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Developed as a refnement of stochastic volatility (SV) models, the stochastic volatility in mean (SVM) model incorporates the
latent volatility as an explanatory variable in both the mean and variance equations. It, therefore, provides a way of assessing the
relationship between returns and volatility, albeit at the expense of complicating the estimation process. Tis study introduces
a Bayesian methodology that leverages data-cloning algorithms to obtain maximum likelihood estimates for SV and SVM model
parameters. Adopting this Bayesian framework allows approximate maximum likelihood estimates to be attained without the
need to maximize pseudo likelihood functions.Te key contribution this paper makes is that it proposes an estimator for the SVM
model, one that uses Bayesian algorithms to approximate the maximum likelihood estimate with great efect. Notably, the
estimates it provides yield superior outcomes than those derived from the Markov chain Monte Carlo (MCMC) method in terms
of standard errors, all while being unafected by the selection of prior distributions.

1. Introduction

When analyzing time series of returns on fnancial assets, we
need to consider their specifc properties, particularly their
volatility, i.e., whether they exhibit behaviors such as het-
eroskedasticity, volatility clustering [1, 2], and excess lep-
tokurtosis [3]. Models such as GARCH [4, 5] and stochastic
volatility (SV) [6, 7] have previously been developed to
account for these properties.

GARCH models defne the conditional variance as
a function of the past squared innovations and lagged
conditional variances [8, 9]. In contrast, variance in SV
models is characterized as an unobserved component that
follows a stochastic process [3, 10, 11].

Furthermore, whereas the SV model captures the de-
viation of returns from the mean using a function of two
disturbance terms, the GARCH model relies on a single
disturbance term [3].Tis added complexity in the SVmodel
allows for more fexibility [12, 13] and improved accuracy in
capturing the volatility clustering of fnancial series

[8, 14–18]. Te SV model is also better at handling the
negative relationship between volatility and returns. Fur-
thermore, SV models are more robust against mis-
specifcation and radical changes in the data [13, 17] and are
better at estimating the properties of fnancial series.

Recently, the stochastic volatility in mean (SVM) models
has emerged as a refnement of the SV model. It allows the
mean and variance of fnancial time series data to be
modeled simultaneously, enabling the relationship between
volatility and returns to be analyzed at the same time—an
important aspect of fnancial modeling [3]. Other models,
such as ARCH-M and GARCH-M, also attempt to estimate
this relationship but do not provide a simultaneous esti-
mation of the ex-ante relationship between volatility and
returns. We can therefore expect SVM models to provide
more accurate estimates of the behavior of fnancial time
series data when analyzing leverage efects [19] and the efect
of volatility feedback [3].

While SV models have been shown to be superior to
GARCHmodels in the literature, they are not as widely used
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due to the complexity involved in their estimation. Tis is
because it is difcult to evaluate the likelihood function
directly and because they require us to estimate both return
and volatility at the same time.

Various techniques have been used to estimate SV
models, including methods based on the method of mo-
ments [20–22] and likelihood-based methods. Te estima-
tors of moments do have the advantage of not requiring
a likelihood assessment, but their efectiveness is known to
be suboptimal compared to likelihood-based inference
methods [23]. However, likelihood-based methods have
limitations as well, including that they are computationally
intensive, require excessive simulation eforts, and call for
assumptions to be made that can be difcult to satisfy. Fi-
nancial markets often require real-time decision-making,
which means the estimators need to be computationally fast
and robust and are limited in the amount of sampling they
can involve [24].

Bayesian methods, such as Monte Carlo Markov Chains
(MCMC) [16, 25–31] and Integrated nested Laplace ap-
proximations [32], are good solutions for estimating the
parameters of SV models because they allow for efcient
evaluation of the posterior distribution of parameters and
volatility. However, these methods also have limitations such
as requiring a prior distribution for the parameters and
a numerical evaluation of the likelihood function, and they
can also experience problems getting the simulated chains to
converge [33].

Tis paper proposes using a diferent approach called
“data cloning” [34] to estimate the parameters, utilizing the
computational simplicity of MCMC algorithms while also
enabling frequentist inferences, such as maximum likeli-
hood estimates and standard errors, to be made.Temethod
involves applying a Bayesian methodology to a dataset
constructed by cloning the original dataset as many times as
necessary for the solution to approximate the maximum
likelihood estimate [35, 36]. Te main advantage of using
data cloning over other Bayesian methods is that the in-
ferences are invariant to the choice of the prior distributions,
and no likelihood estimation is required. Overall, data
cloning is a powerful method for estimating and studying
complex models, especially when analyzing volatility.

We propose using this methodology to estimate the
parameters of SV and SVM models as it has been shown to
be particularly useful for complex models, as discussed in
studies by authors in [34–37]. Recently, this method has
been successfully used to estimate the parameters of other
complex fnancial models in [38, 39]. Although it is beyond
the scope of this article, models have recently been de-
veloped to estimate volatility in the valuation of fnancial
options using two volatility components [40, 41]. Tese
models are strong potential candidates for using an algo-
rithm like the one we have constructed in this paper to
estimate their parameters.

