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We consider the class of generalized α-nonexpansive mappings in a setting of Banach spaces. We prove existence of fxed point
and convergence results for these mappings under the K∗-iterative process. Te weak convergence is obtained with the help of
Opial’s property while strong convergence results are obtained under various assumptions. Finally, we construct two numerical
examples and connect our K∗-iterative process with them. An application to solve a fractional diferential equation (FDE) is also
provided. It has been eventually shown that the K∗- iterative process of this example gives more accurate numerical results
corresponding to some other iterative processes of the literature. Te main outcome is new and improves some known results of
the literature.

1. Introduction and Preliminaries

In recent years, theory of fxed points gained the attention of
many authors [1, 2]. Whenever the ordinary analytical
techniques cannot yield a solution to a diferential or an
integral equation, we are interested in fnding the approx-
imate value of the requested solution (see, e.g., the recent
results in [3–5] and others). Before employing the appro-
priate iterative processes on such problems, one needs to
convert it into a form of equation of fxed point. In this way
a sequence is generated by the algorithm.Te intended fxed
point value of the equation of fxed point and the given
equation’s solution is the limit of the series. In case of
contraction mappings, Banach fxed point theorem [6]
signals the fundamental Picard iteration xn+1 � Axn.
However, when the Picard iterative process for a given
mapping does not converge, we employ alternative iterative
procedures with diferent steps. One of the other iterative

processes that have been studied by authors are the Mann
[7], Noor [8], Ishikawa [9], and SP iteration (Phuengrattana
and Suantai) [10]; S-iteration (Agarwal et al.) [11]; S∗ it-
eration (Karahan and Ozdemie) [12]; Picard–Mann hybrid
[13]; Normal-S [14]; Krasnoselskii–Mann [15]; Abbas [16];
Picard-S [17]; and Takur [18].

On the other hand, Ullah and Arshad [19] presented
a new iterative process for generalized nonexpansive
mappings and call it as a K∗ iterative process. Te K∗-it-
erative process reads as follows:

x1 ∈ C,

zn � 1 − βn( xn + βnAxn,

yn � A 1 − αn( zn + αnAzn( ,

xn+1 � Ayn, n≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where αn, βn ∈ (0, 1).
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Tey demonstrated that among the many other iterative
processes, the K∗ iteration (1) gives very high accurate re-
sults in very less steps of iterations in the setting of Suzuki
mappings. We improve here their results to the larger class
of generalized α-nonexpansive mappings.

Defnition 1. Let A: C⟶ C. Ten, A is referred to as

(i) Nonexpansive if ‖Aa − A(a′)‖≤ ‖a − a′‖, for every
two a, a′ ∈ C;

(ii) Satisfying Condition (C) (or Suzuki mapping) if
1/2‖a − Aa‖≤ ‖a − a′‖ implies ‖Aa − Aa′‖≤ ‖a− a′‖,
for every two a, a′ ∈ C;

(iii) Generalized α-nonexpansive if 1/2‖a − Aa‖≤ ‖a −

a′‖ implies ‖Aa − Aa′‖≤ α‖a − Aa′‖ +α‖a′ − Aa‖ +

(1 − 2α)‖a − a′‖, for every two a, a′ ∈ C and
α ∈ [0, 1);

(iv) Satisfying condition I [20] if there is nondecreasing
f with f(0) � 0 and f(r)> 0 at r> 0 and
‖a − A(a)‖≥ f d( (a, DA) for all a ∈ C.

