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Tis paper proposes an improved whale optimization algorithm with chaotic mapping and adaptive iteration strategy (CMAIS-
WOA). Tis algorithm addresses the issues of the WOA algorithm that is prone to local optimal solutions with low stability.
CMAIS-WOA utilizes chaotic mapping to enhance the diversity and coverage of the initial population. Also, it adaptively adjusts
the weight values based on the current distribution of whale populations and the ftness of search agents. In addition,
CMAIS-WOA uses an improved nonlinear convergence factor to adjust the breadth-frst and depth-frst search during the
optimization process.Te performance of the proposed CMAIS-WOA is evaluated by using 13 classical benchmark functions and
IEEE CEC2014 test suite. Te experimental results show that CMAIS-WOA efectively improves the stability of the optimal
solution and helps the algorithm to approach the global optimal solution. Te method proposed in this paper contributes to the
feld of optimization which solves problems more powerfully and efciently.

1. Introduction

Te optimization problem has always been a hot issue in
many felds such as computer science, artifcial intelligence,
and engineering practice. In response to this problem, many
scholars have designed various intelligent algorithms in-
spired by biological and physical phenomena in nature and
the behavior of animal groups. Tese algorithms include the
particle swarm optimization (PSO) algorithm [1], ant colony
optimization algorithm (ACO) [2], diferential evolution
(DE) algorithm [3], frefy algorithm (FA) [4], bat algorithm
(BA) [5], grey wolf optimization (GWO) [6], gravitational
search algorithm (GSA) [7], freworks algorithm (FWA) [8],
sine cosine algorithm (SCA) [9], naked mole-rat (NMR)
algorithm [10], slimemould algorithm (SMA) [11], farmland
fertility algorithm (FFA) [12], Harris hawks optimization
(HHO) algorithm [13], cuckoo search optimization (CSO)

algorithm [14], sparrow search algorithm (SSA) [15], ant lion
optimizer (ALO) algorithm [16], African vultures optimi-
zation algorithm (AVOA) [17], mountain gazelle optimizer
(MGO) [18], artifcial gorilla troops optimizer (GTO) [19],
improved gorilla troops optimizer (IGTO) [20], improved
hybrid aquila optimizer and African vultures optimization
algorithm (IHAOAVOA) [21], and enhanced honey badger
algorithm (EHBA) [22]. Tey provide powerful tools for the
optimal solution of complex functions. Among them, the
whale optimization algorithm (WOA) [23] is a metaheuristic
algorithm proposed by Australian scholars in 2016, which is
a kind of intelligent optimization algorithm. Te algorithm
realizes the optimization of the objective function by sim-
ulating the foraging behavior of whales in the ocean. Due to
its advantages of good optimization performance and few
control parameters, it has been widely applied inmany felds,
such as capacitor optimization site selection [24], CO2
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emission prediction [25], clinical medicine [26], image
segmentation [27], and power system [28]. WOA has great
potential in the felds of engineering, medicine, and eco-
nomics. Ten, more scholars have carried out detailed re-
search on this algorithm.

Although the WOA algorithm has achieved results in
many projects, it has still some faws [29].Terefore, scholars
have proposed many measurement technologies to make up
for the shortcomings in swarm intelligence algorithms.
Salgotra et al. [30] proposed three diferent modifed al-
gorithms of WOA to improve its explorative ability. Zhang
and Wang [31] proposed an improved WOA based on
nonlinear adaptive weight and golden sine operator (NGS-
WOA). Tis algorithm introduced nonlinear adaptive
weights, which enabled the search agent to adaptively ex-
plore the search space and balance the development and
exploration phases. Also, it improved the defects of low
accuracy and slow convergence speed of WOA. Jiang et al.
[32] proposed an improved WOA (IWOA), which com-
bined crossover and mutation operations in DE with the
whale optimization algorithm. IWOA has higher efciency,
faster convergence speed, better accuracy, and stability of
solution. Fan et al. [33] proposed a new improved WOA
with a joint search mechanism called JSWOA, which can
maintain the diversity of the initial population for global
search. Also, a new adaptive inertia weight was given to
improve the convergence accuracy and speed while jumping
out of the local optimum. Tang et al. [34] proposed a WOA
mixed with an artifcial bee colony (ACWOA). It integrated
an artifcial bee colony algorithm and chaotic mapping,
which efectively avoided the local optimum and improved
the quality of the initial solution. Li et al. [35] proposed
a chaotic strategy-based opposition-based learning adaptive
variable speed WOA (CQAWOA). Tis algorithm was used
to solve the problem of insufcient convergence accuracy
and convergence speed of WOA. Oliv et al. [36] proposed
the chaotic WOA (CWOA) to help WOA and avoid
approaching local optimal solutions.

Te above works of literature have extensively studied
the problems of low efciency, low accuracy of solution,
and poor local optimal ability of WOA, respectively.
However, these studies did not comprehensively consider
the distribution of the population and the ftness of
searching agents when designing the improvement
methods. In addition, some improvement algorithms are
too complex to reduce their time complexity. Terefore,
this paper proposes CMAIS-WOA, which is a new al-
gorithm to solve the mentioned problems. CMAIS-WOA
can improve the defect of the low stability of optimal
solution whenWOA runs many times. At the same time, it
can solve the problem that the search agent is easy to fall
into the local optimum. Table 1 shows the comparison of
various characteristics between the proposed method and
related algorithms.

As shown in Table 1, the superiority of CMAIS-WOA
lies in the integrated consideration of factors such as
population distribution and ftness, which makes the
optimization process more efcient. Moreover, the al-
gorithm is concise in its steps and easy to implement and

apply. In addition, it integrates and unifes important
concepts involved in literature such as [31, 36]. Also, it can
achieve diversifed search and fnd the optimal solution. In
the feld of navigation, this algorithm can be used for the
design of bow lines of the ship. Te various physical
parameters of the bow are used as position components of
searching agents. Also, corresponding upper and lower
bounds are set based on their actual physical meanings to
fnd the optimal design solution.Terefore, CMAIS-WOA
can help designers to design bow lines with better shape
and lower resistance.

Te contributions of this paper are as follows.

(1) Tis paper proposes an improved whale optimiza-
tion algorithm with chaotic mapping and adaptive
iterative strategy

(2) Tis paper uses chaotic mapping to improve the
defects of insufcient diversity and poor coverage of
the population during initialization, which improves
the stability of the optimal solution

(3) In this paper,WOA is improved by using an adaptive
iterative strategy and an improved nonlinear con-
vergence factor to make it approach the global op-
timal solution

(4) Te proposed algorithm can avoid the excessive
increase in the complexity of the algorithm because it
is relatively simple

(5) Te experimental results demonstrate the efective-
ness of the proposed algorithm

Te rest of this article is organized as follows. Section 2
describes the related work. Section 3 introduces the basic
principles ofWOA. Section 4 introduces the newly proposed
algorithms CMAIS-WOA. Section 5 verifes the proposed
scheme through experiments. Finally, Section 4 represents
the newly proposed algorithms CMAIS-WOA.