Tis paper makes three important contributions to the
literature. First, it provides an algorithm to estimate SV and
SVM model parameters based on the data-cloning method.
Tis is a simpler way of estimating SVM that allows

frequentist inferences to be obtained without having to
estimate likelihood. Second, by performing an analysis of
simulated data using the proposed algorithm, we show that
its estimates are more accurate than those obtained using the
MCMC method. Tird, in order to evaluate the predictive
ability of the model over a real fnancial series, the meth-
odology is applied to model Bitcoin returns, allowing us to
draw new conclusions about the relationship between vol-
atility and proftability in cryptocurrencies—conclusions
that can only be obtained with the SVM method.

Te structure of the article is as follows. In Section 2, we
specify the SV and SVM models that will be used, and in
Section 3, we explain the data-cloning method in general
terms. In Section 4, we lay out the algorithms required to
apply this method to the SV and SVM models, then obtain
the results and compare them with the MCMC methodol-
ogy, demonstrating that the data-cloning method is supe-
rior. In Section 5, we apply SVM to a real example of
a fnancial series (Bitcoin) and analyze the relationship
between return and volatility to test the hypotheses of the
leverage efect and volatility feedback. Finally, in Section 6,
we present the main conclusions of the paper.

2. Definition and Specification of the SV and
SVM Models

Defnition 1. Te stochastic volatility model defnes the
returns of process Yt in discrete time t as

Yt � µt + σtϵt, ϵt ∼ NID(0,1), (1)

μt � a + 
k

i�1
bixi,t, for t � 1,2, . . . . (2)

Here, xi,t can be independent variables or lags of the de-
pendent variable. Te mean μt also depends on constants
a and bi for i� 1,. . ., k regression coefcients. In the volatility
process, σ2t is defned as

σ2t � σ∗2eht , (3)

where σ∗2 is a positive scaling factor and htt is a stochastic
process defned as

ht � ϕht−1 + σηηt, ηt ∼ NID(0, 1). (4)

In (4), ϕ and ση are model parameters. Parameter ση is
the variance of the independent and identically distributed
normal variables ηt, while ϕ is the volatility persistence
parameter. It is important for ϕ to be positive and smaller
than 1 (ϕ ∈ (0, 1)) to ensure stationarity.

It can be assumed that in (3), σ2t is specifed in the
logarithmic form, considering that ht � ln(σ2t /σ∗2).

Te SV model has two sources of variability in the form
of two independent and mutually uncorrelated disturbance
terms, ϵt and ηt. Tis is the main diference between SV
models and GARCH models [3, 4].

Te unconditional variance implied in the SV model is
σ∗2eση/2(1− ϕ2).
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One important characteristic of SV models is that they
capture part of the excess of kurtosis that fnancial series
present. Te kurtosis of an SV series is defned by

ky �
kϵE σ4t 

E σ2t 
2

 

� 3e
σ2η/1−ϕ2

. (5)

Defnition 2. Te return of the stochastic volatility in
mean (SVM) model is defned as (1), and its mean is
defned as

μt � a + 

k

i�1
bixi,t + dσ2t , (6)

where parameter d measures the efect of volatility in the
mean of the process.

Te variance of the SVM model is defned by equations
(3) and (4).

Te inclusion of variance in the mean equation
allows for a better understanding of the relationship
between returns and volatility. It enables studies, such as
[42], to be performed and the returns’ partial dependence
on volatility to be analyzed, as featured in all fnancial
theory [3].

3. Data-Cloning Estimation

Te estimation of these models, particularly SVM, is not
straightforward. To resolve this, this paper proposes
a technique based on data cloning to obtain approximates of
the maximum likelihood estimates through Bayesian algo-
rithms. Te main idea is to clone the series k times and
assume that each series represents an independent sample
path of the process. We consider all sample paths to be equal
because the sample path with the highest probability is the
one obtained. Although the heuristic explanation implies
that the cloned trajectories are independent, the mathe-
matical proof of the algorithm does not rely on this as-
sumption, and it does not assume that the k clones are
independent.

Tis method was introduced by the authors in [34, 43], as
a means of obtaining maximum likelihood estimates for
parameters of complex models where direct maximization of
the likelihood is infeasible.

Te data-cloning method ofers an efective solution for
estimating the parameters of SV and SVM models as it
avoids the need for direct maximization of the likelihood
function. Instead, it utilizes Bayesian algorithms to ap-
proximate the likelihood. Moreover, this methodology is not
reliant on the specifc prior distributions chosen, resulting in
improved solutions compared to those provided by MCMC
estimators.

Previous studies by the authors in [39, 44] have suc-
cessfully applied this method to estimate the SV model,
albeit using a less general model. Teir fndings demonstrate
the enhanced accuracy of the parameter estimation com-
pared to the standard Bayesian approach. Terefore, we aim

to assess the efectiveness of this method in the context of
a more general SV model and the SVM model.

Te data-cloning method begins with an observed
dataset y � (y1, y2, ..., yn) and the prior distributions for the
parameters. It utilizes the posterior distribution of the pa-
rameter set θ, denoted as π(θ|y), which is proportional to
the likelihood function L(θ|y) multiplied by the prior dis-
tribution π(θ). Tis posterior distribution is then used to
generate samples using an MCMC method. In the data-
cloning method, samples are drawn from the posterior
distribution π(k)(θ|y), which is proportional to the k-th
power of the likelihood function [L(θ ∣ y)](k) multiplied
by the prior distribution π(θ).