First time, a fxed point existence result for nonexpansive
mappings established by Gohde [21] and Browder [22] in
a setting of uniform convex Banach space (UCBS), and in the
same year, Kirk [23] obtained the same result in a setting of
refexive Banach space. In [24], Suzuki suggested a very
interesting generalized of nonexpansive mappings and any
mapping of this class if named as a mapping satisfying
condition (C) (or Suzuki mapping). He established several
convergence and existence results for these mappings in
diferent Banach space settings. Since mappings with con-
dition (C) are more general than the concept of non-
expansive mappings. Tus, Pant and Shukla [25] generalized
the Suzuki mappings by introducing the class of generalized
α-nonexpansive mappings. Tey proved that every Suzuki
mapping is generalized α-nonexpansive but the converse is
not valid in general; that is, they proved that the class of
generalized α-nonexpansive mappings properly includes the
class of Suzuki mappings. Moreover, they used the Agarwal
iteration [11] for establishing the main convergence results.
Te purpose of this work is to obtain the strong and weak
convergence for the K∗-iterative processes for generalized
α-nonexpansive mappings. In this way, we extend some
main results of Pant and Shukla [25], Ullah and Arshad, and
many others.

Defnition 2 (see [26, 27]). Let C be any nonvoid closed
convex subset of a UCBS H. an ⊆H is bounded. If h ∈H
is any fxed element then we set the following:

(b1) For a bounded sequence an  at point h,
r(h, an ): � limsupn⟶∞‖h − an‖ is termed as as-
ymptotic radius;
(b2) For a bounded sequence an  with the connection
of C, r(C, an ) � inf r(h, an ): h ∈ C  is termed as
asymptotic radius;
(b3) For a bounded sequence an  with the connection
of C, A(C, an ) � h ∈ C: r(h, an ) � r(C, an )  is
termed as asymptotic center.

Defnition 3 (see [28]). A Banach space H space is said to
satisfy the Opial’s condition in the case of any weakly
convergent sequence an ⊆H whose weak limit is h ∈H,
one is able to obtain the following:

limsup
n⟶∞

an − h
����

����< limsup
n⟶∞

an − h
′

�����

�����for each h
′ ∈ C − h{ }. (2)

In [25], the authors obtained some characterizations for
the class of generalized α-nonexpansive mappings. We
write all these characterizations in the following
proposition:

Proposition 1. Assume that A is a self-map on any non-
empty subset C of a Banach space. Ten,

(p1) If A satisfy condition (C), then A is essentially
generalized α-nonexpansive.
(p2) If A is generalized α-nonexpansive having a non-
empty fxed point set, then ‖A(a) − a∗‖≤ ‖a − a∗‖ for
a ∈ C and a∗ in DA.
(p3) If A is generalized α-nonexpansive, then DAis
closed. Moreover, if the given space H is strictly convex,
C is convex, then the set DA is also convex.
(p4) IfA is generalized α-nonexpansive, then for all pair
of elements a, a′ ∈ C, one has

a − Aa
′

�����

�����≤
3 + α
1 − α

 ‖a − Aa‖ + a − a
′

�����

�����; . (3)

(p5) If the spaceH is endowed with the Opial condition,
A is generalized α-nonexpansive, sn  is any weakly
convergent sequence to r with the property limn⟶∞
‖Asn − sn‖ � 0, then r ∈ DA.

Following lemma is a well-known property of any UCBS
that is needed for our main results.

Lemma 1 (see [29]). Let H be any UCBS. For 0< i≤ αn

≤ j< 1, an , bn ⊆H so that limsupn⟶∞‖an‖≤ u,
limsupn⟶∞‖bn‖≤ u and limn⟶∞‖αnan + (1 − αn)bn‖ � u

for some u≥ 0. Subsequently, we have
limn⟶∞‖an − bn‖ � 0.

2. Main Findings

To obtain our weak and strong convergence results, we need
a key lemma as follows:

Lemma 2. If A is generalized α-nonexpansive self-map on
a closed convex subset C of a Banach space H with DA ≠∅
and xn  is a sequence of iterates obtained from the K∗-it-
erative process (1). Subsequently,limn⟶∞‖xn − a∗‖ exists for
each a∗ ∈ DA.

Proof. Let us take any a∗ ∈ DA. Using Proposition 1(p2), we
see that
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zn − a
∗����
���� � 1 − βn( xn + βnAxn − a

∗����
����

≤ 1 − βn( xn + βnxn − a
∗����
����

≤ 1 − βn(  xn − a
∗����
���� + βn xn − a

∗����
����

� xn − a
∗����
����.