2. Related Work

Gharehchopogh [37] studies and analyzes somequantum-
inspired metaheuristic algorithms. Tis paper also in-
troduces many optimization algorithms. Li et al. [38] pro-
posed a modifed whale optimization algorithm (MWOA)
with multistrategy mechanism. MWOA improved the ini-
tialization, control parameters, and search strategy of WOA.
Tis is able to solve the problems of slow convergence and
local optimality of WOA. MWOA facilitates spatial search
using the Lévy antiperturbation strategy. Tis can enhance
the global search capability. Uzer and Inan [39] proposed
fve hybrid algorithms to improve the whale optimization
algorithm. Tese algorithms are mainly developed by
combining WOA and PSO algorithms. Tese algorithms
explore the search space of the problem more efciently and
then avoid local optimization. Fan et al. [40] proposed
a novel hybrid metaheuristic algorithm ESSAWOA.
ESSAWOA combined salp swarm algorithm (SSA) and lens
opposition-based learning (LOBL) strategy to enhance
WOA. ESSAWOA can solve the global optimization
problem efciently.
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3. Basic Principles of WOA

Inspired by the group hunting behavior of humpback whales
in nature, WOA is proposed to better solve the function
optimization problem. In terms of function optimization,
this algorithm has better convergence speed and conver-
gence accuracy than DE, PSO, GSA, and other algorithms.
Also, the algorithm is easy to be implemented by few pa-
rameters to be set only.

3.1. WOA. Humpback whales are tropical marine creatures
that prefer to travel in groups and cooperate to capture prey
by making bubble nets. When the number of prey is rela-
tively small, humpback whales generally hunt alone or in
groups of 2 to 3. When the number of prey is relatively large,
humpback whales will form a team to hunt. Te team
consists of about 60 whales at most.

Based on the bubble-net attaching behavior of hump-
back whales, WOA [23] was proposed. WOA is divided into
two stages, which are the bubble-net attacking stage and the
search for prey stage. Assume that the space for searching
food is d-dimensional space. Te number of whales in the
prey group is M.Ten, the position of the j-th whale in the d-
dimensional space can be expressed as Xj

�→
� X1

j , X2
j , . . . ,

Xd
j , j � 1, 2, . . . , M. Meanwhile, the current optimal position

is expressed as X
∗��→

� (X1∗, X2∗, . . . , Xd∗). Tere are multiple
search agents. At each subsequent iteration, the search
agents try to update their position until the target prey
is found.

3.1.1. Bubble-Net Attacking. During this stage, the whale’s
predation behavior is divided into two forms. One is the
shrinking encircling mechanism, and the other is the spiral
updating position. When the whales take the former, the
individual whales in the whale procession all initiate a siege
towards the prey. Among them, the shrinkage encirclement
mechanism is expressed as formula (1). Also, formula (2)
represents the spiral updating position.

X
→

(t + 1) � X
→∗

(t) − A
→

· D
→

, (1)

X
→

(t + 1) � D
′

�→
· e

bl
· cos(2πl) + X

→∗
(t), (2)

A
→

� 2 a
→

· r
→

− a
→

, (3)

C
→

� 2 · r
→

, (4)

a
→

� 2 −
2t

tmax
􏼠 􏼡. (5)

Te relevant descriptions of formulas (1) and (2) are de-
scribed as follows. D

→
� | C

→
· X
→∗

(t) − X
→

(t)| � D1,

D2, . . . , Dd represents the current d-dimensional space. D
′

�→
�

|X
→∗

(t) − X
→

(t)| � (D1′ , D2′ , . . . , Dd′) represents the distance
between the whale individual and the optimal individual before

the renewal of the position. X
→∗

(t) � (X1t, X2t, . . . , Xdt)

represents the position coordinate vector of the prey. X
→

(t)

represents the coordinate vector of a whale individual in the
global scope. Te t represents the number of iterations. b is
a constant that determines the shape of the spiral when
updating the position. l represents a randomnumber in [−1, 1].
A
→

and C
→

are coefcient vectors. r
→ represents a random vector

distributed in the range of [0, 1]. tmax is the maximum number
of iterations, and a

→ is a convergence factor.
In fact, in the real bubble-net attaching behavior, the

shrinking encircling mechanism and the spiral updating
position are carried out randomly with a probability of 0.5.
Te actual state is shown in the following formula:

X
→

(t + 1) �
X
→∗

(t) − A
→

· D
→

, p< 0.5,

D
′

�→
· e

bl
· cos(2πl) + X

→∗
(t), p≥ 0.5,

⎧⎪⎨

⎪⎩
(6)

where p is a free number in [0, 1].

3.1.2. Search for Prey. During this phase, individual whales
in a whale team conduct random searches based on their
location relative to each other. Te search for prey is
expressed as follows:

X
→

(t + 1) � Xrand
�����→

− A
→

· D
→

, (7)

D
→

� C
→

· Xrand
�����→

− X
→

t
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (8)

D
→

� D
1
, D

2
, . . . ,D

d
􏼐 􏼑. (9)

In formula (7), Xrand is the location of the current
randomly selected prey from the whale population.

Te overall representation of WOA is as follows:

X(t + 1) �

X
→∗

(t) − A
→

· D
→

, |A
→

|< 1,p< 0.5,

D
′

�→
· e

bl
· cos(2πl) + X

→∗
(t), p≥ 0.5,

Xrand
�����→

− A
→

· D
→

, |A
→

|≥ 1, p< 0.5.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

3.1.3. Pseudocode of WOA. In order to present the logic of
the WOA algorithm in more detail, its pseudocode is as
follows (see Algorithm 1).

Te specifc steps of WOA are as follows:

Step 1. Set the relevant parameters of the algorithm.
Step 2. Randomly initialize each individual of the whale
population.
Step 3. Calculate the ftness value f(Xi

�→
) of each

individual.
Step 4. Record the optimal individual and its position
X∗j (t).
Step 5. Determine whether the termination condition is
met. If satisfed, output the optimal solution; if not,
return to Step 5

4 Discrete Dynamics in Nature and Society



Step 6. Calculate a
→ according to formula (5). Update A

→

and C
→

according to formulas (3) and (4).
Step 7. Generate a random number p in [0, 1]. If p≥ 0.5,
update the position according to formula (2), then go to
step 3; if p< 0.5, judge the size of |A

→
|. If |A

→
|≥ 1, update

the position according to formula (7), then go to step 3;
if | A

→
|< 1, update the position according to formula (1),

and go to step 3.

4. Improved WOA

Te research is shown in [41]. Te quality of the initial
population afects the algorithm’s accuracy and convergence
speed. Better diversity of the initial population is helpful to
improve algorithm performance. However, WOA usually
uses a random method to generate the initial population
while solving optimization problems. It may result in uneven
distribution of the initial population. Terefore, this paper
uses chaotic mapping to initialize the population.

When the number of iterations increases, WOA tends to
fall into the local optimal solution. In this paper, the pop-
ulation distribution and ftness scenarios are considered
comprehensively. Ten, an adaptive iteration strategy is
designed. It can adjust the size of the weight value according
to the current distribution of the whale population and the
ftness of the current search agent location.

Tis paper proposes two improvements based on WOA.
First, a chaotic map can improve the robustness of the

algorithm. Second, an adaptive iterative strategy is combined
with an improved nonlinear convergence factor to develop
the ability of global search of the algorithm. Terefore,
CM-WOA and AIS-WOA constitute a novel WOA
(CMAIS-WOA). Among them, CM-WOA is the improved
WOA with chaotic mapping. AIS-WOA is the improved
WOA with an adaptive iterative strategy.