Te data-cloning method is based on the principle that
when k is sufciently large, π(k)(θ ∣ y) converges to a mul-
tivariate normal distribution that has the maximum likeli-
hood estimate of the model parameters as its mean. In
addition, the covariance of this multivariate normal distri-
bution is equal to 1/k times the inverse of the Fisher in-
formation matrix for the maximum likelihood estimate [34].
Te data-cloning algorithm can therefore be summarized in
the following steps:

Step 1: Create k-cloned dataset y(k) � (y, y, . . . , y) by
cloning the observed dataset k times.
Each copy of y is treated as an independent sample path
of the same process.
Step 2: Use an MCMC method to generate random
values from the posterior distribution. Start the algo-
rithm with the prior distribution π(θ) and the cloned
data vector y(k) � (y, y, . . . , y).
Step 3: After running the MCMC method for a total of
B iterations, compute the sample means and variances
of the values obtained for the marginal posterior dis-
tribution, denoted as (θ)j, where j � 1, . . . , B. Te
sample means correspond to the maximum likelihood
estimates, while the approximate variances of the
maximum likelihood estimates are k times the posterior
variances.

4. Data-Cloning Algorithms to Estimate the SV
and SVM Models

To simplify the estimation algorithms for both models, the
estimation of the constant parameter was excluded. Al-
though it is possible to include this parameter in the al-
gorithms, doing so signifcantly increases the computation
time as it requires a higher number of clones. After con-
ducting several empirical tests, we observed that excluding
the constant parameter does not signifcantly afect the
results, so we decided to omit it in the simulations and work
with variables in diferences.

4.1. Data-Cloning Estimator for the SVModel. Te algorithm
based on the data-cloning method was used to estimate the
model parameters for the SVmodel described in Section 2 by
equations (1), (3), and (4) and simplifying equation (2) to
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μt � byt−1, (7)

being y � yt − y (the returns in diferences).
Te model included just one autoregressive term. More

autoregressive terms, or other kinds of terms, could be easily
included if necessary, but each additional term would
probably increase the required number of clones to achieve
convergence, and consequently the computation time.

Tis model was characterized by four parameters: ϕ, ση,
σ∗2, and b.

To apply the data-cloning method, an MCMC procedure
needed to be designed, and prior distributions therefore
needed to be chosen, even though it has been proven that
they do not afect the fnal results [34]. In light of this, the
following vaguely informative distributions were chosen as
prior distributions: ϕ ∼ U(0, 1), ση ∼ U(0, 10), σ∗2 ∼ U

(0, 10), and b ∼ U(−10, 10).
Te joint posterior distribution was obtained by as-

suming that yi ∼ N(μt, σ2t ), with μt defned in (7) and σ2t
defned in (3). Te likelihood function of the SV model was
therefore

L b, σ∗2, ϕ, ση|y  � 

n

i�1

1
�������
2πσ∗2ehi

⎛⎝ ⎞⎠exp −
1

2σ∗2


n

i�1

yi − byi− 1( 
2

exp hi( 

⎧⎨

⎩

⎫⎬

⎭, (8)

being hii defned by (4). With this likelihood function, the
joint posterior was

π(k) ϕ, ση, σ∗2, b ∝ L ϕ, ση, σ∗2, b|y  
k
π(ϕ)π ση π σ∗2 π(b)

∝ 
n

i�1
2πσ∗2ehi⎛⎝ ⎞⎠

− k/2

exp −
k

2σ∗2


n

i�1

yi − byi− 1( 
2

exp hi( 

⎧⎨

⎩

⎫⎬

⎭

· I(0,1)(ϕ)I(0,10) ση I(0,10) σ∗2 I(−10,10)(b).

(9)

Te conditional posterior distributions for the param-
eters were

π(k) ϕ|ση, σ∗2, b, y ∝ 
N

i�1
σ∗2ehi⎛⎝ ⎞⎠

− k/2

exp −
k

2σ∗2


n

i�1

yi − byi− 1( 
2

exp hi( 

⎧⎨

⎩

⎫⎬

⎭I(0,1)(ϕ),

π(k) ση
,ϕ, σ∗2, b, y ∝ 

N

i�1
σ∗2ehi⎛⎝ ⎞⎠

− k/2

exp −
k

2σ∗2


n

i�1

yi − byi− 1( 
2

exp hi( 

⎧⎨

⎩

⎫⎬

⎭I(0,10) ση ,

π(k) σ∗2
ϕ, ση, b, y ∝ 

N

i�1
σ∗2ehi⎛⎝ ⎞⎠

− k/2

exp −
k

2σ∗2


n

i�1

yi − byi− 1( 
2

exp hi( 

⎧⎨

⎩

⎫⎬

⎭I(0,10) σ∗2 ,

π(k)
b|ϕ, ση, σ∗2, y ∝ 

N

i�1
σ∗2ehi⎛⎝ ⎞⎠

− k/2

exp −
k

2σ∗2


n

i�1

yi − byi− 1( 
2

exp hi( 

⎧⎨

⎩

⎫⎬

⎭I(−10,10)(b).

(10)

Te data-cloning algorithm started from an initial so-
lution ϕ(0), σ(0)

η , σ∗2(0), and b(0). From the conditional
posterior distributions, it generated values for ϕ(m), σ(m)

η ,
σ∗2(m), and b(m) in each iteration m. Te initial values were
simulated directly from the prior distributions since there

was no need to use specifc values to achieve convergence
within a reasonable time.

