
Research Article
Metric Dimension of Line Graphs of Bakelite and Subdivided
Bakelite Network

Muhammad Umer Farooq,1 Atiq ur Rehman ,1 Tabarek Qasim Ibrahim ,2,3

Muhammad Hussain ,1 Ali Hasan Ali ,4,5 and Badr Rashwani 6

1Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Islamabad, Punjab 53710, Pakistan
2Department of Computer Science, Shatt Al-Arab University College, Basra, Iraq
3Department of Mathematics, College of Sciences, University of Basrah, Basrah, Iraq
4Department of Mathematics, College of Education for Pure Sciences, University of Basrah, Basrah 61001, Iraq
5College of Engineering Technology, National University of Science and Technology, Nasiriyah, Dhi Qar 64001, Iraq
6Mathematics Department, Science Faculty, Tishreen University, Latakia, Syria

Correspondence should be addressed to Badr Rashwani; badr.rashwani@tishreen.edu.sy

Received 17 February 2023; Revised 21 May 2023; Accepted 29 July 2023; Published 16 August 2023

Academic Editor: Abdellatif Ben Makhlouf

Copyright © 2023 Muhammad Umer Farooq et al. Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Graph theory is considered one of the major subjects, and it also plays a signifcant role in the digital world. It has numerous uses
in computer science, robot navigation, and chemistry. Graph theory is employed in forming the structures of diferent chemical
networks, locating robots on a network, and troubleshooting computer networks. Additionally, it fnds applications in scheduling
airplanes and studying difusion mechanisms. Te current work investigates the metric dimension of the line graphs of the
Bakelite and subdivided Bakelite networks. Te results prove that these families of graphs do not have a constant metric di-
mension. Te invention of Bakelite was infuential in the development of modern plastics, and it has various applications in felds
such as jewelry, clocks, toys, kitchenware, electrical, and sports industries.

1. Introduction

Te concept of metric dimension has been the subject of
research in various felds, including molecular chemistry,
communication networks, and social networks. Te
metric dimension has been studied for various graph
models, including the complete graph, cycle graph, and
grid graph. Te metric dimension is a measure of the
resolving power of a graph, which is the ability to
uniquely identify the location of its vertices. In order to
understand this concept, it is important to frst un-
derstand the notion of distance in connected graphs. In
a connected graph G, the distance between two vertices a

and b is defned as the length of the shortest path between
them and is denoted by d(a, b). Te metric dimension of
a graph G is denoted by dim(G).

Te concept of the metric dimension of a graph was
introduced by Harary and Melter in 1976 [1], along with
a method for its calculation.Tey also demonstrated that the
metric dimension of a graph is at most equal to its diameter
and its maximum degree. In 1984, Melter and Harary [2]
explored the metric dimension of various graph types, such
as trees, cycles, and complete graphs. Tey also established
bounds on the metric dimension of graphs based on their
order and size. A survey by Chartrand and Harary in 1985
[3] provided a comprehensive overview of the diferent
fndings and applications of themetric dimension of a graph.
In 1988, Slater [4] introduced the concept of resolving sets
and demonstrated that the minimum cardinality of a re-
solving set is equivalent to the metric dimension of a graph.
A resolving set for a graph G is a set of vertices such that the
distance vectors from these vertices to all other vertices of G
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are unique. A survey by Oellermann and Pfaf in 1993 [5]
gave a detailed and comprehensive overview of the various
fndings and applications of themetric dimension of a graph.
In 1996, Khuller et al. [6] introduced the concept of the k-
metric dimension, which is a generalization of the metric
dimension to k-resolving sets. In a paper by Pal and Das in
2000 [7], the authors studied the metric dimension of dis-
connected graphs and provided a method for its calculation.
In 2016, a paper by Simon and Sastry [8] wrote an article on
the metric dimension of diferent chemical graphs, including
the Star of David network.Tey also establish bounds on the
metric dimension of these graphs in terms of their order
and size.

Tere are many more studies and articles which focus on
the metric dimension and its applications; these are just
a few examples, but they will give you an idea about the
research and studies that have been conducted in this feld
[9–11].