4.1. Improved WOA with Chaotic Mapping. Aiming at the
defect of poor optimization stability of the search agent
whenWOA optimizes the objective function multiple times,
CM-WOA uses a population initialization strategy based on
an improved chaotic mapping. It tries to make the initial
population cover the entire solution space as much as
possible. Tis lays the foundation for the diversity of the
population for the global search and local search of the
algorithm. Moreover, the ergodic coverage is enhanced.
Ten, it can improve the robustness of the algorithm. Te
strategy is described in detail as follows.

In the feld of optimization, chaotic mapping can be used
to replace pseudorandom number generators, which gen-
erate chaotic numbers between 0 and 1. Te use of chaotic
sequences to initialize the population and other operations
will have a good efect on the entire process of the algorithm.
Also, it can often achieve better results than pseudorandom
numbers. Currently, the most widely used chaotic map is the
logistic map method. Te populations treated with this
method are diverse. Also, these populations can be extended

Input:Number of whales (SearchAgentsno), maximum number of iterations (tmax), dimension (d), lower and upper bounds of whale
population location variables, and optimization function.
Output: Optimal solution of the objective function, optimal position of searching agent, and searching curve.
(1) Randomly initialize the whale population
(2) Initialize iteration counter t� 0
(3) while (t< tmax) do
(4) for i� 1 to SearchAgents no do
(5) Bring out-of-bounds whale individuals back into the boundary
(6) Calculate the ftness and location of the current optimal search agent
(7) end for
(8) fori � 1 to SearchAgents no do
(9) Calculate r

→

(10) Calculate A
→

andC
⇀

(11) Calculate p

(12) for j� 1 to d do
(13) if (p≥ 0.5)
(14) Update the current individual position according to formula (6)
(15) end if
(16) else if (p< 0.5)
(17) if (|A

→
|< 1)

(18) Update the current individual position according to formula (1)
(19) else if (|A

→
|≥ 1)

(20) Update the current individual position according to formula (7)
(21) end if
(22) end for
(23) end for
(24) t� t+ 1
(25) end while

ALGORITHM 1: WOA.

Discrete Dynamics in Nature and Society 5



to the entire solution space. Based on this, this paper further
improves the method and uses it to initialize the population
of CM-WOA. Regarding the improved logistic chaotic map
method, formula (11) shows the chaotic matrix variables
required to obtain the initialized population. Based on the
specifcation requirements of the population matrix, for-
mula (11) is iterated SearchAgentsno × d times to generate
the chaos variable matrix required to initialize the
population.

u
m+1
j � 1 − 2 × u

m
j􏼐 􏼑

2
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌,

m � 1, 2, . . .N, j � 1, 2, . . ., M,

⎧⎪⎨

⎪⎩
(11)

where um+1
j represents a chaotic variable whose value is

distributed in [0, 1], N is the population dimension of the
whale population after initialization, and M represents the
number of search agents to initialize the population. Fur-
thermore, the initialized population of the whale solution
space can be obtained after each element in the chaotic
matrix is converted, as shown in the following formula:

p
m
j � minj + maxj−minj􏼐 􏼑u

m
j . (12)

In formula (12), minj and maxj are the lower and upper
bounds of the variables of whale population position, re-
spectively. By this formula, the initial population of whales
can be mapped out according to the chaotic matrix.

In order to refect the internal logic of CM-WOA, the
pseudocode of CM-WOA is shown as follows (see
Algorithm 2):

Meanwhile, the execution steps of CM-WOA are as
follows.

Step 1. Set the relevant parameters of the algorithm.
Step 2. Initialize each individual of the whale pop-
ulation based on formulas (11) and (12).

Step 3. Calculate the ftness value f(Xi

�→
) of each

individual.
Step 4. Record the optimal individual and its position
X∗j (t).
Step 5. Determine whether the termination condition is
met. If satisfed, output the optimal solution; if not,
return to Step 5.
Step 6. Calculate a

→ according to formula (5). Update A
→

and C
→

according to formulas (3) and (4).
Step 7. Generate a random number p in [0, 1]. If p≥ 0.5,
update the position according to formula (2), then go to
step 3; if p< 0.5, judge the size of |A

→
|. If |A

→
|≥ 1, update

the position according to formula (7), then go to step 3;
if |A

→
|< 1, update the position according to formula (1),

then go to step 3.

4.2. Improved WOA with Adaptive Iterative Strategy. In
order to improve the optimal ability of WOA, adaptively an
adjusting method designs the weights based on population
distribution and individual ftness of whales. So, the algo-
rithm can adjust the weight value adaptively according to the
current distribution of the whale population and the ftness
of the current position of the search agent. AIS-WOA can
solve the problem that the search agent is prone to fall into
the local optimization and deviate from the global optimal
solution. At the same time, an improved nonlinear con-
vergence factor is designed to adjust the optimal ratio of the
breadth and depth for WOA in the optimal process. Te
combination of the two schemes can improve the ability of
individual whales to move closer to the global optimal so-
lution. Both strategies are described as follows.

In order to improve the global search and local search
capabilities of WOA, the inertia weight factor is changed to
a function that changes with the number of iterations. Te
design of this function is shown in the following formulas:

weight � d1 xjworst − xjbest􏼐 􏼑 +
d2y

up
j − y

down
j

t
⎛⎝ ⎞⎠ × fitness factor, (13)

fitness factor �

Xrand(0, 1), d(j)≤ low,

Yrand(1, 2), d(j)≥ high,

1, low <d(j)< high.

⎧⎪⎪⎨

⎪⎪⎩
(14)

In formulas (13) and (14), weight is the weight of dy-
namic adaptive changes with population distribution and
the ftness of individual locations of whales. Te y

up
j and

ydown
j represent the upper and lower bounds of the variable.

Te yj, xjworst, and xjbest represent the position vector of the
worst whale and optimal whale in the current state of the
population distribution. Also, the t represents times of it-
erative foraging in the current population. In addition, d1
and d2 are parameters of this function. For the fitness factor,
in the iteration process, the ftness d(j) of all individuals in

the whale population is sorted from small to large. Ten, this
ordered population is divided into two parts, superior end
and inferior end. Furthermore, the average values low and
high for the ftness level of superior and inferior ends are
obtained. Finally, d(j), low, and high are compared to get
the fitness factor of the current search agent.

Based on the above, the shrinking encircling mechanism
and the spiral updating position of the improved whale
bubble-net attacking behavior are described as formulas (15)
and (16). In addition, formulas (17) and (18) are expressions

6 Discrete Dynamics in Nature and Society



of relevant variables. Where b is a constant that determines
the shape of the log arithmetic spiral, and
D’

p � (D1′ , D2′ , . . ., Dd′) represents the distance between the
current whale individual and the current best search agent in

the d-dimensional space. X
→d

i (t + 1) � (x1
i , x2

i , . . . , xd
i ) rep-

resents the position vector of the i-th whale in the d-di-
mensional space in the t+ 1-th iteration.
X
→∗

(t) � (x1
t , x2

t , . . . , xd
t ) represents the coordinate vector of

the optimal solution.