After a sufcient number of iterations, a sample was
obtained to constitute the posteriors whose means formed
the basis of the maximum likelihood estimates of the model
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parameters. Te steps of this algorithm can be summarized
as follows:

Step 1: set initial solution at m � 0 as ϕ(0), σ(0)
η , σ∗2(0),

and b(0).
Step 2: generate ϕ(m+1) from its conditional posterior
distribution

σ(m)
η ∼ π(k) ση

ϕ, σ∗2, b, y . (11)

Step 3: generate σ(m)
η from its conditional posterior

distribution

σ(m)
η ∼ π(k) ση

ϕ, σ∗2, b, y . (12)

Step 4: generate σ∗2(m) from its conditional posterior
distribution

σ∗2(m) ∼ π(k) σ∗2|ϕ, ση, b, y . (13)

Step 5: generate b(m) from its conditional posterior
distribution

b
(m) ∼ π(k)

b|ϕ, ση, σ∗2, y . (14)

Step 6: set m � m + 1 and go to Step 2.

Tis algorithm was implemented using the dclone
package [37] from the R project [45].

To test the performance of the algorithm in estimating
the parameters of the SV model, a sample path of this model
was simulated. Tis allowed us to compare the real pa-
rameters against the estimated ones. A simulator for this
model was developed using R to generate the series, which
consisted of 245 values, representing approximately the
number of business days in a year.Te purpose of this was to
assess the performance of the algorithm over the annual
evolution of the daily returns of a fnancial asset.Te selected
parameter values for simulating the model were ϕ � 0.97,
ση � 0.12, σ∗2 � 0.2, and b � 0.2.

Te data-cloning algorithm requires the optimal number
of clones to be determined.Tis is achieved by evaluating the
maximum eigenvalue of the posterior variance, the mini-
mum squared error, the R2 statistic, and the R criterion
[43, 46]. All these metrics can be computed using the dclone
package. Based on these results, no signifcant improvements
were found by using more than 20 clones, so the optimal
number of clones is fxed at 20.

Te results obtained by applying the algorithm to a single
sample path are presented in Table 1. It displays the real
values for all parameters, the estimated parameters, the
standard errors, and the 95% confdence intervals. In ad-
dition, the last two columns include the parameter estimates
using an MCMC estimator and the corresponding standard
errors of estimates. Tis allows a comparison to be made
with the results obtained using data cloning.

Bearing in mind that only one sample path was simu-
lated, we can observe that the estimator produces values that
closely match the real values used in generating the path. In
addition, the standard errors of estimates are very small
across the board, indicating that the estimator yields good
results, based on a single sample path. Moreover, all real
values fall within the 95% confdence intervals, as expected.

Comparing these results with those obtained using
a traditional MCMC estimator, data cloning demonstrates
superior performance in almost all cases. It provides esti-
mates with smaller standard errors that do not depend on
the selected priors.

Figure 1 shows the posterior distributions obtained by
the data-cloning algorithm, providing a better un-
derstanding of the estimates’ behavior. We can see a slight
tendency to underestimate the value of ϕ, but for the
remaining parameters, the higher probabilities of the pos-
terior density function closely are aligned with the true
parameter values.

It should be noted that data-cloning estimates are ap-
proximations of maximum likelihood estimates, so they will
have the same analytical properties.

4.2. Data-Cloning Estimator for the SVM Model. Te esti-
mator for the SVMmodel based on the data-cloning method
also required the mean equation (6) to be simplifed in order
to work with the returns in diferences and fx the variables
to be used. Tus, the equation of the mean is defned by

μt � byt−1 + dσ∗2eht . (15)

Again, a single autoregressive term was included to
simplify the algorithm execution. Tus, the model had fve
parameters: ϕ, ση, σ∗2, b, and, d i.e., one more than the SV
model. Te prior distributions used in the algorithm were
ϕ ∼ U(0, 1), ση ∼ U(0, 10), σ∗2 ∼ U(0, 10), b ∼ U(−10, 10),
and d ∼ U(−10, 10).

Te joint posterior distribution was obtained consid-
ering that yi ∼ N(μt, σ2t ), with μt defned in (7) and σ2

defned in (3), so the likelihood function of the SVM model
was

L ϕ, ση, σ∗2, b, d|y  � 
n

i�1

1
�������
2πσ∗2ehi

⎛⎝ ⎞⎠exp −
1

2σ∗2


n

i�1

yi − byi− 1 − dσ∗2 exp hi(  
2

exp hi( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (16)

being hi defned by (4).
Based on this likelihood function, the joint posterior was

Discrete Dynamics in Nature and Society 5



π(k) ϕ, ση, σ∗2, b, d ∝ L ϕ, ση, σ∗2, b, d|y  
k
π(ϕ)π ση π σ∗2 π(b)π(d)

∝ 
n

i�1
2πσ∗2ehi⎛⎝ ⎞⎠

− k/2

exp −
k

2σ∗2


n

i�1

yi − byi− 1 − dσ∗2 exp hi(  
2

exp hi( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

· I(0,1)(ϕ)I(0,10) ση I(0,10) σ∗2 I(−10,10)(b)I(−10,10)(d).