A path graph is the only graph that has a metric di-
mension of 1, as stated in [12]. Te cycle graph has a metric
dimension of 2 for n≥ 3.Tis concept is particularly useful in
applications such as space routing and chemistry. In space
routing, for example, the goal is to place the least number of
robots at certain vertices in such a way that they can visit
each and every vertex precisely one time. Tis problem can
be solved using the concept of metric dimension.

In chemistry, many chemical compounds exist that have
the same chemical equation but diferent chemical structures.
Chemists need to select the compound that best communi-
cates its leading physical and chemical properties. To do this,
they require a scientifc labeling system that gives unique
labels to specifc compounds.Te numerical representation of
unique chemical compounds is crucial for chemists in drug
discovery. Graphs can be used to represent chemical com-
pounds, with vertices representing atoms and edges repre-
senting bond types [13, 14].Teoretical descriptions of graphs
and their applications are discussed in the papers [14–16].

Te metric dimension is the most famous feld in graph
theory related to the distances of graphs. After gaining some
ideas from the latest study on resolving properties of graphs
[9–11], metric dimension of line graphs of Bakelite, and
subdivided Bakelite network would be determined.

Defnition 1. A resolving set with the least number of
vertices is known as the basis for the graph G [15].

Defnition 2. A line graph L(G) for any simple graph G is
obtained by associating a vertex with each edge of the graph
and connecting two vertices with an edge if the corre-
sponding edges of G have a vertex in common [17].

Defnition 3. Eccentricity of the vertex is the value of the
biggest distance between two vertices of a connected
graph [18].

Defnition 4. Te constant metric dimension of the family of
connected graphs is stated as if all the graphs in the family
have the same metric dimension then such family is said to
have constant metric dimension [19].

2. Bakelite Network

In this section, the chemical background of the Bakelite
network (B(n × m)) is discussed. After that, we proved it
in the form of diferent theorems that the line graph of
a Bakelite network does not have a constant metric
dimension.

Bakelite, whose chemical name is phenol-formaldehyde
resin or phenolic resin, was invented in 1907. Tis date
marks the beginning of the modern plastics industry. An
American chemist, Leo Hendrik Baekeland, who was born
in Belgium, was credited with the invention of the Bakelite
after he applied for a patent on a phenol-formaldehyde
thermoset. Te phenol-formaldehyde polymers, also
known as plastics, were the frst completely synthetic
polymers to be commercialized. Even today, almost half of
the total production of thermosetting polymers is used as
adhesives.

Bakelite is a chemical compound that has a wide range of
applications across various felds of life. Some of the key uses
of Bakelite include:

(i) Its high resistivity to electricity and heat makes it an
ideal material for use in automotive and industrial
components.

(ii) It is commonly used in the manufacturing of jewelry
articles, clocks, and toys.

(iii) Many kitchenware products, such as frying pans
and special types of spoons are also made of this
type of plastic.

(iv) In the electrical industry, it is used to make non-
conducting parts of various electrical devices such as
radios, telephones, sockets, base for electron tubes,
light bulbs, supports, and other insulators.

(v) In the sports industry, it is used to make various
game pieces such as billiard balls, chess sets, and
poker chips.

Te invention of the Bakelite is considered to be the
foundation of the modern plastics industry. Te general
Bakelite network is composed of n number of rows and m
number of columns, denoted by B(n × m).

Theorem 5. For G � L(B(1 × m)) where m varies, then G

has metric dimension 2.

Proof. Te general vertex set for L((B(n × m)) is as
follows:
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V(L(B(n × m))) � a
v
u: 1≤ u≤ n, 1≤ v≤ 4m ∪ b

v
u: 1≤ u≤ n, 1≤ v≤ 2m ∪ c

v
u: 1≤ u≤ n, 1≤ v≤m 

∪ d
v
u: 1≤ u≤ n, 1≤ v≤m ∪ e

v
u: 0≤ u≤ n − 1, 1≤ v≤ 2m ∪ f

v
u: 0≤ u≤ n − 1, 1≤ v≤ 2m 

∪ a
′v
u: 1≤ u≤ n, 1≤ v≤ 4m ∪ b

′v
u: 1≤ u≤ n, 1≤ v≤ 2m ∪ c

′v
u: 1≤ u≤ n, 1≤ v≤m 

∪ d
′v
u: 1≤ u≤ n, 1≤ v≤m 

∪ e
′v
u: 0≤ u≤ n − 1, 1≤ v≤ 2m ∪ f

′v
u: 0≤ u≤ n − 1, 1≤ v≤ 2m .

