynamical systems, diferential systems, neural
network systems, and epidemiology systems (see Refer-
ences [3–6]). However, there is limited evidence of the
nature and characterization of L-stability at a point in the
literature.

To the best of our knowledge, this paper is the frst to
study the nature and characterization of L-stability at
a point and its applications in the Cournot duopoly game.
In Section 2, we explore the relationship between L-stability

at a point, nonsensitive dependence on initial condition
(hereafter, nonsensitivity), and nonchaos in the sense of
Devaney (hereafter, non-Devaney chaos) by introducing
the concept of sensitive dependence on initial condition
(hereafter, sensitivity) at a point. First, we fnd that a system
is nonsensitive at a point if and only if it is L-stable at this
point (see Proposition 1). Next, the following two con-
clusions are deduced in Proposition 3: (1) a system is
nonsensitive (i.e., nonglobally sensitive) if it is nonsensitive
at a given point in the system and (2) a system is non-
Devaney chaotic if the system is nonsensitive. Hence, we
infer that a system is nonsensitive and non-Devaney
chaotic as long as there is a point that is L-stable in this
system. Tat is, we declare a system’s nonsensitivity and
non-Devaney chaos as long as we can fnd a point in the
system that is L-stable. In Section 3, we frst prove a group
of equivalent characterizations of L-stability at a point (see
Teorem 1). By using this theorem, we obtain the com-
posite theorems (Teorem 2 and Corollary 1) and product
theorems (Teorem 3 and Corollary 2) of L-stability at
a point, and then three equivalent characterizations of L-
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stability at a point of the Cournot duopoly game system are
obtained (Teorem 4). In Section 4, based on the previous
theorems and the knowledge of diferential calculus, we
show that the system of the Cournot duopoly game is L-
stable at its Cournot equilibrium point if the unit costs of
two oligopolies are within a certain range (see Teorem 6).
Tat is, the system of the Cournot duopoly game is safe
relative to sensitivity and Devaney chaos if the condition of
unit costs inTeorem 6 is satisfed. In Section 5, we conduct
numerical simulations to show that our results are robust,
as the sequences of the Cournot duopoly game generated by
the iterations are either convergent or periodic if the
condition of Teorem 6 is satisfed. It is well known that
system security is very important for economics and other
sciences. Terefore, our study might provide research
methods for future research on the relative security of
a system.

2. Relationship between L-Stability at a Point,
Nonsensitivity, and Non-Devaney Chaos

Conventionally, a dynamical system (X, T) is a pair where X

is a nonvoid compact metric space with metric ϱ and
T: X⟶ Y is a surjective and continuous map. N denotes
the set of all natural numbers (i.e., N � 0, 1, 2, . . .{ }), both ϵ
and δ denote positive real numbers, where δ is usually
a sufciently small positive number and ϵ is any positive
number. Te symbol Bϱ(x, δ) denotes the neighborhood
centered on x with radial δ in a metric space X, where
ϱ(x, y) is the distance between x and y in X, and the symbol
supA denotes the smallest upper bound of a set A of some
real numbers. Let A and B be two propositions, then, symbol
A⇒B denotes that B inevitably holds if A holds.

To elucidate the relationship between L-stability at
a point, nonsensitivity, and non-Devaney chaos, we defne
the following precise concepts:

Defnition 1 (see [1]). Assume that (X, T) is a dynamical
system, x ∈ X, the system (X, T) is L-stable at x, if for any
ϵ> 0, there is δ > 0 such that ϱT(x, y)≤ ϵ for each
y ∈ Bϱ(x, δ), where ϱT(x, y) � sup ϱ(Tnx, Tny): n≥ 0􏼈 􏼉.

Defnition 2 (see [7]). Te system (X, T) is Devaney chaotic
if the following properties hold:

(D1) T is topological transitive, i.e., to any pair of open
sets U, V ⊂ X there is n ∈ N such that Tn(U)∩V≠ ϕ;
(D2) Te periodic points are dense in X;
(D3) T has sensitivity, i.e., there is ϵ> 0 such that for
any x ∈ X and δ > 0, there is y ∈ Bϱ(x, δ) and n ∈ N
such that ϱ(Tnx, Tny)≥ ϵ.

We deduce the following equivalent characterizations
from Defnition 1:

Proposition 1. Assuming that (X, T) is a dynamical system,
x ∈ X, the system (X, T) is L-stable at x if only and if for any
ϵ> 0, there is δ > 0 such that ϱ(Tnx, Tny)≤ ϵ, for each
y ∈ Bϱ(x, δ) and for each n ∈ N.

Terefore, the following three equivalent characteriza-
tions naturally hold:

Proposition 2. Assume that (X, T) is a dynamical system,
x ∈ X, the following three propositions are equivalent:

(1) System (X, T) is not L-stable at;
(2) Tere is ϵ> 0 such that for any δ > 0, there is

y ∈ Bϱ(x, δ) and n ∈ N such that ϱ(Tnx, Tny)> ϵ;
(3) Tere is ϵ> 0 such that for any δ > 0, there is

y ∈ Bϱ(x, δ) and n ∈ N such that ϱ(Tnx, Tny)≥ ϵ.

From Defnition 2, we can see that sensitivity is one of
three conditions of Devaney chaos. In other words, a system
(X, T) is non-Devaney chaotic if it is nonsensitive. Sensi-
tivity is a global concept relative to a system (X, T). Tus, for
any point x ∈ X, we can discuss its localization at a point x as
follows:

Defnition 3. A system (X, T) is sensitive at a point x ∈ X if
there is ϵ> 0 such that for any δ > 0, there is y ∈ Bϱ(x, δ) and
n ∈ N such that ϱ(Tnx, Tny)≥ ϵ.