X
→d

i (t + 1) � weight · X
→∗

(t) − A
→

· D
→

, (15)

X
→d

i (t + 1) � weight · X
→∗

(t) + D
’
p · e

bl
· cos 2πl, (16)

D
→

� C
→

· X
→∗

(t) − X
→

(t)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (17)

D
’
p � X

→∗
(t) − X

→
(t)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌. (18)

Under the action of this weight value, when the search
agent for a relatively good position or individual diferences
in the population is small, the algorithm will produce less
disturbances to the current prey. Tis facilitates the search
for the optimal solution in the current range. Conversely, if
the individual diferences in the population are large or the
search agent deviates far from the optimal whale individual,

the algorithm will give greater disturbance to the prey.
Terefore, AIS-WOA can look for prey in other locations,
which improves its global optimal searchability. Moreover,
whales can adaptively adjust the weight value according to
the current distribution and ftness of the population.
Terefore, in the process of searching for prey, whales are no
longer restricted to one form but adaptively select the
current prey in various forms. Tis makes the optimal
process more diverse. Furthermore, the solution accuracy of
the algorithm can be improved. Te optimization ability of
the algorithm can be increased. Also, the algorithm can
avoid missing the global optimal solution.

Te heuristic algorithm of swarm intelligence includes
the breadth-frst search and the depth-frst search in the
whole optimal process. Trough the analysis of the algo-
rithm, it is found that the coefcient vector A afects the
global and local search distribution in the algorithm. Te
change in A is determined by the convergence factor a [42].
Furthermore, this factor is improved to alleviate the problem
that the algorithm is easy to fall into the local optimization.
Te improved convergence factor is shown in the following
formula:

a � 2 1 −
t

Max iteration
􏼒 􏼓􏼒

2
􏼡. (19)

Formula (19) can better adjust the breadth-frst search
and depth-frst search of the algorithm in the optimal
process so that the ratio of 1 :1 will not appear during the

Input:Number of whales (SearchAgentsno), maximum number of iterations (tmax), dimension (d), lower and upper bounds of whale
population location variables, and optimization function.
Output: Optimal solution of the objective function, optimal position of searching agent, and searching curve.
(1) Initialize whale population based on chaotic mapping
(2) Initialize iteration counter t� 0
(3) while (t< tmax) do
(4) for i� 1 to SearchAgents no do
(5) Bring out-of-bounds whale individuals back into the boundary
(6) Calculate the ftness and location of the current optimal search agent
(7) end for
(8) fori � 1 to SearchAgents no do
(9) Calculate r

→

(10) Calculate A
→

andC
⇀

(11) Calculate p

(12) for j� 1 to d do
(13) if (p≥ 0.5)
(14) Update the current individual position according to formula (6)
(15) end if
(16) else if (p< 0.5)
(17) if (|A

→
|< 1)

(18) Update the current individual position according to formula (1)
(19) else if (|A

→
|≥ 1)

(20) Update the current individual position according to formula (7)
(21) end if
(22) end for
(23) end for
(24) t� t+ 1
(25) end while

ALGORITHM 2: CM-WOA.
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search. Tis formula increases the search ratio of the al-
gorithm to the global optimal solution. At the same time, the
convergence speed and accuracy of the algorithm are
improved.

Te pseudocode description of AIS-WOA is as follows
(see Algorithm 3):

Te detailed steps of AIS-WOA are as follows:

Step 1. Set the relevant parameters of the algorithm.
Step 2. Randomly initialize the whale population.
Step 3. Calculate the ftness value f(Xi

�→
) of each

individual.
Step 4. Record the optimal individual and its position
X∗j (t).
Step 5. Determine whether the termination condition is
met. If satisfed, output the optimal solution; if not,
return to Step 5.
Step 6. Calculate a according to formula (19). Update A

→

and C
→

according to formulas (3) and (4).
Step 7. Calculate weight based on formulas (13)
and (14).
Step 8. Generate a random number p in [0, 1]. If p≥ 0.5,
update the position according to formula (15), then go
to step 3; if p< 0.5, judge the size of |A

→
|. If |A

→
|≥ 1,

update the position according to formula (7), then go to
step 3; if |A

→
|< 1, update the position according to

formula (14), then go to step 3.

4.3. Improved WOA with Chaotic Mapping and Adaptive
Iterative Strategy. CMAIS-WOA is a combination of
CM-WOA and AIS-WOA, which solves not only the defect
of the poor stability of WOA optimization but also the
problem thatWOA is easy to fall into local optimization.Te
process of CMAIS-WOA is shown in Figure 1. In the fgure,
the parameterm controls the selection of the algorithm. Ifm
equals 1, the improved WOA can execute CM-WOA;
otherwise, it executes AIS-WOA.

Time complexity refects the running efciency of an
algorithm and shows an important factor to judge the
performance of an algorithm. When the processing time of
whale boundary conditions is t1, the time to calculate the
ftness value of the objective function is f(n). Te re-
placement time to compare with the current optimal ftness
value is t2, and the calculation time of the coefcient vector is
t3. Ten, the time complexity of this stage is T2�O (N
(n× t1 + f(n) + t2 + t3))�O (n+ f(n)). When there are m1
whales in the population carrying out random walk for food,
m2 whales carrying out contraction to surround prey andm3
whales carrying out spiral path to attack prey. Ten, the time
of position to update per dimension of whales executing the
three strategies is t4, t5, and t6, respectively. Ten, the time
complexity of this stage is T3�O
(N(m1(n× t4) +m2(n× t5) +m3(n× t6)))�O (n). In sum-
mary, the time complexity of WOA is T1 +T2 +T3�O
(n+ f(n)). Meanwhile, CMAIS-WOA is analyzed in detail,
and its time complexity is O (n+ f(n)). Based on the above
analysis, the time complexity of CMAIS-WOA and WOA in

this paper is the same. Terefore, the execution efciency of
the algorithm is not reduced well.

5. Experimental Results and Analysis

5.1. Benchmark Functions. In this paper, 13 benchmark
functions F1–F13 are used to verify the efectiveness of
CMAIS-WOA. Tese functions are roughly classifed into
unimodal functions and multimodal functions. Among
them, the unimodal function is F1–F7. Tey have only one
global optimal solution, which can be used to evaluate the
local utilization ability and convergence speed of the algo-
rithm. Te multimodal function is F8–F13. Tey have
multiple local optimal solutions, which can be used to
evaluate the searchability of the algorithm.Tese benchmark
functions are shown in Table 2. Tey all take the minimum
value as the optimal value. Te solution format is 30 di-
mensions. In this experiment, it records the results of
running the benchmark functions 100 times. In this paper,
the standard deviation is used to measure the optimization
stability of the algorithm, and the optimal value of the results
of 100 times is used to measure the optimization ability of
the algorithm. Te collected data are used to verify the
optimization performance of CMAIS-WOA by calculating
and analysing the standard deviation and the maximum
value. Ten, the proposed algorithm in this paper has a high
performance.

Te hardware environment of the computer used in this
experiment is Intel(R) Core (TM) i5-8250UCPU@ 1.60GHz
1.80GHz. Te software environment is MATLAB R2017b.
In order to fully utilize the optimization performance of
CMAIS-WOA, the parameters are set as follows. Te con-
stants b in formula (6) and formula (15) are set to 1. Te
parameters d1 and d2 in formula (12) are set to 0.005. Tis
setting can make the experimental results better. Also, the
source code to simulate is available for downloading in the
GitHub link as follows: https://github.com/znlazy/WOA.