(1)

We can label molecules of line graph of the Bakelite
network as shown in Figure 1

λ a
v
u(  � v − 1, 8m − v for 1≤ v≤ 4m, m � 1, 2, 3, . . .{ } ,

λ b
v
u(  � 2v − 1, 8m − 2v + 1 for 1≤ v≤ 2m, m � 1, 2, 3, . . .{ } ,

λ c
v
u(  � 4v − 2, 8m − 4v + 3 for 1≤ v≤m, m � 1, 2, 3, . . .{ } ,

λ d
v
u(  � 4v − 1, 8m − 4v + 2 for 1≤ v≤m, m � 1, 2, 3, . . .{ } ,

λ a
′v
u  � 8m − v, v − 1 for 1≤ v≤ 4m, m � 1, 2, 3, . . .{ } ,

λ b
′v
u  � 8m − 2v + 1, 2v − 1 for 1≤ v≤ 2m, m � 1, 2, 3, . . .{ } ,

λ c
′v
u  � 8m − 4v + 3, 4v − 2 for 1≤ v≤m, m � 1, 2, 3, . . .{ } ,

λ d
′v
u  � 8m − 4v + 2, 4v − 1 for 1≤ v≤m, m � 1, 2, 3, . . .{ } .

(2)

L(B(1 × m)) has metric dimension 2. Only a path graph
has metric dimension one [12], as L(B(1 × m)) is not the
path so its metric dimension is not 1. L(B(1 × m)) has

a resolving set H � a1
1, a′

1
1 . Te metric dimension of

L(B(1x1)) is shown in Figure 2. □

Theorem  . For G � L(B(2 × m)) if m � 1, 2, then G has
metric dimension 3.

Proof. We will prove this theorem by showing that there
does not exist any resolving set H of graph G with two
vertices. Contradictorily, we suppose that graph G has
metric dimension 2.

Let H � a1
1, a′

1
1  be the resolving set for L(B(2 × 1)),

then r(c12 | H) � r(d1
2 | H) is obtained which implies that H

is not a resolving set for the graph. Now, consider a resolving

set H � a1
1, a1

2  for L(B(2 × 2)) which results in

r(a6
2 | H) � r(b32 | H), and therefore, H is not a resolving set.

Suppose that H � a1
1, a′

1
2  and H � a′

1
1, b′

2
1  are the re-

solving sets, then we will have r(a′
1
1 | H) � r(b′

1
1 | H) and

r(c′
1
2 | H) � r(d′

1
2 | H), respectively. So, H is not a resolving

set. If H � b11, b21  and H � e11, e′
1
1  are the resolving sets,

then r(c12 | H) � r(d1
2 | H) and r(a1

1 | H) � r(b11 | H) can

easily be observed. Terefore, H is not a resolving set.

In a similar way, if we suppose that H � e11, f1
1 ,

a′
1
1, e11 , b′

2
2, b22 , a4

2, a1
1  are the resolving sets, then we

can observe that r(a2
1 | H) � r(a3

1 | H), r(a1
1 | H) �

b(b11 | H), r(a1
1 | H) � r(b11 | H), and r(a′

1
1 | H) � r(b′

1
1 | H),

respectively. Hence, H is not a resolving set.
In general, there does not exist any resolving set having

two vertices for the graph L(B(2 × m)) where m � 1, 2. So,
its metric dimension is 3 and its resolving set is

H � a1
1, a′

1
1, a′

1
2 . □

Theorem 7. Te metric dimension for graph G � L(B(n ×

m)) is as follows:

MetricDimension(G) �
4 for n � 2 andm> 2,

4 for n≥ 3 andm> 1.
 (3)

Proof. We will prove this theorem by using contradiction
process. As we mentioned above that the graph G has metric
dimension 4. Contradictorily, we suppose that above
statement is not true and metric dimension of graph G is 3.

