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Te model was created to assist in the appropriate allocation of water to produce crops to optimize net proft through monthly
reservoir operation. Te model maximizes net crop revenue and determines the type and size of the cultivated crop for each zone,
taking into account monthly reservoir water availability. Te following factors constrain the optimization model: (1) monthly
reservoir water availability; (2) monthly water demand and irrigated farmland for crops; (3) limited crop areas in each zone; (4)
projected fnal storage; (5) proportional sharing rule (PSR) for each zone. Te linear programming (LP) algorithm is used to
formulate the model, which is then solved using the general algebraic modeling system (GAMS).Temodel is applied to Hali Dam
and validated using two criteria: (1) baseline scenarios (non-PSR) and (2) PSR scenarios in which all zones must have the same
amount of water. Te results demonstrate that the PSR scenarios give all of these zones identical rights for water delivery, with a
total net proft reduction of around 2.6 percent at the planned fnal storage of 100Hm3. As a result, the current model can be
utilised to optimize dam water consumption in the future. Te methodology is applied to a reservoir of Hali Dam in Saudi Arabia
to demonstrate the model’s practical application.

1. Introduction

Te irregular regional and temporal distributions of rainfall,
industrial growth, climate variability, and inefcient man-
agement are some of the factors that contribute to water
scarcity in many developing countries. Other factors that
contribute to water scarcity include population growth,
limited surface water resources, and irregular geographical
and temporal distributions of rainfalls. Because of this re-
ality, there has been a major decrease in the available water
resources, which has further contributed to water-related
disagreements among the many stakeholders. Te most

efective way to alleviate water shortages is to optimize ir-
rigation systems for the regions in which they are being used
and enhance water resource allocations by ensuring that
multicropping patterns and irrigation time are carried out in
the appropriate manner. With rising costs associated with
irrigation and a deteriorating water constraint on a
worldwide scale, enhancing water productivity in agricul-
tural output is becoming an increasingly important objec-
tive. Te vast majority of reservoirs were constructed with
only a single objective in mind, namely to supply water for a
specifc application; any other applications were given a
secondary or tertiary priority. According to the information
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found in the ICOLD database, 74% of all certifed dams are
single purpose dams, with 50% of them serving irrigation.
Good irrigation management and high-precision irrigation
methods maintain excellent yields and fruit quality [1–5].
Because of the growing demand for irrigation water and the
unpredictability of stream fow in arid and semiarid regions,
reservoir performance evaluation is critical yet complex
[6, 7]. Reservoirs are signifcant in Saudi Arabia’s water
resource management since they serve as necessary storage
facilities for controlling excess water for subsequent defcit
water seasons or, in some cases, drought years [8]. For
reservoir-irrigation systems to successfully use water stor-
age, proper reservoir functioning and irrigation timing are
required [9–11]. In Saudi Arabia, agriculture accounts for
82.2% of the total water consumption, compared with 13.5%
for domestic consumption and 4.3% used by industry [1].
Today, Saudi Arabia has constructed 521 dams for diferent
purposes such as recharging, food control, drinking, and
irrigation, and the current study is to establish 1000 dams by
2030 [8].TeHali Dam, located in the southern part of Saudi
Arabia, is considered the second largest dam in the country
after the King Fahad dam. In January 2021, the Hali Dam
released 45Hm3 to beneft 450 farms [11]. Te paper
presents a new approach for water allocation from reservoir
operations, considering PSR for irrigation zones.

Te underlying issues that plague the water supply
system give rise to signifcant research questions (RQs),
some of which are discussed in more detail.

RQ1: How realistic are optimization strategies when it
comes to flling the gaps in a precarious situation in
which technology is more concerned with boosting
irrigation systems than with increasing the perfor-
mance of the entire water-supply chain?

RQ2: How efectively do optimization algorithms
handle the diverse physical, chemical, and biological
characteristics of the water supply chain?