(4)

Tis implies that

xx+1 − a
∗����
���� � Ayn − a

∗����
����

≤ yn − a
∗����
����

� A 1 − αn( zn + αnAzn − a
∗����
����

≤ 1 − αn( zn + αnAzn − a
∗����
����

≤ 1 − αn(  zn − a
∗����
���� + αn Azn − a

∗����
����

≤ 1 − αn(  zn − a
∗����
���� + αn zn − a

∗����
����

≤ zn − a
∗����
����

≤ xn − a
∗����
����.

(5)

Hence, ‖xn+1 − a∗‖≤ ‖xn − a∗‖, which shows that
‖xn − a∗‖  is bounded and nonincreasing. Tis gives result
limn⟶∞‖xn − a∗‖ exists for each a∗ ∈ DA. □

Now we discuss about necessary and sufcient con-
ditions that must be met in order for any generalized
nonexpansive mapping in a Banach space to have fxed
points.

Theorem 1. If A is generalized α-nonexpansive self-map on
a closed convex subsetC of a UCBSH and xn  is a sequence
of iterates obtained from the K∗-iterative process (1). Sub-
sequently, DA ≠∅ if and only if xn  is bounded in C and
limn⟶∞‖Axn − xn‖ � 0.

Proof. Let DA ≠∅ and a∗ ∈ DA. Applying Lemma 2, we get
existence of limn⟶∞‖xn − a∗‖ and xn  is bounded. Let u be
that limit; thus,

lim
n⟶∞

xn − a
∗����
���� � u. (6)

As we have demonstrated in the proof of Lemma 2 that

zn − a
∗����
����≤ xn − a

∗����
����. (7)

Tis together with (6) gives

limsup
n⟶∞

zn − a
∗����
����≤ limsup

n⟶∞
xn − a

∗����
���� � u. (8)

Since a∗ is in DA, so Proposition 1 (p2) can be applied to
obtain the following:

Axn − a
∗����
����≤ xn − a

∗����
����,

⟹ limsup
n⟶∞

Axn − a
∗����
����≤ limsup

n⟶∞
xn − a

∗����
���� � u.

(9)

Now by the proof of Lemma 2, we have the following:

xn+1 − a
∗����
����≤ zn − a

∗����
����,

⟹ u � liminf
n⟶∞

xn+1 − a
∗����
����≤ liminf

n⟶∞
zn − a

∗����
����.

(10)

From (8) and (10), we have

u � lim
n⟶∞

zn − a
∗����
����. (11)

By (1) and (11), one has

u � lim
n⟶∞

zn − a
∗����
����

� lim
n⟶∞

1 − βn( xn + βnAxn − a
∗����
����

� lim
n⟶∞

1 − βn(  xn − a
∗

(  + βn Axn − a
∗

( 
����

����.

(12)

If and only if

u � lim
n⟶∞

1 − βn(  xn − a
∗

(  + βn Axn − a
∗

( 
����

����. (13)

Lemma 1, can be applied to obtain,

lim
n⟶∞

Axn − xn

����
���� � 0. (14)

On the other hand we aim to demonstrate DA ≠∅ under
the suppositions of a bounded xn  in the sense that
limn⟶∞‖Axn − xn‖ � 0. We may select a point
a∗ ∈ A(A, xn ). If Proposition 1(p4) is applied, then we
must have the following:

r Aa
∗
, xn (  � limsup

n⟶∞
xn − Aa

∗����
����

≤
3 + α
1 − α

  limsup
n⟶∞

Axn − xn

����
����

+ limsup
n⟶∞

xn − a
∗����
����

� limsup
n⟶∞

xn − a
∗����
����

� r a
∗
, xn ( .