Let H � a1
1, a′

1
1, f′

1
1  be a resolving set, then it implies that

r(a7
2|H) � r(b42|H). Terefore, H is not a resolving set.
Similarly, if we consider H � a1

1, a4
1, c11 , b21, b′

2
1,

f1
1}, a1

1, a′
1
1, d5

1 , a1
1, a′

1
1, e′

3
1 , a1

1, a′
1
1, c11  as resolving sets,

then we will have r(c12 | H) � r(d1
2 | H),

r(a1
2 | H) � r(a2

2 | H), r(d3
2 | H) � r(d4

2 | H),
r(c′

3
2 | H) � r(d′

3
2 | H), and r(c12 | H) � r(d1

2 | H) re-
spectively. Hence, H is not a resolving set.

In general, there does not exist any resolving set H

having three vertices in it for the graph G. So, its metric

dimension is 4 and its resolving set is a1
1, d′

1
1, a1

n, a′
1
n . □

Theorem 8. For G � B(n × 1) if n varies, then graph G has
the metric dimension n + 1.

Proof

Te metric dimension of the line graph of the Bakelite
unit network L(B(1 × 1)) is 2.
Te metric dimension of the line graph of the Bakelite
network for L(B(2 × 1)) is 3.
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Te metric dimension of the line graph of the Bakelite
network for L(B(3 × 1)) is 4.
Te metric dimension of the line graph of the Bakelite
network for L(B(4 × 1)) is 5.

Proceeding this way, the metric dimension of the line
graph of the Bakelite network for L(B(n × 1)) is n + 1. So, it
is proved that for G � L(B(n × 1)) if n varies, then graph G

has the metric dimension n + 1. □

3. Subdivided Bakelite Network

In this section, the subdivision of the Bakelite network
(B(n × m)) is discussed, as is the structure of the subdivided
Bakelite network (SB(n × m)) is elaborated with the help of
Figure 3. After that, it is proved that the line graph of
a subdivided Bakelite network (SB(n × m)) do not have
a constant metric dimension.

Let G be a graph. Te subdivided graph G′ of G can be
obtained by replacing each edge (u, v) in G with a new vertex
w, and adding edges (u, w), and (v, w) to G′. In other words,
for every edge (u, v) in G, we create a new vertex w and
connect it to the vertices u and v. Tis results in a new graph
G′ with more vertices and fewer edges than the original
graph G.

Theorem 9. For G � L(SB(1 × m)) where m varies, G has
metric dimension 2.

Proof. Te general vertex set for L((SB(n × m)) is as follows:
V(L(SB(n × m)) � av