To distinguish the two sensitivities, we defne (D3) of
Defnition 2 as global sensitivity and Defnition 3 as local
sensitivity at a point. In addition, surprisingly, we fnd that
Defnition 3 is identical to condition (3) of Proposition 2.
Terefore, the following relationships are obviously true:

Proposition 3. Assuming that (X, T) is a system, x ∈ X,
then (X, T) is L-stable at x⇒ the system (X, T) is non-
sensitive at x⇒(X, T) is nonglobally sensitive ⇒ the system
(X, T) is non-Devaney chaos.

Proposition 3 shows that L-stability at a point x ∈ X is
a sufcient condition that a system (X, T) is nonsensitive
and further non-Devaney chaotic. From Defnition 2, it is
clear that sensitivity at x (i.e., £nonstability at x) can be
explained intuitively when x ∈ X, as follows:

If there is a positive number ϵ, for an arbitrarily sufcient
small neighborhood Bϱ(x, δ) centered on x with radial δ,
there will be at least one point y ∈ Bϱ(x, δ) and one moment
n ∈ N such that the distance ϱ(Tnx, Tny) between both Tnx

and Tny at moment n becomes equal or greater to the
positive number ϵ. We can see that this is a precise math-
ematical description of an explosion phenomenon when ϵ is
considered as a sufciently large real number. In other
words, L-stability at point x implies that any sufciently
small neighborhood at x is safe relative to sensitivity and
Devaney chaos because it is nonsensitive at x, i.e., an ex-
plosion will never happen at x. Terefore, system (X, T) is
nonglobally sensitive, as well as non-Devaney chaotic.

3. L-Stability at a Point

In this section, we frst prove the composite theorems and
the product theorems of L-stable points in dynamic systems.
Ten, using these theorems, we further show three equiv-
alent characterizations of L-stable at a point of Cournot
duopoly mapping.
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To achieve this, we frst prove the following equivalent
characterizations:

Theorem 1. If (X, T) is a dynamical system, x ∈ X, the
following assertions are equivalent:

(1) Te system (X, T) is L-stable at x;
(2) For any ϵ> 0, there is δ > 0 such that for each

y ∈ Bϱ(x, δ) and for each n ∈ N, ϱ(Tnx, Tny)< ϵ;
(3) For any ϵ> 0, there is δ > 0 such that

Tn(Bϱ(x, δ)) ⊂ Bϱ(Tnx, ϵ) for each n ∈ N.

Proof. It is apparent that (1)⇒(2)⇒(3). Terefore, we only
need to prove (3)⇒(1).

In fact, for any ϵ> 0, there is δ > 0 such that for any n ∈ N,
we have

T
n

Bϱ(x, δ)􏼐 􏼑 ⊂ Bϱ T
n
x, ε/2( 􏼁. (1)

Ten, for each y ∈ Bϱ(x, δ) and for any n ∈ N, the fol-
lowing inequation holds:

ϱ T
n
x, T

n
y( 􏼁< ε/2. (2)

Eventually, we have that supn∈N ϱ(Tnx, Tny)≤ ϵ/2< ϵ.
According to Teorem 1, we naturally obtain the fol-

lowing composite theorem: □

Theorem 2. Assume that (X, T) is a compact dynamic
system, x ∈ X, then (X, T) is L-stable at x if and only if
(X, T2) is L-stable at x.

Proof. (⇒) For an arbitrary ϵ> 0, since (X, T) is L-stable at
x, there is δ > 0 such that for any y ∈ Bϱ(x, δ) and for each
n ∈ N, we have ϱ(Tnx, Tny)< ε/2, thus supn∈N ϱ
(Tnx, Tny)≤ ε/2< ε. In addition, because supn∈N ϱ(T2nx,

T2ny)≤ supn∈N ϱ(Tnx, Tny), then the inequation

sup
n∈N
ϱ T

2n
x, T

2n
y􏼐 􏼑< ϵ, (3)

holds. Terefore, (X, T2) is L-stable at x. (⇐) For an ar-
bitrary ϵ> 0, since T: X⟶ X is uniformly continuous,
there is η> 0, such that when ϱ(x, y)< η for each pair
x, y ∈ X, we have

ϱ(Tx, Ty)< ε/2. (4)

Since point x is an L-stable point in (X, T2), for η> 0,
there is δ ∈ (0, η), such that for each y ∈ Bϱ(x, δ) and each
n ∈ N, the following inequations are satisfed:

ϱ T
2n

x, T
2n

y􏼐 􏼑≤ sup
n∈N
ϱ T

2n
x, T

2n
y􏼐 􏼑< η< ε/2. (5)

Ten, for each n ∈ N

ϱ T T
2n

􏼐 􏼑x, T T
2n

􏼐 􏼑y􏼐 􏼑 � ϱ T
2n+1

x, T
2n+1

y􏼐 􏼑< ϵ/2. (6)

Tus, we have

sup
n∈N
ϱ T

n
x, T

n
y( 􏼁≤ ε/2< ε. (7)

Tat is, (X, T) is L-stable at the point x.
Te following corollary naturally follows from Teo-

rem 2: □

Corollary 1. Assume that (X, T) is a compact dynamic
system, x ∈ X, then (X, T) is L-stable at x if and only if the
system (X, Tn) is L-stable at x for any n ∈ N.

For a nature number k≥ 1, let (Xi, Ti)􏼈 􏼉
k

i�1 be k compact
dynamic systems, Cartesian set X � 􏽑

k
i�1Xi, and product

mapping T � 􏽑
k
i�1Ti. Ten, for x � (x1, . . . , xk),

y � (y1, . . . , yk) ∈ X, (X, T) is a product system with the
metric ϱ(x, y) � max1≤i≤kϱi(xi, yi), where ϱi is a metric on
Xi. Terefore, we have Teorem 3.

Theorem 3. Product system (X, T) is L-stable at point x �

(x1, . . . , xk) ∈ X, if and only if for i(1≤ i≤ k), each (Xi, Ti) is
L-stable at point xi.