(15)

We observe that Aa∗ ∈ A(C, xn ). As this set has only
element in any UCBS setting, we deduce Aa∗ � a∗, hence
the set DA is nonempty. □

Among the convergence results, we frst obtain our weak
convergence result for the K∗-iterative process in the setting
of generalized α-nonexpansive mappings as follows:

Theorem 2. If A is generalized α-nonexpansive self-map on
a closed convex subsetC of a UCBSH and xn  is a sequence
of iterates obtained from the K∗-iterative process (1). Sub-
sequently, xn  is weakly convergent to a point of DA.

Proof. Using Teorem 1, the provided sequence xn  is
bounded. AsH is UCBS,H a is refexive Banach space.Tat is
why, we can built a weakly convergent sequence of xn  so that
xni

  be the subsequence with a1 ∈ C as weak limit. Applying
Teorem 1 on the subsequence, we may have
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lim
i⟶∞

‖xni
− Axni

‖ � 0. Hence, by Proposition 1(p5), we have

a1 ∈ DA. It is enough to prove that xn  is weakly convergent to
a1. Tus, if xn  does not weakly converge to a1. Ten,

a subsequence xnj
  of xn  and a2 ∈ Cwith xnj

  converging

weakly to a2 and a2 ≠ a1 exists. Also by Proposition 1(p5),
a2 ∈ DA, by Lemma 2 with Opial’s property, we get

lim
n⟶∞

xn − a1
����

���� � lim
i⟶∞

xni
− a1

�����

�����

< lim
i⟶∞

xni
− a2

�����

�����

� lim
n⟶∞

xn − a2
����

����

� lim
j⟶∞

xnj
− a2

�����

�����

< lim
j⟶∞

xnj
− a1

�����

�����

� lim
n⟶∞

xn − a1
����

����.

(16)

Tis is a contradiction. Hence, we have a1 � a2. So, xn 

is weakly convergent to a1 ∈ DA. □

Now we discuss the strong convergence of the K∗-it-
erative process for generalized α-nonexpansive mappings on
compact domains.

Theorem  . If A is generalized α-nonexpansive self-map on
a compact convex subset C of a UCBS H and xn  is a se-
quence of iterates obtained from theK∗-iterative process (1).
Subsequently, xn  is strongly convergent to a point of DA.

Proof. As the domain C is a compact subset of H and also
xn ⊆C due to the convexity of C. Tus, a subsequence xni

 

of xn  exists with limi⟶∞‖xni
− a∗∗‖ � 0 for some a∗∗ ∈ C.

In the view of Teorem 1, limi⟶∞‖Axni
− xni

‖ � 0. Ap-
plying Proposition 1(p4), one has

xni
− Aa
∗∗

�����

�����≤
3 + α
1 − α

  xni
− Axni

�����

����� + xni
− a
∗∗

�����

�����. (17)

Hence, if i⟶∞, thenAa∗∗ � a∗∗. In the view of Lemma
2, a∗∗ is the strong limit of xn . Tis fnishes the proof. □

A strong convergence of the K∗-iterative process in the
setting of generalized α-nonexpansive mappings on a non-
compact domain is established as follows. It should be noted
that this result holds in general Banach spaces.

Theorem 4. If A is generalized α-nonexpansive self-map on
a closed convex subset C of a Banach space H and xn  is
a sequence of iterates obtained from the K∗-iterative process
(1). Subsequently, xn  is strongly convergent to a point of
DAifliminfn⟶∞d(xn, DA) � 0.

Proof. Using Lemma 2, we have existence of
limn⟶∞‖xn − a∗‖, for each fxed point of A. Tis provides
us that limn⟶∞d(xn, DA) exist. Accordingly

lim
n⟶∞

d xn, DA(  � 0. (18)

Two subsequence xni
  and ai  of xn  and DA are,

respectively, generated by the above limit. Hence

xni
− ai

�����

�����≤
1
2i
for each i≥ 1. (19)

From the proof of Lemma 2, we get nonincreasing xn ,
that is why

xni+1
− ai

�����

�����≤ xni
− ai

�����

�����≤
1
2i

. (20)

It follows that

ai+1 − ai

����
����≤ ai+1 − xni+1

�����

����� + xni+1
− ai

�����

�����

≤
1
2i+1 +

1
2i

≤
1

2i− 1⟶ 0, as i⟶∞.