u: 1≤ u≤ n, 1≤ v≤ 8m ∪ bv
u: 1≤

u≤ n, 1≤ v≤ 2m}∪ cv
u: 1≤ u≤ n, 1≤ v≤ 2 m}∪ dv

u: 1≤ u

≤ n, 1≤ v≤m}∪ ev
u: 1≤ u≤ n, 1≤ v≤m}∪ fv

u: 1≤ u≤

n, 1≤ v≤m}∪ gv
u : 1≤ u≤ n, 1≤ v≤ m}∪ hv

u: 1≤ u≤ n − 1

where n≥ 2, 1≤ v≤m}∪ ivu: 1≤ u≤ n − 1 where n≥ 2, 1≤
v≤m}∪ jv

u: 1≤ u≤ n − 1 where n≥ 2, 1≤ v≤m}∪ kv
u: 1≤

u≤ n − 1 where n≥ 2, 1≤ v≤m}∪ a′
v

u: 1≤ u≤ n, 1≤
v≤ 8m}∪ b′

v

u: 1≤ u≤ n, 1≤ v≤ 2m ∪ c′
v

u: 1≤ u≤ n, 1≤ v

≤ 2m}∪ d′
v

u: 1≤ u≤ n, 1≤ v≤m}∪ e′
v

u: 1≤ u≤ n, 1≤ v≤
m}∪ f′

v

u: 1≤ u≤ n, 1≤ v≤m}∪ g′
v

u: 1≤ u≤ n, 1≤ v≤m}

∪ h′
v

u: 1≤ u≤ n − 1 where n≥ 2, 1≤ v≤m}∪ i′
v

u: 1≤ u≤
n − 1 where n≥ 2, 1≤ v≤m}∪ j′

v

u: 1≤ u≤ n − 1 where
n≥ 2, 1≤ v≤m}∪ k′

v

u: 1≤ u≤ n − 1 where n≥ 2, 1≤ v≤m}

λ a
v
u(  � v − 1, 16m − v for 1≤ v≤ 8m m � 1, 2, 3, . . .{ } ,

λ b
v
u(  � 4v − 2, 16m − 4v + 2 for 1≤ v≤ 2m m � 1, 2, 3, . . .{ } ,

λ c
v
u(  � 4v − 1, 16m − 4v + 3 for 1≤ v≤ 2m m � 1, 2, 3, . . .{ } ,

λ d
v
u(  � 8v − 4, 16m − 8v + 7 for 1≤ v≤m m � 1, 2, 3, . . .{ } ,

λ e
v
u(  � 8v − 3, 16m − 8v + 6 for 1≤ v≤m m � 1, 2, 3, . . .{ } ,

λ f
v
u(  � 8v − 2, 16m − 8v + 5 for 1≤ v≤m m � 1, 2, 3, . . .{ } ,

λ g
v
u(  � 8v − 1, 16m − 8v + 4 for 1≤ v≤m m � 1, 2, 3, . . .{ } ,

λ a
′v
u  � 16m − v, v − 1 for 1≤ v≤ 8m m � 1, 2, 3, . . .{ } ,

λ b
′v
u  � 16m − 4v + 2, 4v − 2 for 1≤ v≤ 2m m � 1, 2, 3, . . .{ } ,

λ c
′v
u  � 16m − 4v + 3, 4v − 1 for 1≤ v≤ 2m m � 1, 2, 3, . . .{ },

λ d
′v
u  � 16m − 8v + 7, 8v − 4 for 1≤ v≤m m � 1, 2, 3, . . .{ } ,

λ e
′v
u  � 16m − 8v + 6, 8v − 3 for 1≤ v≤m m � 1, 2, 3, . . .{ } ,

λ f
′v
u  � 16m − 8v + 5, 8v − 2 for 1≤ v≤m m � 1, 2, 3, . . .{ } ,

λ g
′v
u  � 16m − 8v + 4, 8v − 1 for 1≤ v≤m m � 1, 2, 3, . . .{ } .

(4)

L(SB(1 × m)) has metric dimension 2. Only path graph
has metric dimension 1 [12], as L(SB(1 × m)) is not the path
so its metric dimension is not 1. L(SB(1 × m)) has a re-

solving set H � a1
1, a′

1
1 . □

Theorem 10. For G � L(SB(2 × m)) if m � 1, 2, then G has
metric dimension 3.

0,7

7,26,3

7,15,3

2,7 3,6

3,51,7

7,0
6,15,24,33,42,51,6

Figure 2: Metric dimension of L(B(1 × 1)).

a12

a11

b1
1

c11 d1
1

b1
2

c12 d1
2

d'12

d'11

c'12

b'12

b'11

c'11

f'11
f11

e11 e'11

a'11
a'21

a22

a21

a32 a42 a'42 a'32
a'22

a'12

b'22b2
2

a31 a41 a'41 a'31

b'21b2
1

Figure 1: Labeling for molecule of L(B(n × m)).

Figure 3: L(SB(2 × 1)).
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Proof. We will prove this theorem by showing that ∄ any
resolving set M of graph G with two vertices. Contradic-
torily, we suppose that graph G has metric dimension 2.

Let M � a1
1, a′

1
1  be the resolving set, then

r(e12 | M) � r(f1
2 | M), which shows M is not a resolving set

for the graph.
Now, consider a resolving set M � a1

1, b11 , then its
results are r(b21 | M) � r(a7

1 | M). Hence,M is not a resolving

set. Consider another resolving set M � a1
1, e′

1
1 , then

r(e′
1
2 | M) � r(f′

1
2 | M); therefore, M is not a resolving set.

Let a resolving set M � a′
1
2, a1

1 , then

r(a′
2
1 | M) � r(b′

1
1 | M), which leads to the result that M is

not a resolving set. Suppose a resolving set M � d1
1, a′

1
2 ,

then r(a′
2
1 | M) � r(b11 | M), which implies that B is not

a resolving set. Let suppose a resolving set M � a7
1, a′

7
1 ,

then it is observed that r(e′
1
1 | M) � r(f′

1
1 | M). Hence, we

can say that M is not a resolving set. Consider resolving sets

H � j11, j′
1
1 , h1

1, k1
1 , h1

1, h′
1
1 , g1

1, k1
1 , then r(a1

1 | M) �

r(b11 | M), r(e11 | M) � r(f1
1 | M), r(a1

1 | M) � r(b11 | M),
r(a′

2
1 | M) � r(b′

1
1 | M). So, M is not a resolving set.