Proof. (⇒)Arbitrarily taking a natural number i0(1≤ i0 ≤ k)

and a real number ϵ> 0, since (X, T) is L-stable at x �

(x1, . . . , xk) ∈ X, there is δ > 0 such that for any
y � (y1, . . . , yk) ∈ Bϱ(x, δ) and any natural number n ∈ N,
the following inequation holds:

ϱ T
n
x, T

n
y( 􏼁< ϵ. (8)

For an arbitrary yi0
∈ Bϱi0

(xi0
, yi0

), we take yi � xi when
i≠ i0, and have y � (y1, . . . , yk); then,

ϱi0 xi0
, yi0

􏼐 􏼑 � max
1≤ i≤ k
ϱi xi, yi( 􏼁 � ϱ(x, y)< δ. (9)

Terefore, we have

ϱi0 T
n
i0

xi0
, T

n
i0

yi0
􏼐 􏼑≤ max

1≤ i≤ k
ϱi T

n
i xi, T

n
i yi( 􏼁 � ϱ T

n
x, T

n
y( 􏼁< ϵ.

(10)

Tat is, (Xi0
, Ti0

) is L-stable at the point xi0
∈ Xi0

.(⇐)

For any ϵ> 0, since each (Xi, Ti) is L-stable at xi, there is
δi > 0 such that for any yi ∈ Bϱi(xi, δi) and for any n ∈ N, the
following inequation holds:

ϱi T
n
i xi, T

n
i yi( 􏼁< ϵ. (11)

Let δ � max1≤i≤kδi; then for y ∈ Bϱ(x, δ) and any
i(1≤ i≤ k), we have the following equation:

ϱi xi, yi( 􏼁≤ max
1≤ i≤ k
ϱi xi, yi( 􏼁 � ϱ(x, y)< δ ≤ δi, (12)

where x � (x1, . . . , xk) and y � (y1, . . . , yk).
Subsequently, for any n ∈ N, we have

ϱ T
n
x, T

n
y( 􏼁 � max

1≤ i≤ k
ϱi T

n
i xi, T

n
i yi( 􏼁< ϵ. (13)

Terefore, system (X, T) is L-stable at point x.
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When k � 2 in this theorem, the following corollary is
obviously true: □

Corollary 2. Product system (X1 × X2, T1 × T2) is L-stable
at point x � (x1, x2) ∈ X1 × X2, if and only if each (Xi, Ti) is
L-stable at point xi for i ∈ 1, 2{ }.

Assuming that f: Y⟶ X and g: X⟶ Y are two
continuous mappings, where X and Y are two compact
metric spaces, the product mapping Φ: X × Y⟶ X × Y is
said to be a Cournot duopoly mapping, if for any pair
(x, y) ∈ X × Y, Φ(x, y) � (f(y), g(x)). Te system (X ×

Y,Φ) is defned as the Cournot duopoly game system, and
Φ: X × Y⟶ X × Y is defned as Cournot duopoly map-
ping where the metric ϱ on X × Y satisfes the following: for
(x1, y1), (x2, y2) ∈ X × Y,

ϱ x1, y1( 􏼁, x2, y2( 􏼁( 􏼁 � max ϱX x1, x2( 􏼁, ϱY y1, y2( 􏼁􏼈 􏼉.

(14)

ϱX and ϱY are the metrics on X and Y, respectively. We have
the subsequent theorem:

Theorem 4. Let Φ: X × Y⟶ X × Y to be the Cournot
duopoly mapping, (x∗, y∗) ∈ X × Y; then, the following items
are equivalent:

(1) Φ is L-stable at the point (x∗, y∗);
(2) Φ2 is L-stable at the point (x∗, y∗);
(3) f°g and g°f are L-stable at both x∗ and y∗,

respectively.

Proof. Teorem 2 implies the equivalence of (1) and (2).
Tus, we only need to prove the equivalence of (2) and (3):

In fact, for any pair (x, y) ∈ X × Y, we have the fol-
lowing quation:

Φ2(x, y) � Φ(f(y), g(x))

� f°g(x), g°f(y)( 􏼁

� f°g( 􏼁 × g°f( 􏼁( 􏼁(x, y),

(15)

Tat is, Φ2 � (f°g) × (g°f). Ten, according to Cor-
ollary 2, the equivalence of (2) and (3) is shown to
be true. □

4. L-Stability at Equilibrium in the Cournot
Duopoly Game System

In this section, we discuss the L-stability at equilibrium in
the Cournot duopoly game system. Assume that duopoly
frms produce homogenous goods that are perfect sub-
stitutes and ofer goods at discrete time periods. Terefore,
duopoly frms encounter the same market demands. Tey
both choose the adaptive expectation rule to decide the
amount of goods in the next period as their response
strategy. Assume that the demanded quantity is reciprocal to
price p. Tis represents an “iso-elastic” demand function
refecting a case where consumers always spend a constant

sum on the commodity, regardless of price. Inverting the
demand function, we obtain

p �
1

x + y
, (16)

where the total quantity in the denominator is the sum of the
supplies, x and y, of two frms.

Te revenues of the two frms equal price times quantity,
that is, px � x/(x + y) and py � y/(x + y). We assume that
the frms operate under constant unit costs, denoted as a and
b. Teir total costs are accordingly ax and by and their
profts become

π1(x, y) �
x

x + y
− ax,

π2(x, y) �
y

x + y
− by,

(17)

respectively. To maximize the profts of the two frms, we
have to set the partial derivative of the previous with respect
to x and y to zero, that is, let zπ1/zx � 0 and zπ2/zy � 0.
Ten, we obtain the two reaction functions as follows:

x(y) �

��
y

a

􏽲

− y

y(x) �

��
x

b

􏽲

− x

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

, (x, y) ∈ 0,
1
b

􏼔 􏼕 × 0,
1
a

􏼔 􏼕. (18)

Let Φ(x, y) � (f(y), g(x)), where g(x) �
���
x/b

√
− x for

any x ∈ [0, 1/b] and f(y) �
���
y/a

􏽰
− y for any y ∈ [0, 1/a].