5.2. Verifcation of Algorithm Stability. Because it is neces-
sary to verify the stability of the optimization results of
CMAIS-WOA, this section uses the standard deviation as
the performance indicator. In [31], various optimization
algorithms are calculated. Tis paper compares PSO algo-
rithms [1], FA [4], FWA [8], SCA [9], WOA [23], and DE
[43] with CMAIS-WOA. To ensure the best results, the
confguration parameters of each algorithm are set to the
optimal values proposed by the author in the original article.
Te parameters of these algorithms are shown in Table 3. For
a fair comparison, the maximum number of iterations of the
seven algorithms is set to 1000. Te size of the population is
set to 30. Te experimental results are shown in Table 4.

As shown in the table, the proposed CMAIS-WOA has
the best performance on F1, F2, F6, and F7 on unimodal
functions. WOA performs best on functions F3, F4, and F5.
PSO performs well on functions F1, F2, and F6. FA performs
well on functions F1 and F6. FWA performs well in F1 and
F2. SCA does well in F2. DE performs well in F13. On
multimodal functions, CMAIS-WOA performs best on
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functions F9, F10, F11, F12, and F13.WOA performs best on
function F8. FA does well in F12 and F13. FWA is the best
performer in F11. Terefore, CMAIS-WOA performs well
on 69.2% of the functions. WOA and FA perform well on
30.8% of the functions. PSO and FWA perform well on
23.08% of the functions. SCA and DE perform well on the
7.7% function. Terefore, the improved strategy proposed in
this paper can efectively improve the convergence speed of
WOA and the stability of the optimal solution.

5.3. Verifcation of Algorithm Optimization Ability. Te
optimization performance of CMAIS-WOA is evaluated by
running CMAIS-WOA and other optimization algorithms
on 13 benchmark functions 100 times, respectively. During
the whole iterative process, the convergence factor a and the
coefcient variable A control the breadth-frst search and
depth-frst search of whale foraging behavior. A is the
controller of the search pattern for the entire optimization
process. By improving it, CMAIS-WOA changes the 1 :1
optimization ratio of breadth-frst search and depth-frst
search. In Figure 2, CMAIS-WOA performs an extensive
global search while iterating. It preserves the diversity of the
population. In this fgure, A1 represents before improve-
ment, and A2 represents after improvement.

In this experiment, the minimum value is used as the
performance indicator. It is used to express the optimization
ability of the algorithm on the corresponding function. Te
comparison results are shown in Table 5.

In Table 5, CMAIS-WOA has the best performance on
functions F1, F2, F3, F4, F7, F8, F9, and F10. Also, it per-
forms well on function F6. WOA performs well on functions
F1, F2, F3, F4, and F10. PSO and FA perform well on
functions F11, F12, and F13. FWA performs best on
functions F9 and F11. DE performs well on function F13.
Terefore, CMAIS-WOA fnds the theoretical optimum on
the 69.2% function.WOA found the theoretical optimum on
the 38.5% function. PSO and FA fnd the theoretical opti-
mum on the 23.08% function. FWA fnds the theoretical
optimum on the 15.4% function. DE fnds the theoretical
optimum on the 7.7% function. Moreover, CMAIS-WOA is
30.7% higher than WOA in the global optimal solution
search efciency. Terefore, the improved WOA can im-
prove the optimization ability of the algorithm. It is worth
mentioning that CMAIS-WOA performs well on the same
number of benchmark functions in this experiment and the
verifcation experiment of the algorithm stability, all of
which are 9. However, the types of these 9 benchmark
functions are diferent.

Input:Number of whales (SearchAgentsno), maximum number of iterations (tmax), dimension (d), lower and upper bounds of whale
population location variables, and optimization function.
Output: Optimal solution of the objective function, optimal position of searching agent, and searching curve.
(1) Randomly initialize the whale population
(2) Initialize iteration counter t� 0
(3) while (t< tmax) do
(4) for i� 1 to SearchAgents no do
(5) Bring out-of-bounds whale individuals back into the boundary
(6) Calculate the ftness and location of the current optimal search agent
(7) end for
(8) Calculate the nonlinear convergence factor a

(9) fori � 1 to SearchAgents no do
(10) Calculate r

→

(11) Calculate A
→

andC
⇀

(12) Calculate p

(13) Calculate the improved inertia weight factor
(14) for j� 1 to d do
(15) if (p≥ 0.5)
(16) Update the current individual position according to formula (16)
(17) end if
(18) else if (p< 0.5)
(19) if (|A

→
|< 1)

(20) Update the current individual position according to formula (15)
(21) else if (|A

→
|≥ 1)

(22) Update the current individual position according to formula (7)
(23) end if
(24) end for
(25) end for
(26) t� t+ 1
(27) end while

ALGORITHM 3: AIS-WOA.
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Figure 3 shows the benchmark function iteration process
with good performance of CMAIS-WOA. It records the
iterative trajectory of the search agent to fnd the global
optimal solution. Te metaheuristic algorithm makes an
improved design for the inertia weight factor value and
nonlinearly adjusts the convergence factor. Terefore, it has
a good breadth-frst search and depth-frst search layout
structure throughout the optimization process. First, the
breadth-frst search is signifcant, which guarantees the al-
gorithm priority in global search. Second, the convergence
speed is fast, and the global optimal solution is efciently
approached.

Figures 3(a), 3(c), 3(e), 3(g), 3(i), 3(k), 3(m), 3(o), and
3(q) are 3D contour maps of the functions F1, F2, F3, F4, F6,
F7, F8, F9, and F10 based on CWAIS-WOA, respectively.
From this fgure, the optimal value for distributions of
functions F1, F2, F3, F4, F6, and F10 is relatively concen-
trative. Terefore, they are not easily misled by partial so-
lutions. Te optimal values of functions F7, F8, and F9 are
scattered and easily misled by partial solutions. Figures 3(b),
3(d), 3(f), 3(h), 3(j), 3(l), 3(n), 3(p), and 3(r) are the graphs
of the iterative process of the above function, respectively.
Tey show the process of the function converging to the
global optimal solution. For function F1, CMAIS-WOA
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Randomly initialize the whale
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Y
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Figure 1: Te process of CMAIS-WOA.
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searches in a relatively large range before the 330th iteration.
After the 330th iteration, it began to conduct a more precise
search. Te speed of updating the optimal search agent is
very fast. Terefore, the cut-of point for the number of
iterations in F1 is 330. Moreover, the cut-of points for the
number of iterations in F2, F3, F4, F6, F7, F8, F9, and F10 are

470, 350, 340, 320, 180, 20, 17, and 370, respectively. Ad-
ditionally, Table 6 shows the fnal optimal search agent
positions for these benchmark functions.

Furthermore, the position of each function falling to the
lowest point in the graph is analyzed and summarized. Te
curve of function F2 drops last. It is around the 470th

Table 2: Objective functions.