Te proposed model uses monthly reservoir operation
and ultimate target storage to help determine the best way to
distribute water for crop cultivation in order tomaximize the
net beneft for each zone. Te model takes into account the
monthly water availability in the reservoir to predict the type
and amount of the farmed crop for each zone while max-
imizing net crop income. Te monthly water availability in
the reservoir, the monthly irrigated farmlands for crops, the
monthly water demand for crops, and the monthly PSR for
each zone are all constraints of the optimization model. We
ofer two methods for approaching scenarios: (1) examining
non-PSR scenarios and (2) examining PSR scenarios with
the demand that the water content in each zone be the same.
We discover that adopting a PSR scenario when creating a
model is crucial, particularly when users or zones are given
equal weight. Te Hali Dam in Saudi Arabia is used to test
the performance of the optimization model. In GAMS, the
model is resolved using an LP method [12]. Groundwater,
pipeline design, and reservoir operation are just a few of the
many optimization challenges that GAMS has successfully
solved [13].

1.1. Contribution of the Study. Due to the expansion of the
agricultural sector and the new challenges it faces, efective
management of agricultural supply chains has become a
frequent topic of discussion among academics and industry
professionals. Because of this, it is now more important than
ever before for managers to take into account uncertain
elements when making decisions. Doing so may increase
productivity, responsiveness, corporate integration, and
ultimately market competitiveness. A growing amount of
research is being expressly committed to tackling uncer-
tainty in order to capture the uncertain conjuncture that is
present in the vast majority of agricultural applications
carried out in the real world. In particular, quantitative
modelling approaches have been utilised quite extensively in
agricultural supply chain management in order to combat
the unpredictability that can occur from managing agri-
cultural supply chains.

(i) Te objective of this article is to provide a summary
of the most recent developments and enhancements
that have beenmade in the application of operations
research methodology

(ii) It aims to provide an overview of the leading re-
search area that highlights the most signifcant and
popular frameworks which discuss the emergence of
new operations’ research advancements in the ag-
ricultural industry

(iii) Te wide variety of contributions that have been
researched has been organised and presented in
accordance with the three characteristics that have
been identifed as being the most signifcant:
modelling techniques for varying degrees of am-
biguity, software development paradigms, and
functional application domains

(iv) Finally, the most important fndings from the re-
view are summarised and highlighted, and rec-
ommendations for new lines of research are ofered
for the future years

2. Literature Review

Many researchers have developed water allocation models
using diferent aspects of problem techniques and solution
approaches [14–16]. Oxley and Mays [17] developed an
optimization water allocation model for the Prescott Active
Management Area in Arizona, USA, to maximize the sus-
tainable net economic beneft over a long-term planning
period. Meng et al. [18] developed and implemented an LP
water allocation optimization model based on the sustain-
ability of water resources. Te LP approach’s ease of for-
mulation and implementation encourages researchers to use
it widely [19–23]. However, its failure to deal with nonlinear
issues drives the usage of nonlinear programming (NLP).
Benli and Kodal [24] determined irrigation water demands
and agricultural revenue in Turkey’s southeast Anatolian
region under a sufcient and constrained water supply based
on crop water beneft function through the NLP model.
Many researchers adopted NLP, such as [25–27]. Total farm
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profts on the Havrias River in Northern Greece were
maximized using an NLP optimization model that inte-
grated soil water balance [28]. Te diferences between these
two models (LP and NLP) become more pronounced while
including more crops. Tis requires more constraints in the
model structure, which may result in computational com-
plexity, though this increase is much less than that for a
dynamic model with everything else being equal [29]. Due to
the dynamic programming (DP) technique’s capacity to
represent sequential decision-making processes and inte-
grate the stochasticity of hydrological processes, it has been
widely used in irrigation planning and management [30],
optimizing dam water resource management through DP.
Te study by Tran et al. [31], also optimizing the estimated
net present value from various uses, proved that the rela-
tionship between irrigated area and reservoir capacity
should be considered while building a new reservoir.

By 2020, the model expects to increase the advantages of
water usage in northern China’s Zhangjiakou region. Var-
ious agricultural irrigation water allocation optimization
models were created, each adopting a diferent allocation
scenario to maximise the net beneft. Tran et al. [31] in-
vestigated models for improving agricultural irrigation
water allocation, which were implemented using various
computer languages to optimize irrigation management. DP
was used to give diferent distributions of agricultural water
resources in Yangling, China [32]. Optimal rules to improve
the water resource management of Nebhana Reservoir,
Tunisia, using stochastic DP developed by [33].