We have

Φ: 0,
1
b

􏼔 􏼕 × 0,
1
a

􏼔 􏼕⟶ 0,
1
b

􏼔 􏼕 × 0,
1
a

􏼔 􏼕. (19)

It is a continuous self-mapping on the compact metric
space [0, 1/b] × [0, 1/a]. Φ2 � (f°g) × (g°f).

According to Teorem 4, we frst state the following
lemmas to prove that point (b/(a + b)2, a/(a + b)2) is an L-
stable point of Φ.

Lemma 1. Let g(x) �
���
x/b

√
− x, for any x ∈ [0, 1/b] and

x∗ � b/(a + b)2. Ten,

(1) |g′(x)|≤ 1, if and only if x ∈ [1/16b, 1/b], where
g′(x) is the derivative of g(x) to x;

(2) x∗ ∈ (1/16b, 1/b) if and only if 3b> a> 0.

Proof. Te following two inferences are true:

(1) |g′(x)| � |1/2
���
bx

√
− 1|≤ 1⇌1/

���
bx

√
≤ 4⇌1/16b≤

x⇌1/16b≤x≤ 1/b,and
(2) 1/16b< x∗ � b/(a + b)2 < 1/b⇌1/16b2 < 1/

(a + b)2 < 1/b2⇌4b> a + b> b⇌3b> a> 0. □

Lemma 2. Assume that g(x) �
���
x/b

√
− x for x ∈ [0, 1/b],

f(y) �
���
y/a

􏽰
− y for y ∈ [0, 1/a], and 3a> b, then,

4 Discrete Dynamics in Nature and Society



(1) |f′(g(x))| ≤ 1 if and only if
(1/2

�
b

√
− 1/2

���������
1/b − 1/4a

√
)2

≤x≤ (1/2
�
b

√
+ 1/2

���������
1/b − 1/4a

√
)2, and

(2) (1/2
�
b

√
− 1/2

���������
1/b − 1/4a

√
)2 <x∗

< (1/2
�
b

√
+ 1/2

���������
1/b − 1/4a

√
)2, where

x∗ � b/(a + b)2.

Proof. Using a similar method as Lemma 1 (1), it is obvious
that |f′(y)| � |1/2 ���

ay
√

− 1|≤ 1, if and only if 1/16a≤y≤
1/a. Ten, |f′(g(x))| ≤ 1, if and only if 1/16a≤g

(x) �
���
x/b

√
− x≤ 1/a, and a series of equivalence relations

follows:

1
16a
≤

��
x

b

􏽲

− x⇌x −
1
�
b

√
��
x

√
+

1
16a
≤ 0⇌

��
x

√
−

1
2

�
b

√􏼠 􏼡

2

≤
1
4b

−
1
16a
⇌

1
2

�
b

√ −
1
2

�����
1
b

−
1
4a

􏽲

≤
��
x

√
≤

1
2

�
b

√ +
1
2

�����
1
b

−
1
4a

􏽲

⇌
1

2
�
b

√ −
1
2

�����
1
b

−
1
4a

􏽲

􏼠 􏼡

2

≤ x≤
1

2
�
b

√ +
1
2

�����
1
b

−
1
4a

􏽲

􏼠 􏼡

2

.

(20)

Terefore, (1) is true. In addition, the following equivalence relations hold:

3a> b⇌4a>(a + b)> a⇌
1
16a
<

a

(a + b)
2 � y
∗

�

���

x
∗

b

􏽳

− x
∗ ≤

1
a
⇌x
∗

−

���

x
∗

b

􏽳

+
1
16a
< 0

⇌
���
x∗

√
−

1
2

�
b

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
<
1
4b

−
1
16a
⇌

1
2

�
b

√ −
1
2

�����
1
b

−
1
4a

􏽲

􏼠 􏼡

2

< x
∗

�
b

(a + b)
2 <

1
2

�
b

√ +
1
2

�����
1
b

−
1
4a

􏽲

􏼠 􏼡

2

.

(21)

Terefore, (2) is also true.
Let UCF� a, b | 3a> b, 3b> a{ }which is the unit cost feld

of Φ, UCF is an unbounded triangle open area on the real
plane as shown in Figure 1.

For each (a, b) ∈ UCF, 3a> b and 3b> a. According to
Lemma 1 (2) and Lemma 2 (2), we defne x∗ � b/(a + b)2,
the subsequent two inequalities hold:

(i) 1/16b<x∗ ≤ 1/b and
(ii) (1/2

�
b

√
− 1/2

���������
1/b − 1/4a

√
)2

< x∗ < (1/2
�
b

√
+ 1/2

���������
1/b − 1/4a

√
)2.

Let

λ1 � min x
∗

−
1
16b

,
1

2
�
b

√ +
1
2

�����
1
b

−
1
4a

􏽲

􏼠 􏼡

2

− x
∗
, x
∗

−
1

2
�
b

√ −
1
2

�����
1
b

−
1
4a

􏽲

􏼠 􏼡

2⎧⎨

⎩

⎫⎬

⎭. (22)

It is easy to see that λ1 > 0 from Lemma 1 (2) and Lemma 2
(2). Te following conclusion is true when (a, b) ∈ UCF: □

Lemma 3. |(f°g′ x( )|≤ 1 always holds when |x − x∗|≤ λ1 for
x ∈ [0, 1/b].

Proof. Te derivative of the composite function f°g(x) with
respect to x is as follows:

f°g
′

x( ) � f
′

g( x( ))g
′

x( ).􏼒 (23)

Since |x − x∗|≤ λ1, the following two inequalities hold:

(a) 1/16b − x∗ ≤ − λ1 ≤x − x∗ and
(b) (1/2

�
b

√
− 1/2

���������
1/b − 1/4a

√
)2 − x∗ ≤ − λ1

≤ x − x∗ ≤ λ1 ≤ (1/2
�
b

√
+ 1/2

���������
1/b − 1/4a

√
)2 − x∗.

Ten, we have.