Function Vno Range F(x)min

F1(x) � 􏽐
n
i�1 x2

i
30 [−100, 100] 0

F2(x) � 􏽐
n
i�1 |xi| + 􏽑

n
i�1 |xi| 30 [−10, 10] 0

F3(x) � 􏽐
n
i�1 (􏽐

i
j− 1xj)

2 30 [−100, 100] 0
F4(x) �maxi |xi|, 1< �i< �n􏼈 􏼉 30 [−100, 100] 0
F5(x) � 􏽐

n−1
i�1 [100(xi + 1 − xi)

2 + (xi − 1)2] 30 [−30, 30] 0
F6(x)􏽐

n
i�1([xi + 0.5])2 30 [−100, 100] 0

F7(x) � 􏽐
n
i�1ix

4
i + random[0,1) 30 [−1.28, 1.28] 0

F8(x) � 􏽐
n
i�1 − xi sin(

���
|xi|

􏽰
) 30 [−500, 500] −418.9829× 30

F9(x) � 􏽐
n
i�1[x2

i −10 cos(2πxi) + 10] 30 [−5.12, 5.12] 0

F10(x) � −20 exp(−0.2
���������
1􏽐

n
i�1x

2
i /n

􏽱
) − exp(1/n􏽐

n
i�1 cos(2πxi)) + 20 + e 30 [−32, 32] 0

F11(x) � 1/400􏽐
n
i�1x

2
i − 􏽑

n
i�1cos(xi/

�
i

√
) + 1 30 [−600, 600] 0

F12(x) � π/n 10 sin(πy1) + 􏽐
n−1
i�1 (yi−1)2[1 + 10sin2πyi + 1] + (yn−1)2􏽮 􏽯 +

􏽐
n
i�1 u(xi, 10, 100, 4)

yi � 1 + xi + 1/4u(xi, a, k, m)�

k(xi − a)
m

, xi > a

0 − a<xi < a

k(−xi − a)
m

xi <−a

⎧⎪⎨

⎪⎩

30 [−50, 50] 0

F13(x) � 0.1 sin23πx1 + 􏽐
n
i�1(xi−1)2[1 + sin2(2πxn)]􏽮 􏽯 + 􏽐

n
i�1u(xi, 5, 100, 4) 30 [−50, 50] 0

Table 3: Parameter settings for algorithms.

Algorithms Parameter settings
CWAIS-WOA B� 1, d1 and d2� 0.005
WOA r � (0, 1), a � (0, 1)

PSO w � 0.7298, c1 and c2 �1.4962
FA gamma� 1, alpha� 0.2, beta 0� 2, m� 2
FWA n� 5, 􏽢A � 40, Me � 150, Nmin � 6, Nmax � 120
SCA a� 2
DE F � 0.5, Cr � 0.5

Table 4: Comparison results of algorithm stability.

Function CWAIS-WOA WOA PSO FA FWA SCA DE
F1 0 0.304185 4.41E− 05 3.69E− 09 2.32E− 35 4.86E+ 03 8.69E+ 03
F2 0 0.251213 8.07E− 59 1.07E− 04 7.11E− 19 5.13E− 09 1.08E+ 19
F3 2.232 0 1.12E+ 06 4.02E+ 04 2.96E+ 02 6.66E+ 08 7.18E+ 04
F4 2.2533 2.77546E− 11 2.85E+ 04 1.45E− 03 1.05E− 03 1.94E+ 06 1.90E+ 00
F5 0.532503 2.70754E− 18 8.01E+ 06 2.33E+ 05 2.58E+ 03 5.52E+ 06 6.23E+ 07
F6 1.37867E− 16 0.282224 4.68E− 10 2.15E− 09 3.51E+ 06 3.74E+ 05 9.00E+ 03
F7 3.997E− 24 0.168683 3.81E+ 07 1.48E+ 03 4.59E+ 06 7.92E+ 03 4.16E+ 01
F8 13.341 2.32227E− 16 3.69E+ 08 1.32E+ 08 4.47E+ 08 9.90E+ 07 3.12E+ 01
F9 0 0.217932 6.66E+ 06 2.04E+ 06 4.58E+ 06 6.84E+ 06 1.02E− 01
F10 2.13E− 15 0.236827 2.78E+ 00 7.17E− 04 4.59E+ 06 2.85E+ 06 5.31E− 02
F11 0 0.117082 1.64E+ 03 1.33E+ 03 0 5.40E+ 04 2.12E+ 08
F12 3.2922E− 21 0.251704 1.01E+ 04 8.58E− 12 7.08E+ 04 1.19E+ 05 2.26E+ 08
F13 1.93716E− 21 0.224765 1.59E+ 03 1.25E− 10 5.31E+ 04 9.42E+ 05 1.21E− 20
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iteration. Also, the curve of function F9 drops earliest. It is
around the 17th iteration. Te number of iterations for the
former is about 27 times that of the latter.Tis shows that the
amount of computation required by function 2 is relatively
large, but, at the same time, the search range is large. On the
contrary, the function F9 requires a relatively small amount
of computation. However, it also shows that the search scope
of this function is relatively small.

5.4. Comparison of Algorithm Performance on CEC2014.
In order to further verify the performance and efectiveness
of CMAIS-WOA algorithm, the CEC2014 benchmark set
proposed by [44] is the optimal result. In the comparative
experiment, all algorithms adopt the same experimental
parameters for the fairness of comparison. Te population
size is 30, and the number of iterations is 30000. For each test
function, each algorithm is run independently for 50 times.
Its average accuracy and standard deviation are recorded.
Te results are shown in Table 7. CMAIS-WOA performs
well in functions F5, F6, F9–F16, F18, F19, F22, F23, F24,
F26, and F28–F30. He performed well in 19 functions and
ranked frst. Terefore, CMAIS-WOA has the best perfor-
mance to compare with all other algorithms.

In view of the shortcomings of the WOA algorithm, this
paper will improve it from two aspects. First, the chaotic
map makes the initial population cover the entire solution
space as much as possible. Also, the stability of the optimal
solution can be improved. Second, the adaptive iterative
strategy can adaptively adjust the weight value according to
the current distribution of the whale population and the
ftness of the current search agent location. At the same time,
the improved nonlinear convergence factor can adjust the
proportion of breadth search and depth search in the op-
timal process. Te combination of the two schemes further
improves the optimization performance of the algorithm.
Te experimental results show that CMAIS-WOA has better
optimization performance, high accuracy, and fast con-
vergence compared with other algorithms.

CWAIS-WOA still has two certain limitations, even
though it performs well in optimization issues. First,
CWAIS-WOA may be afected by the curse of di-
mensionality, thus reducing its efectiveness in the case of
high-dimensional optimization. Second, the features of the
optimization issue could restrict the algorithm’s application.
To address these limitations, further improvements can be
made to CWAIS-WOA. For example, dimensionality
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Figure 2: Comparison of coefcient variables before and after the improvement.

Table 5: Comparison results of algorithm optimization ability.