Models were created with the particular motive of
supporting water supply decision-makers who are faced with
difcult decisions involving a variety of criteria. Bekri et al.
[34] used LP approaches for the fuzzy-boundary-interval to
construct an optimal model for water allocation optimiza-
tion. To enhance decision-makers’ attitudes, the model in-
corporated the unpredictability of random water infows by
simulating stochastic equal-probability hydrologic scenarios
based on diferent infow scenarios utilised in Greece’s
Alfeios River basin. To give more information to decision-
makers, Lu et al. [35] constructed an inexact rough-interval
fuzzy linear programming (IRFLP) model for water allo-
cation, which was compared to an interval-valued linear
programming model. Te results show that the IRFLP can
handle the interplay of dual intervals of highly unknown
parameters as well as their infuence on the system. An
integer linear programming (ILP) decision-supporting
model for water resources was developed to reduce water
treatment, allocation, and environmental costs.

When more than one goal must be addressed, multi-
objective programming is used to analyse water allocation.
Multiobjective programming was utilised to analyse the
Heihe River basin’s water defcit by maximising water re-
source allocation and integrating land use as a constraint
[36–39]. Tey developed a multiobjective water allocation
optimization model to optimize agricultural productivity on
farms in Iran’s Baghmalek plain. Yousef et al. [40] created a
multiobjective crop pattern optimization model to optimize
the benefts of reclaimed agricultural water and soil while
minimizing the potential negative quantitative-qualitative

impacts. In Iran’s Varamin irrigation network, the created
model maximizes the benefts of crop patterns while low-
ering nitrogen leaching and enhancing groundwater re-
charge rates. Another modelling tool that can be used for
agricultural applications while allocating water is ant colony
optimization (ACO). Ant colony optimization (ACO) was
used to create an agricultural crop and water allocation
model that allows for dynamic decision variable selection
(DDVO) [41]. Near an irrigation district in Loxton, South
Australia, the model maximizes the net value of allocating a
certain total water volume to produce various crop kinds.
Nguyen et al. [41] optimized crop and water allocation using
ACO and dynamic decision variable (ACO-DDVO) selec-
tion, lowering the search space size and enhancing the
computational efciency of evolutionary algorithm appli-
cation. Another ACO strategy was employed in eastern
Colorado, USA, to boost maize yield by utilizing variable
water availability and precise fertiliser application amounts
[42]. In a water allocation optimization model, the particle
swarm optimization [43] (PSO) approach was utilised [44].

A genetic algorithm (GA)-based agricultural irrigation
water allocation optimization model was developed for the
Sri Ram Sagar project in India [45]. A water allocation
optimizationmodel for agricultural irrigation was developed
in Karnataka, India, that optimizes the net beneft from
using specifed crop types and crop patterns [44]. Sadati et al.
[46] used an NLP optimization model with a GA to optimize
reservoir releases and cropping patterns around the Dor-
oudzan dam in south-west Iran to maximize agricultural
income.

Proportional sharing rules are used by many researchers
in the feld of water. Salman et al. [47] presented amodel that
maximizes the overall farming income by reproducing
various diferent crops in Iraq. Anand et al. [48] developed
soil and water assessment tool (SWAT) models and a GA
model for two reservoirs in the Ganga River basin, India.
Aljanabi et al. [49] used proportional sharing rules to de-
velop a mixed-integer nonlinear programming (MINLP)
model for Iraq. Terefore, the present model can be used to
optimize the utilization of dam water in the future. Te
methodology is applied to a reservoir of Hali Dam, Saudi
Arabia, to demonstrate the model’s practical use. With many
diferent methodologies developed for the system, the LP
method is quite frequently used for economic impacts and
policy [48–51]. Te authors of [52] provide a unique
mathematical model aiming to build a sustainable mask
closed-loop supply chain network in the middle of the
COVID-19 pandemic. To handle the locational, supply,
production, distribution, collection, quarantine, recycling,
reuse, and disposal decisions that occur within a multi-
period, multiechelon, and multiproduct supply chain, a
multiobjective mixed-integer linear programming model is
employed. Te four assessment criteria used in the com-
parison were the max-spread, spread of nondominance
solution, number of Pareto solutions, and mean ideal dis-
tance. It was found to be around 25% better in terms of
Pareto solution and 2% in terms of quality solution. Te
authors of [53] have developed a new sustainable-resilient
healthcare network associated to the COVID-19 pandemic
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that blends sustainability features and resiliency ideas. Tis
network is intended to operate under unpredictable con-
ditions. Te simulation approach is used whenever there is a
need to make an estimate regarding the values of the re-
quired demand for medicines. To locate Pareto solutions,
they have presented threemeta-heuristic methods, which are
the multiobjective teaching–learning-based optimization
(TLBO), the particle swarm optimization (PSO), and the
genetic algorithm (GA). According to the fndings, in-
creasing the expenses of transportation led to an increase in
both the total cost and the environmental implications of
maintaining sustainability. Te authors of [54] propose a
method for evaluating the countries that ofer the greatest
medical care for Iranians who wish to seek treatment outside
of Iran.Te top tourist destinations and top medical tourism
destinations were both picked based on criteria related to
sustainability. A total of eight countries were identifed as the
top tourist destinations. Te fndings of the experiment
indicate that eforts made by countries with low Phi values to
achieve defned requirements ought to be encouraged by the
international community. Te confguration of a supply
chain network is discussed in [55], which includes closed-
loop network design considerations. Te objective of the
model is to create a distribution network that is tailored to
the requirements of the clientele in order to simultaneously
cut down on both the overall cost and the total CO2
emission. Te data provide conclusive evidence that the
model that was proposed is able to produce efective Pareto
solutions. It has also come to light that expanding the ca-
pacity of distribution centres brings about a reduction in the
number of instances in which products are unavailable.