(c) 1/16b≤x≤ 1/b and
(d) (1/2

�
b

√
− 1/2

���������
1/b − 1/4a

√
)2

≤x≤ (1/2
�
b

√
+ 1/2

���������
1/b − 1/4a

√
)2

According to Lemma 1 (1) and Lemma 2 (1), the two
following inequalities hold:

(e) |f′(g(x))| ≤ 1 and
(f) |g′(x)|≤ 1.

Ten,

f°g
′

x(􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� f
′
(g(x))

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · g
′
(x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 1. (24)
□

Lemma 4. Point x∗ � b/(a + b)2 is an L-stable point in the
system (X, f°g) , where (a, b) ∈ UCF.

Discrete Dynamics in Nature and Society 5



Proof. When |x − x∗|≤ λ1, for x ∈ [0, 1/b], according to the
diferential mean value theorem, there is a real number ξ
between both x and x∗, such that

f°g􏼁 x( ) − f°|g( 􏼁 x
∗

( 􏼁 � f°( g
′ ξ( ) x( −x

∗
􏼁 � f
′

g| ξ( ))g
′ ξ( ) x − x

∗
( 􏼁,􏼒􏼒 (25)

and subsequently,

f°g( 􏼁(x) − f°g( 􏼁 x
∗

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � f
′

g( ξ( ))g
′ ξ( ) x( − x

∗
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ x − x
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(26)

Since f°g is a uniformly continuous function, for each
natural number n≥ 1, the following recursive formula holds:

f°g( 􏼁
n
(x) − f°g( 􏼁

n
x
∗

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ f°g( 􏼁
(n−1)

(x) − f°g( 􏼁
(n−1)

x
∗

( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ . . . ≤ f°g( 􏼁(x) − f°g( 􏼁 x
∗

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ x − x
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (27)

and (f°g)n(x∗) � x∗ (since x∗ is a fxed point of f°g ).
Terefore, for any ϵ ∈ (0, λ1), δ � ϵ> 0, when for each
x ∈ [0, 1/b], |x − x∗|< δ,

f°g( 􏼁
n
(x) − x

∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � f°g( 􏼁

n
(x) − f°g( 􏼁

n
x
∗

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ x − x
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< ε(� δ), forn � 0, 1, 2, . . . , (28)

holds. Terefore, system (X, f°g) is L-stable at point x∗. In the previous Lemmas, if we swap the positions of x

and y, a and b, as well as f and g, and let

λ2 � min y
∗

−
1
16a

,
1

2
��
a

√ +
1
2

�����
1
a

−
1
4b

􏽲

􏼠 􏼡

2

− y
∗
, y
∗

−
1

2
��
a

√ −
1
2

�����
1
a

−
1
4b

􏽲

􏼠 􏼡

2⎧⎨

⎩

⎫⎬

⎭, (29)

where y∗ � a/(a + b)2. Ten, the following corollaries hold: □

b

o a

3a=b

3b=a

UCF

Figure 1: Unit cost feld.
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Corollary 3. Let f(y) �
���
y/a

􏽰
− y, y ∈ [0, 1/a], we have

(1) |f′(y)|≤ 1 if and only if y ∈ [1/16a, 1/a] where f′(y)

is the derivative of f(y) to y;
(2) y∗ � a/(a + b)2 ∈ (1/16a, 1/a) if and only if

3a> b> 0.

Corollary 4. Assume that f(y) �
���
y/a

􏽰
− y for any

y ∈ [0, 1/a], g(x) �
���
x/b

√
− x for any x ∈ [0, 1/b], and

3b> a, then we have

(1) |g′(f(y))| ≤ 1 if and only if
(1/2

��
a

√
− 1/2

���������
1/a − 1/4b

√
)2

≤y≤ (1/2
��
a

√
+ 1/2

���������
1/a − 1/4b

√
)2;

(2) (1/2
��
a

√
− 1/2

���������
1/a − 1/4b

√
)2

<y∗ < (1/2
��
a

√
+ 1/2

���������
1/a − 1/4b

√
)2, where

y∗ � a/(a + b)2.

Corollary  . |(g°f′ y( 􏼁|≤ 1 always holds when |y − y∗|≤ λ2
for y ∈ [0, 1/a].

Corollary 6. Te point y∗ � a/(a + b)2 is an L-stable point
of the system (Y, g°f) where (a, b) ∈ UCF.

Let the Cartesian set LSD� (x∗ − λ1, x∗ +λ1) × (y∗

−λ2, y∗ + λ2), where (x∗, y∗) � (b/(a + b)2, a/(a + b)2); we
name LSD an L-stable domain of Φ. Ten, we have

Theorem  . Φ (LSD) ⊂ LSD, that is, LSD is an invariant set
of the Cournot duopoly mapping Φ.

Proof. Following the defnitions of λ1 and λ2, for each
(x, y) ∈ LSD, we have

(1) 1/16b≤ x∗ - λ1 <x≤ 1/b, and
(2) 1/16a≤y∗-λ2 <y≤ 1/a.

By Lemma 1 (1) and Corollary 3 (1), the following
inequations hold:

f
′
(y)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 1,

g
′
(x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 1.
(30)

For each (x, y) ∈ LSD, since g and f are two difer-
entiable functions, there is a real number ξ between both x

and x∗, such that

ϱY g(x), g x
∗

( 􏼁( 􏼁 � g(x) − g x
∗

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � g
′
(ξ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · x − x
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ x − x

∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � ϱX x, x

∗
( 􏼁, (31)

and there is a real number η between both y and y∗, such
that

ϱX f(y), f y
∗

( 􏼁( 􏼁 � f(y) − f y
∗

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � f
′
(η)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · y − y
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ y − y

∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � ϱY y, y

∗
( 􏼁. (32)

Ten, we have

ϱ Φ(x, y), x
∗
, y
∗

( 􏼁( 􏼁 � ϱ Φ(x, y),Φ x
∗
, y
∗

( 􏼁( 􏼁 � max ϱX f( y( 􏼁, f y
∗

( 􏼁􏼁, ϱY g( x( ), g x
∗

( 􏼁􏼈 􏼉

≤max ϱX x, x
∗

( 􏼁, ϱY y, y
∗

( 􏼁􏼈 􏼉 � ϱ (x, y), x
∗
, y
∗

( 􏼁( 􏼁.
(33)

Terefore, Φ(x, y) ∈ LSD. □

Theorem 6. For any pair (a, b) ∈ UCF, the Cournot equi-
librium point (b/(a + b)2, a/(a + b)2) of the mappingΦ is an
L-stable point of the system (X × Y,Φ), where X � [0, 1/b]

and Y � [0, 1/a].