Function CWAIS-WOA WOA PSO FA FWA SCA DE
F1 0 4.07E− 80 5.26E− 11 1.08E− 11 8.74E− 53 1.68E− 03 1.21E+ 05
F2 3.77E− 191 1.39E− 83 2.60E− 66 3.26E− 09 1.80E− 33 5.94E− 06 2.56E+ 18
F3 0 9.37E− 84 6.01E+ 02 4.56E− 11 9.54E− 31 6.98E+ 04 2.03E+ 05
F4 3.0187e− 321 6.76E− 84 4.18E+ 01 2.16E− 05 4.54E− 17 2.26E+ 03 7.12E+ 01
F5 0.35574 2.60 + 01 3.54E+ 03 4.76E+ 03 5.80E+ 03 5.78E+ 03 2.10E+ 07
F6 4.70E− 10 0.17205 1.09E− 10 1.48E− 11 1.31E+ 03 7.08E+ 02 1.12E+ 04
F7 5.76E− 06 1.31E− 04 1.92E+ 04 4.52E+ 00 3.02E− 02 1.96E+ 00 2.13E+ 01
F8 −3819.3924 −8706.7555 −1.47E+ 06 −2.09E+ 06 −6.69E+ 05 −9.85E+ 05 3.40E+ 01
F9 0 0 3.78E+ 03 5.58E+ 03 0 2.74E− 02 2.07E+ 00
F10 8.88E− 16 8.88E− 16 1.49E− 04 1.23E− 05 1.78E− 13 3.82E− 02 2.04E− 05
F11 4.58E− 03 0 5.18E− 12 2.10E− 11 0 8.80E− 02 1.12E+ 03
F12 5.63E− 05 3.11E− 04 5.98E− 12 3.22E− 14 1.79E+ 02 6.72E+ 01 2.02E+ 03
F13 2.34E− 07 3.11E− 03 1.76E− 11 4.66E− 13 1.87E+ 02 3.90 + 01 0.35E− 10
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Table 6: Te location of the optimal search agent.

Functions
Te location of

the optimal search
agent

F1

−4.7275E− 164, −2.5323E− 164, −7.7747E− 165, −3.3654E− 166, −2.9388E− 165,
−6.0893E− 166, −3.006E− 165, −6.667E− 165, −5.4872E− 164, −6.3437E− 165,

−1.7266E− 164, −5.5087E− 165, −2.0276E− 165, −1.0011E− 164, −3.8337E− 165,
−8.1942E− 165, −4.6627E− 165, −8.3872E− 164, −4.344E− 165, −3.3592E− 164,

−4.9437E− 165, −6.8899E− 165, −1.5656E− 163, −4.6584E− 165, −1.2529E− 164,
−4.1324E− 165, −1.3557E− 164, −2.4771E− 164, −3.7056E− 165, −5.0894E− 166

F2

−1.1899E− 194, −4.0516E− 194, −1.5241E− 194, −3.9174E− 195, −5.0011E− 195,
−1.9724E− 194, −1.3129E− 192, −3.7393E− 195, −2.4364E− 194, −4.0643E− 194,

−5.15E− 194, −3.124E− 195, −4.3301E− 194, −5.1193E− 194, −1.9933E− 194,
−4.5056E− 195, −2.0946E− 194, −1.6244E− 191, −5.253E− 193, −5.1014E− 194,

−8.6326E− 195, −4.8899E− 195, −2.7365E− 195, −2.9464E− 194, −5.4173E− 192,
−9.4323E− 195, −1.7318E− 194, −1.5789E− 194, −1.3729E− 191, −7.3625E− 196

F3

8.3778e− 166, 1.6103e− 165, 1.828e− 165, 9.0349e− 166, 9.7009e− 165, 1.3422e− 164,
1.5092e− 166, 1.0885e− 165, 4.7291e− 166, 1.102e− 165, 1.9386e− 167, 6.4553e− 165,
4.8061e− 165, 6.7909e− 166, 6.4788e− 165, 3.8793e− 165, 1.8414e− 166, 1.6037e− 165,
5.8625e− 165, 5.076e− 165, 6.3804e− 165, 4.4564e− 166, 3.551e− 165, 2.0262e− 165,
1.0951e− 165, 2.806e− 165, 3.228e− 165, 4.738e− 166, 8.4409e− 166, 1.7447e− 165

F4

7.9051e− 323, 1.4822e− 323, 9.3872e− 323, 0, 9.3872e− 323, 4.9407e− 324,
5.5335e− 322, 3.0187e− 321, 2.4703e− 323, 5.9288e− 323, 0, 0, 8.3991e− 323,

7.9051e− 323, 1.0375e− 322, 1.6798e− 322, 2.9644e− 323, 1.334e− 322, 4.0019e− 322,
1.8774e− 322, 1.7292e− 322, 1.334e− 322, 9.8813e− 324, 1.4328e− 322, 2.5494e− 321,

1.0375e− 322, 4.4466e− 323, 7.9051e− 323, 5.4347e− 323, 3.162e− 322

F6

−0.451843212, −0.488132823, −0.502485368, −0.506691793, −0.516383667,
−0.522936619, −0.528443899, −0.500528215, −0.476424727, −0.546169154,
−0.459999792, −0.417339417, −0.451636971, −0.459796279, −0.492525458,
−0.488044512, −0.585552524, −0.491116219, −0.512569987, −0.549531897,
−0.585455076, −0.440897739, −0.508565845, −0.431517191, −0.474593199,
−0.478770159, −0.529879077, −0.505666429, −0.497379624, −0.505103548

F7

0.00079039, 0.0024982, 0.00011346, 6.3648E− 05, 4.9686E− 05, 0.0090322, 0.0017595,
9.9808E− 06, 0.0002355, 0.00014075, 0.0003258, 0.0015206, 0.0023369, 4.9935E− 06,
0.00097185, 0.00029976, 0.00032523, 2.6181E− 05, 0.0066135, 0.00018268, 0.0049133,
0.00026729, 6.1492E− 05, 0.004145, 0.010693, 0.0014858, 9.078E− 05, 0.00015736,

7.5053E− 05, 0.00050359

F8
427.1183, −500, −500, −500, 427.1183, 427.1183, −500, −500, 427.1183, −500, −500,

−500, −500, −500, −500, 427.1183, −500, −500, −500, −500, −500, −500, 427.1183, −500,
−500, −500, −500, −500, −500, −500
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Table 6: Continued.

Functions
Te location of

the optimal search
agent

F9

−0.000000000021882, −0.00000000023497, −0.000000000019307, −0.000000000024775,
−0.00000000019519, −0.000000000035178, −0.000000000048885, −0.000000000038956,
−0.000000000059401, −0.00000000014523, −0.000000000052906, −0.000000000020087,

−0.0000000022882, −0.000000000073019, −0.000000000077924, −0.00000000103,
−0.00000000053772, −0.000000000021679, −0.000000000095406, −0.000000000072401,

−0.00000000001395, −0.000000000019946, −0.0000000000016862,
−0.000000000053492, −0.000000000071809, −0.00000000011175, −0.000000000008427,

−0.000000000074466, −0.000000000030654, −0.000000000060641

F10

3.85E− 18, 4.17E− 17, 1.06E− 16, 9.56E− 18, 1.26E− 16, 4.33E− 17, 1.27E− 16,
1.43E− 18, 1.29E− 17, 7.96E− 19, 8.40E− 18, 1.91E− 17, 2.48E− 17, 1.47E− 16,
2.65E− 19, 4.41E− 17, 4.70E− 17, 4.78E− 17, 1.05E− 16, 1.11E− 16, 1.88E− 17,
6.00E− 19, 2.02E− 17, 2.13E− 18, 5.32E− 18, 1.05E− 16, 5.90E− 18, 1.15E− 17,

2.92E− 18, 7.40E− 17

Table 7: Statistical results of the proposed algorithm in comparison to other algorithms for CEC 2014.