2.1. Particle Swarm Optimization. Numerous research and
application sectors have efectively used particle swarm
optimization (PSO). It has been proven that PSO can
produce better outcomes more quickly and inexpensively
than other approaches. Also possible is parallelization.
Additionally, the gradient of the issue being optimized is not
used. In other words, PSO does not require that the issue be
diferentiable, in contrast to conventional optimization
techniques. Not to mention, there are not many hyper-
parameters. Tese factors don’t require complex concepts to
grasp and are pretty straightforward. PSO is a mighty and
adaptable algorithm that will performwell on a wide range of
jobs with the same set of hyperparameters.

2.2. Ant Colony Optimization. In both the scientifc and
industrial felds, optimization issues are crucial. Time table
scheduling, nurse time distribution scheduling, train
scheduling, capacity planning, traveling salesman difcul-
ties, vehicle routing challenges, group-shop scheduling
problem, portfolio optimization, etc., are real-world ex-
amples of these optimization problems. For this reason,
several optimization methods are created. One of them is the
optimization of ant colonies. A probabilistic method for
identifying the best pathways is called ant colony optimi-
zation. Te ant colony optimization technique is used in
computer science and research to address various

computing issues. Social insects include ants. Tey are
colony animals. Te ant’s primary motivation is to fnd food,
which governs their behavior. Ants are scurrying about their
hives while looking. To fnd the food, an ant jumps back and
forth frequently. It leaves a pheromone-like organic sub-
stance on the ground as it moves. Ants use pheromone trails
to communicate with one another. When an ant discovers
food, it takes as much as possible. Based on the quantity and
quality of the meal, it scatters pheromones on the routes
when it returns. Ants have pheromone senses. Other ants
will thus follow that trail after smelling it. Te likelihood of
picking that road increases with pheromone level, and as
more ants follow the path, the amount of pheromone will
likewise rise on that path.

2.3.GeneticAlgorithm. Te genetic algorithm is a traditional
evolutionary algorithm with a random basis. Random ad-
justments are made to the existing solutions to discover a
solution utilizing the GA to produce new ones. Due to its
simplicity when compared to other EAs, GA is also referred
to as simple GA (SGA). Darwin’s theory of evolution is the
foundation of GA. It is a slow, progressive process that
functions by changing the sluggish, subtle alterations. Ad-
ditionally, GA gradually modifes its solutions in little ways
until it fnds the optimal one. Te population size (pop size)
of the population on which GA operates is the total number
of solutions. We refer to each answer as being unique. Tere
is a chromosome in every individual solution. Te chro-
mosome is a collection of characteristics (parameters) that
characterize an individual. A group of genes may be found
on each chromosome.

2.4. Mathematical Formulation of the Optimization Model.
Te optimization model aims to fnd the maximum use of
the reservoir during the time seasons. Te optimization
model can be described by an objective function and is
subject to constraints and variables. Te model aims to fnd
the maximum proft of irrigated crops in zones z during the
time period t. Te objective function to maximize proft, (1),
is adopted from [43].