Proof. By Lemma 4 and Corollary 6, point x∗ � b/(a + b)2

and point y∗ � a/(a + b)2 are L-stable points of (X, f°g)

and (Y, g°f), respectively. By Teorem 4 and the formula
Φ2 � (f°g) × (g°f), the pair (x∗, y∗) is an L-stable point of
the system (X × Y,Φ). □

Corollary 7. When (a, b) ∈ UCF, the Cournot duopoly game
system (X × Y,Φ) where X × Y � [0, 1/b] × [0, 1/a], is safe
(nonsensitive, non-Devaney chaos).

Will the Cournot duopoly game system (X × Y,Φ) still
be safe when (a, b) ∉ UCF? We answer this question
through a numerical simulation in the next section.

5. Numerical Simulation

In this section, by conducting numerical simulations, we
intuitively show the correctness of Teorem 2 (or Corollary

Discrete Dynamics in Nature and Society 7



5). During this process, we also suitably demonstrate that the
fnal question posted in the previous section is not
necessarily true.

We consider the iterative Cournot Duopoly reaction
functions (18) as follows:

xn �

����
yn−1

a

􏽲

− yn−1

yn �

����
xn−1

b

􏽲

− xn−1

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

, n � 1, 2, . . . . (34)

5.1. Te Situation When (a, b) ∈ UCF. Without loss of
generality, we take a� 0.15 and b� 0.16, then, (a, b) ∈ UCF
and the duopoly mapping Φ has the iterative form: its fxed
point (equilibrium point) is as follows:

x
∗

�
b

(a + b)
2 � 1.6649

y
∗

�
a

(a + b)
2 � 1.5609

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

, that is, x
∗
, y
∗

( 􏼁 � (1.6649, 1.5609). (35)

By Lemma 1 (2) and Corollary 3 (2), we have
x∗ ∈ (1/16b, 1/b) and y∗ ∈ (1/16a, 1/a) since 3b> a> 0 and

3a> b> 0. Subsequently, λi > 0, for i � 1, 2, there is an L-stable
domain (an open rectangle), as follows:

LSD � x
∗

− λ1, x
∗

+ λ1( 􏼁 × y
∗

− λ2, y
∗

+ λ2( 􏼁 � (0.3677, 2.9527) ×(0.4168, 2.5128). (36)

Now, we present the numerical simulation results of two
situations when both (x0, y0) ∈ LSD and (x0, y0) ∉ LSD.

(1) When (x0, y0) ∈ LSDreports fve track examples of
the duopoly iteration when the initial point
(x0, y0) ∈ LSD
For each (x0, y0) ∈ LSD, the following relationship
always hold:

Φn
x0, y0( 􏼁 � xn, yn( 􏼁 ∈ LSD, for n � 0, 1, 2, . . . . (37)

Tus,Teorem 5 is verifed by numerical simulation.
From Table 1, we can also fnd that Teorem 6 is
correct since (xn−1, yn−1) and (x∗, y∗) become in-
creasingly closer.

(2) When (x0, y0) ∉ LSD
Since the initial point (x0, y0) ∉ LSD, we consider

x0, y0( 􏼁 ∈ 0,
1
b

􏼔 􏼕 × 0,
1
a

􏼔 􏼕 − LSD

� 0,
1
b

􏼔 􏼕 − x
∗

− λ1, x
∗

+ λ1( 􏼁􏼚 􏼛 × 0,
1
a

􏼔 􏼕􏼒 − y
∗

− λ2, y
∗

+ λ2( 􏼁􏼚 􏼛

� [0, 0.3677]∪ [2.9527, 6.2500]{ } × ([0, 0.4168]∪ [2.5128, 6.6667]{ }

� [0, 0.3677] ×[0, 0.4168]{ }∪ [0, 0.3677] ×[2.5128, 6.6667]{ }

∪ [2.9527, 6.2500] ×[0, 0.4168]{ }∪ [2.9527, 6.2500] ×[2.5128, 6.6667]{ }.

(38)

Presents fve track examples of the duopoly iteration
in these conditions.

In Table 2, Tracks (1), (3), and (4) cannot provide
coverage to any point since they swing between odd

and even terms. However, Tracks (2) and (5) provide
coverage to a fxed point (the equilibrium point)
(1.6649 and 1.5609). Tese results suggest that
Teorem 5 and Teorem 6 are not necessarily true if
the initial point (x0, y0) ∉ LSD.
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Table 1: Numerical simulation results if (a, b) ∈ UCF and (x0, y0) ∈ LSD.

Track Track (1) Track (2) Track (3) Track (4) Track (5)
(x0, y0) (2.9500, 0.4100) (1.9500, 1.4100) (1.4500, 1.9100) (0.9500, 2.1100) (0.3778, 0.5127)
(x1, y1) (1.2533, 1.3573) (1.6559, 1.5411) (1.6584, 1.5604) (1.6406, 1.48867) (0.3778, 0.5127)
(x2, y2) (1.1984, 1.5455) (1.6642, 1.5611) (1.6649, 1.5611) (1.6615, 1.5615) (3.0557, 1.1588)
(x3, y3) (1.5099, 1.5384) (1.6649, 1.5609) (1.6649, 1.5609) (1.6650, 1.5610) (1.6207, 1.3144)
(x4, y4) (1.6641, 1.5620) . . (1.6649, 1.5609) (1.6458, 1.5620)
(x5, y5) (1.6650, 1.5609) . . . (1.6550, 1.5614)
(x6, y6) (1.6649, 1.5609) . . . (1.6649, 1.5609)

. . . . . .