(17)

From this likelihood, the conditional posteriors were

π(k) ϕ|ση, σ∗2, b, d, y ∝ 
N

i�1
σ∗2ehi⎛⎝ ⎞⎠

− k/2

exp −
k

2σ∗2


n

i�1

yi − byi− 1 − dσ∗2 exp hi(  
2

exp hi( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
I(0,1)(ϕ),

π(k) ση|ϕ, σ∗2, b, d, y ∝ 
N

i�1
σ∗2ehi⎛⎝ ⎞⎠

− k/2

exp −
k

2σ∗2


n

i�1

yi − byi− 1 − dσ∗2 exp hi(  
2

exp hi( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
I(0,10) ση ,

π(k) σ∗2|ϕ, ση, b, d, y ∝ 
N

i�1
σ∗2ehi⎛⎝ ⎞⎠

− k/2

exp −
k

2σ∗2


n

i�1

yi − byi− 1 − dσ∗2 exp hi(  
2

exp hi( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
I(0,10) σ∗2 ,

π(k)
b|ϕ, ση, σ∗2, d, y ∝ 

N

i�1
σ∗2ehi⎛⎝ ⎞⎠

− k/2

exp −
k

2σ∗2


n

i�1

yi − byi− 1 − dσ∗2 exp hi(  
2

exp hi( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
I(−10,10)(b),

π(k)
d|ϕ, ση, σ∗2, b, y ∝ 

N

i�1
σ∗2ehi⎛⎝ ⎞⎠

− k/2

exp −
k

2σ∗2


n

i�1

yi − byi− 1 − dσ∗2 exp hi(  
2

exp hi( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
I(−10,10)(d).

(18)

Table 1: Estimates of the stochastic volatility model parameters using the data-cloning method.

Parameter Real value Data-cloning estimates SD 95% confdence intervals MCMC estimates SD (MCMC)
ϕ 0.97 0.8879 0.03931 (0.5433 and 1.2324) 0.8335 0.2077
ση 0.12 0.1478 0.03758 (−0.1816 and 0.4771) 0.1910 0.1220
σ∗2 0.2 0.2130 0.06577 (−0.3635 and 0.7895) 0.2036 0.0392
b 0.2 0.2192 0.01462 (0.0911 and 0.3474) 0.1199 0.0676

Histogram of ϕ Histogram of ση Histogram of σ*2 Histogram of b
0.8 0.085 0.90 0.95 1.0 0.10 0.15 0.20 0.25 0.20 0.30 0.16 0.20 0.24 0.28
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0
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1000

0
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0

Figure 1: Histograms of the posterior distributions of the stochastic volatility model parameters.
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Te algorithm started from an initial solution ϕ(0), σ(0)
η ,

σ∗2(0), b(0), and d(0), and consider these values generated the
intermediate solutions (ϕ(m), σ(m)

η , σ∗2(m), b(m), and d(m)) in
each iteration (m) from the conditional posterior
distributions.

Tey were then used to obtain the posterior sample, and
its arithmetic means constituted the maximum likelihood
estimates. Te algorithm steps can be summarized as
follows:

Step 1: set initial solution at m � 0 as: ϕ(0), σ(0)
η , σ∗2(0),

b(0), and d(0).
Step 2: generate ϕ(m+1) from its conditional posterior
distribution

ϕ(m+1) ∼ π(k) ϕ|ση, σ∗2, b, d, y . (19)

Step 3: generate σ(m)
η from its conditional posterior

distribution

σ(m)
η ∼ π(k) ση

ϕ, σ∗2, b, d, y . (20)

Step 4: generate σ∗2(m) from its conditional posterior
distribution

σ∗2(m) ∼ π(k) σ∗2|ϕ, ση, b, d, y . (21)

Step 5: generate b(m) from its conditional posterior
distribution

b
(m) ∼ π(k)

b|ϕ, ση, σ∗2, d, y . (22)

Step 6: generate d(m) from its conditional posterior
distribution

d
(m) ∼ π(k)

d|ϕ, ση, σ∗2, b, y . (23)

Step 7: set m � m + 1 and go to Step 2.

Again, the dclone package [37] from the R project [45]
was used to program the algorithm analogously to how the
data-cloning algorithm was programmed to estimate the SV
model. Te initial values were simulated directly from the
prior distribution.

Te same procedure as for the SV model was followed to
analyze the quality of the estimates. Terefore, a series with
245 observations was simulated using the following pa-
rameters for the model: ϕ � 0.97, ση � 0.12, σ∗2 � 0.2,
b � 0.2, and d � 0.1. Te parameters of the model were then
estimated using the series data, and the proximity of the
estimated values to the real values and the standard errors of
estimate were examined. Confdence intervals were also
obtained for the parameters to test whether they include the
true values.

To determine the optimal number of clones, the fol-
lowing criteria from the dclone package were employed:
maximum eigenvalue of the posterior variance, minimum
squared error, R2, and R [43, 46]. As this model had one
more parameter than the previous one, a considerably
higher number of clones needed to be used in order to

achieve convergence. After testing several estimates, we
concluded that 40 clones are sufcient to make high-quality
estimates that are not substantially improved by including
a larger number of clones. Hence, the optimal number of
clones is set at 40.

Table 2 shows the real data used to estimate the series, the
estimates obtained, the standard errors of estimate, and the
confdence intervals for each parameter. It also includes the
estimates obtained using the MCMC method, with their
respective standard errors, for the purpose of comparing the
quality of the estimates yielded by the two methodologies.
Figure 2 displays the posterior distributions of the param-
eters obtained by the algorithm.