MaxProfitCrop � 
c


z


t

Yc,tPcAc,z − CCc,tAc,z , (1)

where Yc,t is the crop’s c yield in time period t [ton/ha], Pc is
proft in Saudi Riyal (SAR) per hectare [ha] for crop c, Ac,z is
the cultivated area [ha] of crop c in zone z, and CCc,t is
production costs in SAR per hectare [ha] for crop c in time
period t [Month]. Te objective function is subject to
constraints on the mass balance in the reservoir, reservoir
capacity, diversions fow, crop requirements, area capacity,
and PSR.

Te mass balance in the reservoir is developed in (2).

St � St−1 + QINt − Et − Rt∀t � 1, 2, 3, . . .T, (2)

where QINt is the infows [m
3/month] at time period t, Et is

the evaporation [m3/month] at time period t. St−1 is the
storage [m3] in previous time period t − 1 [month], St is the
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current storage [m3] in time period t [month], and Rt is the
releases [m3/month] at period time t.

Te following constraint, (3), is the maximum and
minimum reservoir capacity constraints.

St ≤Km − Kd∀t � 1, 2, 3, . . .T, (3)

where Km is representing maximum capacity [m3] of the
reservoir, and Kd is dead storage [m3] where the reservoir
storage cannot be less.

Te constraint (4) is used for target fnal time period
storage that enforcing the model to keep certain storage

values in reservoir at the end optimization run (equation
(4)). Tis constraint allows keeping storage volumes in fnal
months.

St�12 � Kf , (4)

where Kf is reservoir storage requirement [m3] at fnal
period. Te constraints can be applied for any month, but in
this model, we considered February month only (t� 12).

Crop demand constraint defnes the diversions for each
zone which has to be used to cultivate areas in that practical
zone. Te constrain (5) is written as follows:

Dz,t � 
c
Ac,zCRc,z,t

10000
1000

 ∀t � 1, 2, 3, . . .T∧∀z � 1, 2, 3 . . . Z, (5)

where Dz,t is diversion fow [m3/month] for zone z in time
period t, Ac,z is described above, and CRc,z,t is representing
the crop requirements [mm/month] for crop c in zone z in
time period t. Number 10 is a conversion factor to [m3/ha].
Te values of crop requirements have been calculated based
on crop evapotranspiration, irrigation efciency, and
leaching requirements.

Limitation for area size constraints is described as
follows:

Ac,z ≤MAc,z∀z � 1, 2, 3 . . .Z∧∀c � 1, 2, 3 . . . C, (6)

where MAc,z is the maximum area [ha] for each crop c in
each zone z, and Ac,z is described previously.


c
Ac,z ≤ARc,z∀z � 1, 2, 3 . . .Z, (7)

whereARc,z is area limitation [ha] for the summation of crop
c in each zone z.

Te diference between constraint (6) and (7) is that the
area is limited in each zone while in same time is limited for
each crop.

PSR for the reservoir operations is written as follows (8):


t
PSR

z,t

� 
t

Dz,t

Rt
� 1∀z � 1, 2, 3, . . .Z, (8)

where PSRz,t is proportional sharing rules for zone z in time
period t, and Dz,t and Rt are described previously. In PSR
scenario, it considered each zonemust have same quantity of
water supplied from reservoir during all time period.

Te variables are cultivated areas,Ac,z, [ha] for each crop
in zone z; reservoir releases Rt [m

3/month] at time period t;
and the diversions fows Dz,t [m

3/month] for each zone z at
time period t.

2.5. Te Application of Present Model on Hali Dam. Te
model is applied to the Hali Dam, which is located in Saudi
Arabia’s southern region at [18° 46′ 4.30″N 41° 34′ 28.29″E]
as shown in Figure 1. Te system consists of one reservoir

and four diferent zones, as illustrated in Figure 2. Ten
diferent crops can be grown in each irrigation zone: Alfalfa,
wheat, maize, tomato, potato, barley, sorghum, cucumber,
pepper, and eggplant. Tese crops are commonly cultivated
in the Hali Dam reservoir region because they have been
selected.

Te yield (ton/ha) for each crop is shown in Table 1 along
with maximum crop area. Each crop yields are fuctuation
due to soil fltration, water arability and quality, and climate
change. Each crop’s yield as shown in Table 1 is adopted
from [43] and updated from MEWA in Saudi Arabia [51].