. . . . . .

. . . . . .
(xn, yn) (1.6649, 1.5609) (1.6649, 1.5609) (1.6649, 1.5609) (1.6649, 1.5609) (1.6649, 1.5609)
↓ ↓ ↓ ↓ ↓ ↓

(x∗, y∗) (1.6649, 1.5609) (1.6649, 1.5609) (1.6649, 1.5609) (1.6649, 1.5609) (1.6649, 1.5609)
limn⟶∞ (xn, yn) � (x∗, y∗) � (1.6649, 1.5609)

Table 2: Numerical simulation results if (a, b) ∈ UCF but (x0, y0) ∉ LSD.

Track Track (1) Track (2) Track (3) Track (4) Track (5)
(x0, y0) (0.0000, 0.4168) (0.3677, 2.5128) (2.9527, 0.0000) (6.2500, 0.4160) (2.9527, 6.666)

(x1, y1) (1.2501, 0.0000) (1.5801, 1.1483) (0.0000, 1.3432) (1.2501, 0.0000) (3.3333e− 05,
1.3432)

(x2, y2) (0.0000, 1.5451) (1.6185, 1.5625) (1.6492, 0.0000) (0.0000, 1.5451) (1.6492, 0.0144)
(x3, y3) (1.6650, 0.0000) (1.6650, 1.5620) (0.0000, 1.5613) (1.6650, 0.0000) (0.2954, 1.5613)
(x4, y4) (0.0000, 1.5609) (1.6650, 1.5609) (1.6649, 0.0000) (0.0000, 1.5609) (1.6649, 1.0634)
(x5, y5) (1.6649, 0.0000) (1.6649, 1.5609) (0.0000, 1.5609) (1.6649, 0.0000) (1.5609, 1.6649)
(x6, y6) (0.0000, 1.5609) . (1.6649, 0.0000) (0.0000, 1.5609) (1.6649, 1.5609)
(x7, y7) (1.6649, 0.0000) . (0.0000, 1.5609) (1.6649, 0.0000) (1.6650, 1.5609)
(x8, y8) (0.0000, 1.5609) . (1.6649, 0.0000) (0.0000, 1.5609) (1.5609, 1.6649)
(x9, y9) (1.6649, 0.0000) . (0.0000, 1.5609) (1.6649, 0.0000) (1.6649, 1.5609)

. . . . . .

. . . . . .

. . . . . .
(xn, yn) . (1.6649, 1.5609) . . (1.6649, 1.5609)

. . ↓ . . ↓

. fnal2-period (1.6649, 1.5609) fnal2-period fnal2-period (1.6649, 1.5609)
A track Tn(x0)􏼈 􏼉n≥0 is called the fnal k-periodic if there is a natural number m ≥ 1 such that Tn(x0)􏼈 􏼉n≥m is a k-period track where k � 2 in Table 2.

Table 3: Numerical simulation results if (a, b) g UCF.

Track (1) Track (2) Track (3) Track (4) Track (5)
(x0, y0) (x∗ + 1, y∗ − 1) (x∗ + 0.1, y∗ − 0.1) (x∗ + 0.12, y∗ − 0.12) (x∗ + 0.13, y∗ − 0.13) (x∗ + 0.14, y∗ − 0.14)
(x1, y1) (1.2138, 6.6068) (0.8745, 5.0888) (0.8375, 4.8811) (0.8337, 4.8594) (0.8334,4.8573)
(x2, y2) (0.0299, 5.6538) (0.7358, 4.9546) (0.8234, 4.8670) (0.8323, 4.8580) (0.8332, 4.8571)
(x3, y3) (0.4856, 1.0471) (0.7926, 4.6111) (0.9292, 4.8328) (0.8329, 4.8546) (0.8333, 4.8568)
(x4, y4) (1.5950, 3.8581) (0.9333, 4.7570) (0.8433, 4.8470) (0.8343, 4.8560) (0.8334, 4.8569)
(x5, y5) (1.2135, 6.2775) (0.8745, 5.0888) (0.8375, 4.8811) (0.8337, 4.8594) (0.8334, 4.8573)
(x6, y6) (0.1917, 5.6531) (0.7358, 4.9546) (0.8234, 4.8670) (0.8323, 4.8580) (0.8332, 4.8571)
(x7, y7) (0.4859, 2.5374) (0.7926, 4.6111) (0.9292, 4.8328) (0.8329, 4.8546) (0.8333, 4.8568)
(x8, y8) (1.5755, 3.8592) (0.9333, 4.7570) (0.8433, 4.8470) (0.8343, 4.8560) (0.8334, 4.8569)
(x9, y9) (1.2131, 6.2487) (0.8745, 5.0888) (0.8375, 4.8811) (0.8337, 4.8594) (0.8334, 4.8573)
(x10, y10) (0.2056, 5.6525) (0.7358, 4.9546) (0.8234, 4.8670) (0.8323, 4.8580) (0.8332, 4.8571)
(x11, y11) (0.4862, 1.6208) (0.7926, 4.6111) (0.9292, 4.8328) (0.8329, 4.8546) (0.8333, 4.8568)
(x12, y12) (1.5591, 3.8602) (0.9333, 4.7570) (0.8433, 4.8470) (0.8343, 4.8560) (0.8334, 4.8569)
(x13, y13) (1.2127, 6.2243) (0.8745, 5.0888) (0.8375, 4.8811) (0.8337, 4.8594) (0.8334, 4.8573)
(x14, y14) (0.2174, 5.6518) (0.7358, 4.9546) (0.8234, 4.8670) (0.8323, 4.8580) (0.8332, 4.8571)
(x15, y15) (0.4865, 2.6889) (0.7926, 4.6111) (0.9292, 4.8328) (0.8329, 4.8546) (0.8333, 4.8568)
(x16, y16) (1.5450, 3.8613) (0.9333, 4.7570) (0.8433, 4.8470) (0.8343, 4.8560) (0.8334, 4.8569)
(x17, y17) (1.2124, 6.2031) (0.8745, 5.0888) (0.8375, 4.8811) (0.8337, 4.8594) (0.8334, 4.8573)
(x18, y18) (0.2276, 5.6512) (0.7358, 4.9546) (0.8234, 4.8670) (0.8323, 4.8580) (0.8332, 4.8571)
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5.2. Te Situation When (a, b) ∉ UCF. Without loss of
generality, we consider a � 0.15 and
b � (3 − 2

�
2

√
)a � 0.0259, then (a, b) ∈ UCF since 3a> b.