Only one trajectory was considered, but we can see that
the estimation algorithm provides values very close to the
real values of the parameters used in simulating it. Te
standard errors of estimates are also small enough to prove
that the estimates obtained are of high quality. Finally, we
can see that the 95% confdence intervals include the real
values of the parameters and that the estimates are better
than those obtained by an MCMC procedure in terms of the
standard errors of estimates. Te histograms demonstrate
the close correspondence between the estimated SVM pa-
rameters and the real values. From the results obtained, we
can observe that the values of ϕ, σ∗2, and d are overestimated
and the values of ση and b are underestimated.

Although we can see that the estimates based on a single
trajectory are good enough, diferent trajectories were also
estimated from the same parameters, obtaining the average
of all the estimates as a result. As expected, this method
provided values that are even closer to the true values of the
parameters. We do not include further details of this option
as it may not be applicable to real data, where only a single
trajectory is available. However, it is worth mentioning that
this approach enhances the quality of the estimator by re-
ducing variance and improving the accuracy of the
mean value.

Te algorithm was also evaluated with diferent size
sample paths, showing good performance in all of them. We
observed that when the sample paths were small in size, the
estimation results depended to a greater extent on the path
considered. In contrast, convergence was achieved with
a number of clones even smaller than the 40 clones pro-
posed. When the size of the sample paths was moderately
large, the estimates were more stable and depended less on
the path considered, but in some cases, more than 40 clones
needed to be used in order to reach convergence. Te results
are summarized in Table 3.

5. Applying the Estimators to Real Data: Bitcoin

Cryptocurrencies have undoubtedly become hugely important
in the economy since the initial introduction of Bitcoin to the
markets in 2008 [5, 47, 48]. Cryptocurrencies exhibit higher
volatility and are more susceptible to bubbles than traditional
currencies [49]. In addition, the volatility of Bitcoin returns is
subject to long memory, resulting in their being analyzed as
fnancial assets rather than traditional currencies. Tey are
increasingly being included in fnancial portfolios, which make
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modeling their volatility and its relationship to returns very
important in portfolio optimization, hedging, and the valuation
of derivative securities. Bitcoin remains the largest crypto-
currency in terms of market capitalization [17, 47], hence it is
why we chose it as an example. Tiwari et al. [17] found that in
general, SV models consistently outperform the GARCH
models when it comes to analyzing cryptocurrencies (partic-
ularly in the case of Bitcoin and, to a lesser extent, Litecoin).
Moreover, they show that in general using t-distributed in-
novations greatly improves the results of standard GARCH
models, but this result is not signifcant for SV models.
Considering this, in this paper, we use innovations that follow
a normal distribution. Nevertheless, the analysis can be easily
extended to incorporate Student’s t distribution.

Te data considered were the daily returns of the
cryptocurrency from October 1, 2020, to March 1, 2021. Te
dataset was obtained from the Spanish fnancial news
website https://es.investing.com/.

5.1. Modeling Bitcoin Returns Using the SV Model Estimated
by the Data-Cloning Method. Given that the estimation
algorithm excludes the intercept term, we used the de-
viations from the mean of the data to model the real data
within an SV model. Furthermore, the fve most recent data
values were excluded to be used later to test the predictions.
Te estimated model parameters, the standard errors of
estimate, and credible intervals are shown in Table 4. It also

Table 2: Estimates of the stochastic volatility in mean model parameters using the data-cloning method.

Parameter Real value Data-cloning estimates SD Confdence intervals MCMC estimates SD (MCMC)
ϕ 0.97 0.9717 0.0053 (0.9055 and 1.0379) 0.9368 0.0810
ση 0.12 0.1386 0.0171 (−0.0736 and 0.3509) 0.1878 0.0807
σ∗2 0.2 0.1831 0.0671 (−0.6493 and 1.0155) 0.1717 0.0511
b 0.2 0.2548 0.0103 (0.1267 and 0.3829) 0.2527 0.0654
d 0.1 0.1386 0.0171 (−0.1454 and 0.4145) 0.1402 0.1408

Histogram of ϕ Histogram of ση Histogram of σ*2

Histogram of d Histogram of b
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Figure 2: Histograms of the posterior distributions of the stochastic volatility in mean model parameters.

Table 3: Estimates of the stochastic volatility in mean model parameters using the data-cloning method in sample paths of diferent sizes.

Parameter Real value Estimates (SD)
n� 100

Estimates (SD)
n� 245

Estimates (SD)
n� 500

Estimates (SD)
n� 1000

Φ 0.97 0.9635 (0.0054) 0.9717 (0.0053) 0.9893 (0.0039) 0.9631 (0.0024)
ση 0.12 0.1143 (0.0143) 0.1386 (0.0171) 0.1401 (0.0086) 0.1465 (0.0047)
σ∗2 0.2 0.4505 (0.0261) 0.1831 (0.0671) 0.5086 (0.1575) 0.2571 (0.0049)
b 0.2 0.1335 (0.0190) 0.2548 (0.0103) 0.1341 (0.0072) 0.2042 (0.0051)
d 0.1 −0.061 (0.0252) 0.1386 (0.0171) 0.0656 (0.0133) 0.1512 (0.0092)
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includes the estimates of the model parameters and corre-
sponding standard errors using the MCMCmethod in order
to compare the two methodologies. Bayesian confdence
intervals are included because they can be used to analyze
the signifcance of the parameters from a Bayesian point of
view. However, as shown above, if a frequentist approach to
the study is desired, confdence intervals can readily be
calculated. Tis is one of the advantages of the data-cloning
method.