Te crop water demands (CDc,z,t) as shown in Table 2,
are updated from adopted from Food and Agriculture
Organization (FOD) which includes sowing, growing, and
harvesting considering leaching requirement, crop evapo-
transpiration, and irrigation efciency for eachmonth.Tese
values can be modifed for any updated data available. Te
selling price in (SAR/ha) for each crop and costs of pro-
duction have been collected from local markets. Te res-
ervoir capacity and dead reservoir are 245Hm3 and 49Hm3,
respectively, and initial storage volume is 110Hm3 based on
daily reports established by MEWA (2021). Te fnal storage
volume at fnal period (February) is considered as 110Hm3

up to 75Hm3.
Te infows and evaporation data as shown in Table 3 are

secured from [51] which calculated by using average
monthly. Infltration at reservoirs can be performed, obvi-
ously but that is not the intent of the model presented herein.

Te releases in non-PSR would be distributed through
the zones to cultivate the most economical crops, while in
the PSR scenario, they are distributed equally. In other
words, the PSR scenarios allow the total water supply in all
four zones to be the same regardless of any consequences,
such as drought. To incorporate proportionality into the
model, arbitrary priorities were assigned to these zones. It is
to be noted that no standard approach is available for
assigning priorities [56]. Te corresponding priorities for
PSR scenario are as follows: PSRz�1,t � 25% ; PSRz�2,t � 25%;

PSRz�3,t � 25% ;PSRz�4,t � 25%. In this study, our goal is to
give each zone right of supplying water based on
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proportional rules. PSR for each zone is somewhat arbitrary,
but it may be done by examining the signifcance and
preferences of decision-makers.

In this matter, sometimes, there is no water allocated in
certain zones because it is not a good economic choice or
extreme drought conditions. However, the purpose of the
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Figure 1: Hali Dam, Saudi Arabia [18°46′4.30″N 41°34′28.29″E].
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Figure 2: Map showing the reservoir and irrigation zones.
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PSR scenario is to have further fexibility in these optimi-
zation models to give each zone a share of water supply.

3. Results

Te results of a Hali Dam system are shown in Figures 3 and
4. Te model runs for various fnal storages ranging from
110Hm3 to 75Hm3 with or without PSR. In non-PSR

scenarios, it shows that the cultivated lands of tomatoes,
potatoes, and cucumbers are the most economical crop
choices in most of the zones. Zone 1 shows the least amount
of area cultivated due to the area limitation of the most
efective crops. As we expected, the net proft shows a slight
increase in total value, roughly up to 5.63 million SAR, when
the model is target to reduce the fnal storage to 75Hm3,
which means releasing around 35Hm3 in total for the year.
However, the model shows signifcant results: if we target the
fnal storage at 100Hm3, the total net proft in non-PSR is
5.20 million SAR, which is a reduction of 7.6% of 75Hm3,
but the saving of total storage is around 25Hm3 of storage
volume (an increase of 25%).

If the model’s target fnal storage should equal the
initial storage, which is 110Hm3, it shows a signifcant
reduction in total profts of around 4.86 million SAR (a
reduction of 19% of the target fnal storage of 100Hm3) due
to the infows and the evaporation in the reservoir. In PSR
scenarios, the total fows should be divided equally among
all zones in all time periods. Te results show that, rather
than large potato crop lands in zones 3 and 4, the model
recommends optimal Alfalfa crop lands in zones 1 and 2. In
addition, peppers and eggplants grow well in zone 1.
However, as shown in Figure 5, these types of pooling laws
may have an impact on net earnings; the model successfully

Table 1: Te yield (ton per ha) for each crop along with maximum crop area (ha) for each zone.

Crop/area
Maximum area (ha)

Yield ton/ha
Zone 1 Zone 2 Zone 3 Zone 4

Alfalfa 97.2 137.2 450.0 478.2 22.41

Wheat 79.5 112.3 368.1 391.3 4.61

Maize 312.8 441.6 1448.0 1539.0 1.8
Tomato 547.8 72.4 237.2 252.2 19
Potato 79.5 112.3 368.1 391.3 15.7
Barley 155.5 219.6 719.9 765.2 3.2
Sorghum 51.243 773.5 2536.1 2695.5 2.92
Cucumber 273.9 386.7 1268.1 1347.7 13
Pepper 97.2 137.2 450.0 478.2 26
Eggplant 72.4 102.3 335.4 356.5 17.5
Total 1767.0 2495.0 8181.0 8695.0
1Two seasons per year (August and February).