Similarly, there does not exist any resolving set M that
has two vertices in it for graph G. So, its metric dimension is

3 and its resolving set is M � a1
1, a′

1
1, a1

2 . □

Theorem 11. For G � L(SB(n × m))

MetricDimension(G) �
4 for n � 2 andm> 2,

4 for n≥ 3 andm> 1.
 (5)

Proof. We will prove this theorem by using contradiction
process. As we mentioned above, graph G has metric di-
mension 4. Contradictorily, we suppose that above-
mentioned statement is not true and metric dimension of
graph G is 3.

Let us assume Q � a1
1, b11, c11  to be a resolving set, then

r(e12|Q) � r(f1
2|Q). Hence, this result can be drawn that Q is

not a resolving set. Consider a resolving setQ � a1
1, a′

1
1, h1

1 ,

then r(a7
1|Q) � r(b21 | Q). Hence, Q is not a resolving set.

Now, let a resolving set Q � a8
1, b21, k1

1 , then
r(e12|Q) � r(f1

2 | Q). Hence, it shows Q is not a resolving set.

Consider a resolving set Q � a1
1, a′

1
1, c′

1
1 , then

r(e′
1
2|Q) � r(f′

1
2|Q). Hence, it implies Q is not a resolving

set. Let a resolving set Q � a′
1
2, b′

1
2, a′

1
1 , then we see

r(a′
7
1|Q) � r(b′

2
1|Q). Terefore, Q is not a resolving set.

Suppose another resolving set Q � h′
1
1, h1

1, j11 , then

r(a2
1|Q) � r(b11|Q). For this reason, Q is not a resolving set.

Similarly, if we proceed in this way, there does not exist
any resolving setQ having three vertices in it for the graphG.
So, its metric dimension is 4 and its resolving set is

a1
1, a′

1
1, a1

n, a′
1
n . □

Theorem 12. For G � L(SB(n × 1)) if n varies, then graph G

has metric dimension n + 1.

Proof

Metric dimension of the line graph of a subdivided
Bakelite unit network L(SB(1 × 1)) is 2.
Metric dimension of the line graph of a subdivided
Bakelite network for L(SB(2 × 1)) is 3.
Metric dimension of the line graph of a subdivided
Bakelite network for L(SB(3 × 1)) is 4.
Metric dimension of the line graph of a subdivided
Bakelite network for L(SB(4 × 1)) is 5.

Similarly,
Proceeding this way metric dimension of the line graph

of a subdivided Bakelite network L(SB(n × 1)) is n + 1. So
proved that for G � L(SB(n × m)) if n varies and m � 1 then
graph G has metric dimension n + 1.

We can fnd metric dimension of line graph of SBN as
shown in Figure 4. □

4. Concluding Remarks

Metric dimension instinctively is a very simple idea.
However, determining the exact metric dimension of
a graph is an NP-complete problem.Temetric dimension is
very closely related to the Global Positioning System (GPS)
and trilateration. It is also used in source localization. In this
manifesto, we defne the line graph of the Bakelite network
and subdivided the Bakelite network.Te Bakelite network is
being used in the making of automotive and industrial parts
due to its outclassed high resistivity against electricity and
heat. It has also many uses in the electrical and sports in-
dustries as it is used in the making of nonconducting parts of
many electrical appliances. Te metric dimension of the line
graph of these graphs is computed too. Line graphs of the
Bakelite network and subdivided Bakelite network do not
have a constant and bounded metric dimension.

Consequently, this research leads to some open
problems.

0,15

1,14
2,13

15,4
14,513,6

12,7

11,7

12,311,4

10,5

10,6
9,6

8,77,8

5,10 6,9

4,113,12

6,10

7,11

7,12

6,135,14
4,15

3,15

2,14
0,15

14,1

14,2

15,3

13,2

Figure 4: Metric dimension of L(SB(1 × 1)).
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Open problem 1. Find the edge metric dimension of the
line graph of the Bakelite network.
Open problem 2. Determine the edge metric dimension
of the line graph of a subdivided Bakelite network.
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