Tis implies y∗ ∉ (1/16a, 1/a] by Corollary 1 (2). Tat is,
y∗ ≤ 1/16a. Ten, λ2 ≤y∗ − 1/16a≤ 0. Tat is, λ2 > 0. Tis
suggests that there is no L-stable domain (LSD) for duopoly
mappingΦ. Terefore, we cannot discuss in two scenarios as
in Section 5.1. However, we have the fxed point (the
equilibrium point) of duopoly mapping Φ as follows:

x
∗

�
b

(a + b)
2 � 0.8333,

y
∗

�
a

(a + b)
2 � 4.8570.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(39)

To understand the dynamic behavior of Φ nears its
equilibrium point (x∗, y∗), we choose a series of the initial
points of the tracks of Φ as the follows:

x0, y0( 􏼁 � x
(k)
0 , y

(k)
0􏼐 􏼑 � x

∗
+ 0.1k

, y
∗

− 0.1k
􏼐 􏼑, k � 1, 2, . . . .

(40)

It is apparent that (x0, y0) � (x
(k)
0 , y

(k)
0 ) is sufciently

close to the equilibrium point (x∗, y∗), when the natural
number k is sufciently large.

Table 3 shows the evolution of the duopoly game as k

goes from 1 to 5.
Te results of Table 3 suggest that duopoly game track (1) is

disordered, and each track from Track (2) to Track (5) has 4
periods. In other words, L-stability (or nonsensitivity) is not
guaranteed at the equilibrium point (x∗, y∗) of the Cournot
duopoly system ([0, 1/b] × [0, 1/a],Φ) when (a, b) ∉ UCF.

6. Conclusion

Tis paper is the frst to study the nature and character-
ization of L-stability at a point. First, we explain the re-
lationship between L-stability at a point, nonsensitivity, and
non-Devaney chaos. We fnd that a dynamical system at
a point must be nonsensitive, as well as non-Devaney chaotic
if the system is L-stable at this point. Tis paper is also the
frst to apply this method to the Cournot duopoly game.
Employing the method of topological dynamic systems,
three equivalent characterizations of general Cournot du-
opoly mapping (Teorem 4) are derived. Ten, we discuss
a specifc Cournot duopoly game system (X × Y,Φ) where
X � [0, 1/b] and Y � [0, 1/a]. By using calculus, we fnd
a unit cost feld UCF and an L-stable domain LSD of this
specifc Cournot duopoly mapping Φ, and by utilizing
Teorem 4, we show that this specifc Cournot duopoly
game system is L-stable at its Cournot equilibrium point
(x∗, y∗) � (b/(a + b)2, a/(a + b)2) when the unit cost pair
UCF (see Teorem 6). Te robustness of Teorem 6 is
further verifed by conducting numerical simulations. In
addition, this paper may elicit research of relative security in
economics and other sciences since the security of systems is
also an important aspect of these sciences.
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Table 3: Continued.

Track (1) Track (2) Track (3) Track (4) Track (5)
(x19, y19) (0.4868, 2.7463) (0.7926, 4.6111) (0.9292, 4.8328) (0.8329, 4.8546) (0.8333, 4.8568)
(x20, y20) (1.5362, 3.8623) (0.9333, 4.7570) (0.8433, 4.8470) (0.8343, 4.8560) (0.8334, 4.8569)
(x21, y21) (1.2129, 6.1843) (0.8745, 5.0888) (0.8375, 4.8811) (0.8337, 4.8594) (0.8334, 4.8573)
(x22, y22) (0.2367, 5.6505) (0.7358, 4.9546) (0.8234, 4.8670) (0.8323, 4.8580) (0.8332, 4.8571)
(x23, y23) (0.4871, 2.7958) (0.7926, 4.6111) (0.9292, 4.8328) (0.8329, 4.8546) (0.8333, 4.8568)
(x24, y24) (1.5215, 3.8634) (0.9333, 4.7570) (0.8433, 4.8470) (0.8343, 4.8560) (0.8334, 4.8569)
(x25, y25) (1.2116, 6.1674) (0.8745, 5.0888) (0.8375, 4.8811) (0.8337, 4.8594) (0.8334, 4.8573)
(x26, y26) (0.2448, 5.6498) (0.7358, 4.9546) (0.8234, 4.8670) (0.8323, 4.8580) (0.8332, 4.8571)
(x27, y27) (0.4871, 2.8393) (0.7926, 4.6111) (0.9292, 4.8328) (0.8329, 4.8546) (0.8333, 4.8568)
(x28, y28) (1.5114, 3.8644) (0.9333, 4.7570) (0.8433, 4.8470) (0.8343, 4.8560) (0.8334, 4.8569)
(x29, y29) (1.2133, 6.1520) (0.8745, 5.0888) (0.8375, 4.8811) (0.8337, 4.8594) (0.8334, 4.8573)
(x30, y30) (0.2522, 5.6492) (0.7358, 4.9546) (0.8234, 4.8670) (0.8323, 4.8580) (0.8332, 4.8571)
(x31, y31) (0.4877, 2.8781) (0.7926, 4.6111) (0.9292, 4.8328) (0.8329, 4.8546) (0.8333, 4.8568)
(x32, y32) (1.5022, 3.8654) (0.9333, 4.7570) (0.8433, 4.8470) (0.8343, 4.8560) (0.8334, 4.8569)
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
State Disordered 4-period 4-period 4-period 4-period
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