Table 2: Monthly water demand for each crop in mm.

Months/crop
Water demand for each crop (mm)

Alfalfa Wheat Maize Tomato Potato Barley Sorghum Cucumber Pepper Eggplant
March 106.7 42.8 43.3 42.9 60.5 42.8 71.9 46.5 16.1 56.6
April 206.7 94.7 89.6 66.4 104.2 94.7 130.3 72.7 91.9 77.9
May 235.6 124.3 100.6 88.3 147.5 124.3 69.8 96.3 101.7 88.0
June 248.9 112.0 124.6 98.6 147.9 112.0 60.9 85.2 107.1 97.1
July 157.9 40.6 108.3 98.6 110.2 40.6 44.4 55.9 107.1 76.9
August 64.0 25.7 75.8 98.6 96.6 25.7 139.6 83.8 107.1 66.3
September 95.7 42.3 79.0 68.6 151.7 42.3 81.4 116.0 85.7 81.2
October 120.0 55.0 128.4 70.4 206.1 55.0 65.6 97.1 40.5 103.2
November 120.0 55.0 179.4 66.8 63.1 55.0 40.0 0.0 155.6 99.5
December 137.1 70.6 130.3 87.1 0.0 70.6 0.0 0.0 184.3 20.0
January 152.0 84.3 0.0 130.5 0.0 84.3 0.0 0.0 165.0 0.0
February 158.4 34.1 0.0 134.5 0.0 34.1 0.0 0.0 0.0 0.0

Table 3: Average monthly water infows and evaporation (Hm3).

Months Infows Evaporation
Hm3 Hm3

March 1.40 1.22
April 15.43 1.28
May 2.21 1.72
June 0.03 1.90
July 0.53 1.99
August 4.24 1.72
September 0.15 1.74
October 0.11 1.45
November 0.22 1.02
December 0.31 0.82
January 4.41 0.68
February 0.65 0.91
Total 29.70 16.44

Discrete Dynamics in Nature and Society 7



guarantees the proportional rule among all zones. Inter-
estingly, the PSR scenarios show that releasing large
amounts of water (Target fnal storage of 75Hm3) is not
sufcient in the system provided herein. Also, it shows that

if the target fnal storage is 100Hm3, the total net proft is
5.06 million SAR, which is close to the non-PSR scenario at
the same target fnal storage (5.20 million SAR). Figure 6
shows the total fows into each zone with and without

Optimum Crop Land for each Zone for Final Storage, Hm3
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considering PSR. Clearly, the PSR shows that the total fows
are evenly distributed among all zones. On the other hand,
the non-PSR shows that zone 3 would take total fows (19.2
million Hm3) more than any zone at target fnal storage
(100Hm3 to 85Hm3) while at target fnal storage (80Hm3

and 75Hm3), zone 4 takes more total fows than any zone
(20.4Hm3). Interestingly, the total proft in PSR scenarios

is decreasing when it is compared with non-PSR scenarios.
However, at target fnal storage, it can reduce these dif-
ferences as it occurs on 100m3. Te PSR scenario of target
end storage to 75Hm3 shows that Zone 4 has the most
croplands with 1308 ha, which are considered tomato,
cucumber, and potato crops, which have a signifcant
impact on total profts and the type of crop demand.
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3.1. Releases andDiversions. In terms of reservoir operation,
the values of storage and releases show the performance in
great mode and can be satisfed with minimum, maximum,
and fnal storage requirements. A key fnding in the Hali
Dam system is that the most economical crops, such as
tomatoes, cucumbers, and potatoes, can increase the zone’s

proft and the system’s proft. Te diversion for each zone is
shown in Figure 6. In non-PSR of target fnal storage of
100m3, the diversion for zone 1 is 1.18m3, while in the other
zones, there are signifcant values, which means that zone 1
does not give proft for cultivating any type of crop. In other
zones, mainly, we are not allowing to cultivate tomato crops,
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which is the most proftable crop to cultivate in large areas.
In the PSR scenario, the total diversion is the same in each
zone because we apply PSR in the model to have the same
quantity of released water be given to each zone. It is shown
that as an optimization solution, the total diversion fow for
each zone at the target fnal storage of 110Hm3 is 3.32Hm3