Function CWAIS-WOA WOA PSO FA FWA SCA DE

F1 Ave 2.13E+ 04 6.30E+ 06 2.40E− 14 3.71E+ 07 1.58E+ 06 1.15E+ 07 2.12E+ 07
Std 2.12E+ 04 1.40E+ 06 1.43E− 14 7.12E+ 06 1.17E+ 06 7.37E+ 07 2.47E+ 07

F2 Ave 2.06E+ 02 2.55E+ 04 5.59E− 14 0.00E+ 00 0.00E+ 00 9.15E+ 03 2.56E+ 09
Std 3.60E+ 02 9.69E+ 03 2.21E− 14 0.00E+ 00 0.00E+ 00 6.49E+ 04 1.79E+ 09

F3 Ave 4.90E+ 01 6.33E+ 03 1.57E− 13 0.00E+ 00 3.83E− 11 5.47E+ 02 1.97E+ 04
Std 5.92E+ 02 3.45E+ 03 4.71E− 14 1.20E− 14 1.34E− 10 1.61E+ 03 6.13E+ 03

F4 Ave 1.57E− 01 2.02E+ 02 1.87E− 13 4.11E+ 01 4.54E+ 00 5.86E+ 02 2.36E+ 02
Std 2.83E+ 00 4.13E+ 01 5.21E− 14 4.11E+ 01 1.87E+ 01 4.19E+ 01 6.45E+ 01

F5 Ave 4.92E− 01 2.74E+ 00 2.10E+ 01 2.37E+ 01 2.35E+ 01 2.72E+ 01 2.14E+ 01
Std 1.80E+ 00 3.91E− 01 1.37E− 02 6.80E− 02 4.71E− 02 1.43E− 01 1.54E− 01

F6 Ave 1.65E− 01 1.49E+ 01 4.50E+ 01 2.18E+ 01 3.88E+ 00 2.68E+ 01 1.74E+ 01
Std 1.40E+ 00 2.30E+ 00 1.16E+ 01 1.61E+ 00 2.91E+ 00 4.79E+ 00 2.09E+ 00

F7 Ave 1.61E− 07 7.21E− 02 2.76E− 03 1.03E− 09 1.23E− 04 1.52E+ 00 1.39E+ 01
Std 1.17E− 06 4.14E− 02 4.85E− 03 7.64E− 09 1.58E− 03 6.07E+ 00 1.28E+ 01

F8 Ave 1.55E+ 00 4.73E− 01 4.29E+ 02 1.06E+ 01 9.79E− 01 6.13E+ 01 1.57E+ 02
Std 8.13E+ 00 6.71E− 01 9.05E+ 01 1.03E+ 01 1.68E+ 00 2.67E+ 01 2.74E+ 01

F9 Ave 5.74E+ 00 9.19E+ 01 6.37E+ 02 1.48E+ 02 3.19E+ 01 1.13E+ 02 1.39E+ 02
Std 1.09E+ 01 1.53E+ 01 1.51E+ 02 1.19E+ 01 6.50E+ 00 4.60E+ 01 2.56E+ 01

F10 Ave 1.45E+ 01 6.28E+ 03 5.11E+ 03 1.02E+ 02 4.93E+ 01 1.78E+ 03 2.62E+ 03
Std 1.04E+ 01 4.18E+ 02 8.12E+ 02 6.48E+ 01 6.09E+ 01 7.21E+ 02 6.83E+ 02

F11 Ave 5.38E+ 01 5.71E+ 03 4.14E+ 03 4.49E+ 03 1.43E+ 03 3.94E+ 03 3.10E+ 03
Std 3.84E+ 02 4.17E+ 02 6.61E+ 02 1.91E+ 02 4.14E+ 02 7.32E+ 02 6.36E+ 02

F12 Ave 3.50E− 03 2.11E− 02 1.82E− 01 1.34E+ 00 4.10E− 01 3.71E− 01 6.43E− 01
Std 2.92E− 02 1.25E− 18 1.61E− 01 1.63E− 01 1.18E− 01 1.75E− 01 3.76E− 01

F13 Ave 4.70E− 03 6.48E− 01 1.35E− 01 3.44E− 01 1.16E− 01 5.12E− 01 5.52E− 01
Std 3.25E− 02 7.18E− 02 4.87E− 02 3.80E− 02 3.62E− 02 1.48E− 01 8.97E− 02

F14 Ave 3.10E− 03 3.23E− 01 3.30E− 01 3.15E− 01 2.75E− 01 4.43E− 01 2.38E+ 00
Std 1.93E− 02 1.15E− 01 7.56E− 02 7.75E− 02 1.13E− 01 2.45E− 01 3.32E+ 00

F15 Ave 2.52E− 01 1.28E+ 01 3.82E+ 00 1.54E+ 01 3.39E+ 00 3.79E+ 01 8.73E+ 01
Std 1.51E+ 00 5.24E+ 00 1.26E+ 00 9.20E− 01 9.89E− 01 9.20E+ 01 1.05E+ 02

F16 Ave 2.40E− 01 1.06E+ 01 3.17E− 01 2.17E− 01 5.12E− 01 5.22E− 01 6.93E− 01
Std 1.24E+ 00 6.23E− 01 1.25E+ 03 1.44E+ 06 1.32E+ 05 2.50E+ 04 9.46E+ 05

F17 Ave 2.31E+ 03 1.23E+ 06 3.38E+ 02 6.44E+ 05 1.14E+ 05 2.14E+ 04 7.32E+ 05
Std 2.38E+ 04 5.43E+ 05 1.45E+ 02 2.55E+ 03 9.53E+ 02 3.34E+ 04 1.48E+ 05

F18 Ave 4.54E+ 00 8.12E+ 02 4.50E+ 01 2.15E+ 03 1.66E+ 03 1.43E+ 05 9.10E+ 05
Std 3.11E+ 01 1.30E+ 03 9.18E+ 00 8.23E+ 00 4.71E+ 00 1.31E+ 01 2.48E+ 01
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reduction techniques such as principal component analysis
(PCA) and linear discriminant analysis (LDA) can be used to
mitigate the efects of high-dimensional problems. Addi-
tionally, in order to broaden the applicability of the algo-
rithm, those improvements can be combined with other
optimization algorithms, such as the particle swarm opti-
mization (PSO) algorithm and the ant colony optimization
(ACO) algorithm.

6. Conclusion and Future Works

Tis paper presents CMAIS-WOA to address the drawbacks
of WOA for solving optimization problems. Te proposed
algorithm is based on WOA and embedded with chaotic
mapping, adaptive iteration strategy, and nonlinear con-
vergence factor. Te population distribution and ftness
scenarios are integrated into the optimal process by CMAIS-
WOA. It enables a broad search for the best solutions. It also
has the advantage of having clear steps. In the maritime
industry, CMAIS-WOA is crucial for directing the design of
ship bow profles. In this paper, the efectiveness of
CMAIS-WOA in solving the benchmark problem is eval-
uated by comparing it with other optimal algorithms. Te
results show that CMAIS-WOA has better optimization
performance. It can efectively improve the stability of the
optimal solution and help the algorithm converge to the
global optimal solution.

In the future, the number of benchmark functions in-
volved in the validation should be increased.Tis can further
explore the law of numerical variation. In addition,
CMAIS-WOA can further integrate some optimal

algorithms to get hybrid algorithms with better perfor-
mance, such as GWO and BA. Meanwhile, CMAIS-WOA
can be applied to image processing, data mining, and other
felds to solve various practical problems.
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