As expected, the data-cloning and MCMC algorithms
provided close values for all parameters except for ση. Tis is
probably due to a high standard error in theMCMCmethod.
Note that all parameters except ϕ have lower estimation
errors in the estimates obtained through data cloning.

All the parameters are signifcant at 5%, according to the
credible intervals. Te parameter b represents the efect of
the lagged return in the expected value of the return, and in
this case, a negative value was obtained. ϕ is the frst-order
coefcient of the log-volatility equation (4), while ση
moderates the efect of disturbance in the log-volatility
equation (4). Finally, σ∗2 is the constant coefcient of
variance and represents a small part of the total volatility to
which ϕ and ση are added.

Te value of ϕ is signifcant, providing evidence of
volatility clustering. However, its value is relatively low,
suggesting that there is not a substantial persistence of
volatility across consecutive periods. At the same time, the
value of ση is quite high and signifcant, which means that
the volatility of a period is strongly afected by the shocks
within that period, increasing the value of the variance. Tat
implies that the course of the volatility is less easily

predictable. Finally, b is negative, indicating that the dif-
ferences in proftability within one period negatively afect
the proftability of the following period. Terefore, we can
conclude the following:

(i) Te negative value of b implies that returns from one
period have a negative impact on the returns of the
subsequent period

(ii) Te variance is generally high, showing little de-
pendence on the variance of the previous period but
signifcant sensitivity to shocks occurring in the
current period

Tese parameters allow equations to be constructed for
predicting subsequent values using a one-step prediction
method. Tis involves using the actual values from the
previous period to generate predictions for returns. Te true
value of the required lag (in this case, 1) is used to construct
the next values in the series. Similarly, a lag is required for
volatility, but since volatility is unobservable, the estimated
value is used here.

Figure 3 displays the predicted Bitcoin returns obtained
through SV modeling compared to the actual Bitcoin
returns. It demonstrates the model’s ability to generate
accurate one-step predictions for future values in this series.

5.2.ModelingBitcoinReturnsUsing the SVMModelEstimated
by the Data-Cloning Method. Te same dataset was also
modeled using the SVM model estimated through the data-
cloning algorithm introduced earlier. Tis model was ex-
pected to better incorporate the unobservable behavior of

Table 4: Estimates of the SV model parameters to estimate Bitcoin, using the data-cloning and MCMC methods.

Parameter Data-cloning estimates SD DC HPD 0.95 MCMC estimates SD MCMC
ϕ 0.4722044 0.2779 (0.0170559 and 0.9464303) 0.4165 0.26151
ση 0.1012176 0.06509 (0.0196413 and 0.3175769) 0.4825 0.3382
σ∗2 0.0001425 7.516e− 6 (0.0001297 and 0.0001603) 0.0001489 4.6174e− 5
b −0.2081462 0.02999 (−0.2671039 and −0.1502172) −0.1194 0.1324

Real values vs. one step forecast

-0.02

-0.01

0.00

0.01

0.02

Figure 3: Bitcoin returns vs. estimates of Bitcoin returns generated using the SV model estimated by the data-cloning algorithm.
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volatility by considering its efects on both the returns and
their mean simultaneously. Table 5 presents the estimated
parameter values, their standard errors of estimate, and the
credible intervals. It also includes the parameter values es-
timated through the MCMC method and their corre-
sponding standard errors.

Both estimation methods yielded similar parameter
values, except for ση and d, where the MCMC method
exhibited higher standard errors, resulting in less agreement
with the data-cloning estimate.

All parameters are statistically signifcant at a 5% sig-
nifcance level, as indicated by the credible intervals. Te
signifcance of ϕ once again supports the presence of vol-
atility clustering, although its magnitude is not particularly
high. Similar to the SV model, parameter b takes a negative
value, indicating a negative impact of lagged returns on
current returns.

In the SVM model, a new parameter d is estimated,
which represents the efect of volatility on the mean returns.
Its signifcance suggests that the variance has a substantial
infuence on the expected returns, and the positive value
indicates a feedback efect of volatility on returns, aligning
with our expectation when analyzing returns in diferences.

Figure 4 presents the predicted values of the last ob-
servations obtained from the SVM model compared to the
actual values. It demonstrates the efectiveness of the one-
step prediction method in capturing the future behavior of
the series. Te close alignment between the predicted values
and the actual observations highlights the accuracy of the
SVM model in forecasting future values.

6. Final Conclusions

Te main goal of this paper is to introduce an estimator for
the SVM model parameters based on the data-cloning al-
gorithm, which provides an approximation of the maximum
likelihood estimates of the model parameters. Te main
fndings of this study are as follows:

(i) Te data-cloning algorithm is a good solution for
estimating the parameters of SV and SVM models,
whose complexity makes it difcult to use other
estimation methods.

(ii) Data cloning is especially useful for estimating the
SVM model because it allows the return and the
volatility to be estimated at the same time.

(iii) Te estimates obtained by the data-cloning
method to estimate the parameters of SV and
SVM models are shown to be better in terms
of their standard errors than those obtained
by the conventional MCMC algorithms in the
simulation study.