and increases dramatically to 12.1Hm3 at the target fnal
storage of 75Hm3. In non-PSR scenarios, the diversions are
diferent based on the most optimal choice. For example, at
target fnal storage of 100Hm3, the total diversions fow for
Zone 1 is 1.18Hm3, Zone 2 is 1.67Hm3, Zone 3 is 14.6Hm3,
and Zone 4 is 5.77Hm3. In PSR scenarios, the maximum
diversion of zone 1 is from starting in April until July, which
is considered the maximum crop demand of the tomato
crop. While the maximum diversions for zones 3 and 4 start
in August and end in October to meet the demands of potato
and cucumber crops, Zone 2 in PSR shows that the maxi-
mum diversions are similar to zone 1, while in non-PSR,
they are similar to zone 3 or 4. Te maximum release of the
dam that is shown in PSR (Target fnal storage 75Hm3) is
around 8.04Hm3 on October while the storage volume at
that time is 7.73Hm3. However, PSR scenario gives each
zone the same right of supplying water. Te interesting
point, the PSR shows can be helpful tool for cultivate crops
that do not give the most proftable crops such as tomato.

Te reservoir storage and releases for each month are
shown in Figure 7. Clearly, reservoir releases have been
reduced in the last three months (less than 2Hm3) in order
to keep the storage volume at the target fnal storage level.

4. Conclusions and Recommendations

Tis work presents an optimization model for the operation
of reservoirs that makes use of proportionate sharing rules in
order to improve the efectiveness of irrigation systems. Te
storage reservoir water allocation model, often known as the
LP problem, was utilised in order to distribute water across
four distinct zones, both with and without taking PSR into
account. Decision-makers and water authorities are able to
better evaluate the early cost-beneft analysis of reservoir-
irrigation systems when they make use of fundamental tools
such as linear optimization models.Tese fundamental tools
allow for a better evaluation of the early stages of the cost-
beneft analysis. In order to optimize the net beneft for each
zone, the suggested model leverages monthly reservoir
operation and ultimate target storage to assist decide the
optimal way to allocate water for crop production. In order
to forecast the type and quantity of the farmed crop for each
zone while maximising net crop revenue, the model takes
into account the monthly water availability in the reservoir.
Te optimization model is constrained by the monthly PSR
for each zone, the monthly irrigated farmlands for crops, the
monthly water demand for crops, and the monthly water
availability in the reservoir. We provide two strategies for
handling scenarios: considering both non-PSR and PSR
scenarios with the requirement that the water content in
each zone be the same. We fnd that while building a model,
adopting a PSR scenario is critical, especially when users or
zones are given equal weight. Performance of the

optimizationmodel is evaluated using the Hali Dam in Saudi
Arabia. According to the fndings, the PSR had a consid-
erable infuence on the outcomes for each distinct zone,
making it one of the most important factors to consider
when formulating policy regarding reservoirs. In every
scenario, the non-PSR scenarios among the zones had more
proftable aims. According to the fndings, the most optimal
PSR scenario for the Hali Dam was provided at a target fnal
storage of 100Hm3, which demonstrates a net proft that is
comparable to that of the non-PSR scenario (2.6%). Te
optimization model that is proposed in this article is suc-
cessful in achieving water allocation across all zones while
simultaneously taking into consideration PSR and non-PSR
scenarios for target fnal storage. Te model that was
established in this article, on the other hand, ofers the
greatest potential for fnancial gain in circumstances in
which PSR is required for equitable distribution of water
across all zones.

Te suggestions that could be taken into account for
future development are that the model has the capability of
including a vast assortment of reservoirs, zones, and crops in
its simulations. It may be altered by the incorporation of
recharge zones and reservoir features such as in-fltrations
and gate operations. It is also possible to incorporate into the
model the costs associated with water drawn from a res-
ervoir. In certain areas, crop production may be dis-
continued, and a reordering of priorities may be instituted.
Tis kind of modelling not only enhances engineering
practises and research methods but it also has the potential
to be utilised in the future for the purpose of optimising the
water that is drawn from enormous reservoirs.
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