(iv) Te SVM data-cloning estimation algorithm
demonstrates consistent performance regardless of
the sample path size. However, the estimates are
observed to be more stable and less path-dependent
when we increase its size.

(v) Te hybrid nature of the data-cloning method
proves to be a very suitable solution when esti-
mating parameters by the maximum likelihood
method using Bayesian algorithms.

(vi) SV and SVM models are suitable for modeling f-
nancial data with volatility jumps, and they provide
a means of understanding the behavior of these
series.

(vii) SV and SVM models are empirically shown to be
highly capable of providing one-step predictions
for cryptocurrencies like Bitcoin. Tey show that
Bitcoin volatility is strongly related to the return in
the same period.

Data Availability

Tis study has employed simulated data from the stochastic
volatility and stochastic volatility in mean models, both of
which are accessible to interested parties. Furthermore,
Bitcoin closing data spanning the period between October 1,
2020, and March 1, 2021, have been utilized. Tese datasets
are publicly available and have been sourced from the
website https://es.investing.com/.

Table 5: Estimates of the stochastic volatility in mean model parameters to estimate Bitcoin, using the data-cloning method.

Parameter Data-cloning estimates SD HPD 0.95 MCMC estimates SD MCMC
ϕ 0.4918337 0.3506 (0.011611 and 0.9855730) 0.4290 0.2661
ση 0.1158941 0.06447 (0.048043 and 0.2844250) 0.4556 0.3318
σ∗2 0.0001422 7.998e− 6 (0.000131 and 0.0001663) 1.49e− 4 5.28e− 5
b −0.214432 0.02091 (−0.25487 and −0.173575) −0.1212 0.1314
d 7.1425561 1.558 (3.851365 and 9.7414312) 2.3354 5.0931

Real values vs. one step forecast
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-0.01

0.00

0.01

0.02

Figure 4: Bitcoin returns vs. estimates of Bitcoin returns generated
using the SVM model estimated by the data-cloning algorithm.

10 Discrete Dynamics in Nature and Society

https://es.investing.com/


Conflicts of Interest

Te authors declare that they have no conficts of interest or
personal relationships that could have appeared to infuence
the work reported in this paper.

Acknowledgments

Te authors acknowledge the open access funding, enabled
and organized by CRUE-UNIRIS Gold.

References

[1] B. Mandelbrot, “Te variation of certain speculative prices,”
Journal of Business, vol. 36, no. 4, pp. 394–419, 1963.

[2] J.-J. Tseng and S.-P. Li, “Asset returns and volatility clustering
in fnancial time series,” Physica A: Statistical Mechanics and
Its Applications, vol. 390, no. 7, pp. 1300–1314, 2011.

[3] S. Koopman and E. Hol Uspensky, “Te stochastic volatility in
mean model: empirical evidence from international stock
markets,” Journal of Applied Econometrics, vol. 17, no. 6,
pp. 667–689, 2002.

[4] T. Bollerslev, “Generalized autoregressive conditional heter-
oskedasticity,” Journal of Econometrics, vol. 31, no. 3,
pp. 307–327, 1986.

[5] P. Katsiampa, “Volatility estimation for Bitcoin: a comparison
of GARCHmodels,” Economics Letters, vol. 158, pp. 3–6, 2017.

[6] S. Taylor, “Financial returns modelled by the product of two
stochastic processes: a study of daily sugar prices 1961-79,” in
Time Series Analysis: Teory and Practice, O. Anderson, Ed.,
North-Holland, Amsterdam, Te Netherlands, 1982.

[7] S. Taylor, “Modelling stochastic volatility: a review and
comparative study,” Mathematical Finance, vol. 4, no. 2,
pp. 183–204, 1994.

[8] J. Chan and A. Grant, “Modeling energy price dynamics:
GARCH versus stochastic volatility,” Energy Economics,
vol. 54, pp. 182–189, 2016.

[9] M. Manera, M. Nicolini, and I. Vignati, “Modelling futures
price volatility in energy markets: is there a role for fnancial
speculation?” Energy Economics, vol. 53, pp. 220–229, 2016.

[10] C. Brooks and M. Prokopczuk, “Te dynamics of commodity
prices,”Quantitative Finance, vol. 13, no. 4, pp. 527–542, 2013.

[11] A. B. Trolle and E. S. Schwartz, “Unspanned stochastic vol-
atility and the pricing of commodity derivatives,” Review of
Financial Studies, vol. 22, no. 11, pp. 4423–4461, 2009.

[12] M. Asai, M. McAleer, and J. Yu, “Multivariate stochastic
volatility: a review,” Econometric Reviews, vol. 25, no. 2-3,
pp. 145–175, 2006.

[13] M. Balcilar and Z. Ozdemir, “Te volatility efect on precious
metals price returns in a stochastic volatility in mean model
with time-varying parameters,” Physica A: Statistical Me-
chanics and Its Applications, vol. 534, pp. 122329–122414,
2019.

[14] T. Agbeyegbe, “Modeling JSE stock returns dynamics:
GARCH versus stochastic volatility,” Te Journal of De-
veloping Areas, vol. 56, no. 1, pp. 175–191, 2022.

[15] P. Carr, H. Geman, D. Madan, and M. Yor, “Stochastic
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