(21)

Consequently, ai  is Cauchy sequence in DA as
limi⟶∞‖ai+1 − ai‖ � 0; thus, ai  converges to a∗∗. Using
Proposition 1(p3), DA is closed; thus, a∗∗ ∈ DA. By Lemma 2,
limn⟶∞‖xn − a∗∗‖ exists so, a∗∗ is the strong limit
of xn . □

Theorem 5. If A is generalized α-nonexpansive self-map on
a closed convex subsetC of a UCBSH and xn  is a sequence
of iterates obtained from the K∗-iterative process (1). Sub-
sequently, xn  is strongly convergent to a point of DAifA
satisfes condition (I).

Proof. Using Teorem 1, we can have

liminf
n⟶∞

Axn − xn

����
���� � 0. (22)

Due to condition (I) of A, we have

xn − Axn

����
����≥f d xn, DA( ( . (23)

Applying (22) on (23), we get

liminf
n⟶∞

f d xn, DA( (  � 0. (24)

It follows

liminf
n⟶∞

d xn, DA(  � 0. (25)

Now applying Teorem 4, xn  converges strongly
to DA. □

3. Application to Fractional
Differential Equations

Fractional calculus is important and an active feld of re-
search on its own [30–32]. It is well-known that fractional
calculus has a crucial role in fuid, electromagnetic theory,
and, especially, in electrical networks. In recent years, many
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papers appeared on the existence and approximation of
solutions for certain FDEs (see e.g., Karapinar et al. [33] and
others). However, all these authors used the concept of
nonexpansive mappings to achieve the main objective that
are continuous on their domain of defnitions.

Our alternative in this paper is to solve a FDE in the setting of
generalized α-nonexpansive mappings that are in general dis-
continuous. Unlike, other iterative schemes, we suggest the K∗

iterative scheme (1) to fnd the solution for the following FDE.
Now we consider the following FDE and also assume

that S is a solution set of it:

D
ξ
h(u) + Υ(u, h(u)) � 0,

h(0) � h(1) � 0,

⎫⎬

⎭, (26)

where (0≤ u≤ 1), (1< ξ < 2), and Dξ stands for the Caputo
fractional derivative endowed with the order ξ and
Υ: [0, 1] × R⟶ R.

Now we consider C � C[0, 1], where C[0, 1] is the
Banach space of continuous maps on [0, 1] to R equiped

with the maximum norm. Te corresponding Green’s
function with (26) is defned by

G(u, v) �

1
Γ(ξ)

u(1 − v)
(ξ− 1)

− (u − v)
(ξ− 1)

 , if 0≤ v≤ u≤ 1,

u(1 − v)
(ξ− 1)

Γ(ξ)
, if 0≤ u≤ v≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(27)

Te main result is provided in the following way:

Theorem 6. If C � C[0, 1], then set an operator
A: C⟶ C by the formula

A(h(u)) � 
1

0
G(u, v)Υ(v, h(v))dv, for each h(u) ∈ C.

(28)

If

|Υ(v, h(v)) − Υ(v, g(v))|≤ α|h(v) − A(g(v))| + α|g(v) − A(h(v))| +(1 − 2α)|g(v) − h(v)|, (29)

where α is some real number in [0, 1). Subsequently, theK∗
iterates (1) associated with the A (as defned above) es-
sentially converges to some point of the solution set S of (26)
provided that liminfn⟶∞d(xn, S) � 0.

Proof. Notice that the element h of C solves (26) if it solves

h(u) � 
1

0
G(u, v)Υ(v, h(v))dv. (30)

Now for every choice of h, g ∈ C and 0≤ u≤ 1, it follows
that

‖Ah(u) − Ag(u)‖≤ 
1

0
G(u, v)Υ(v, h(v)))dv − 

1

0
G(u, v)Υ(v, g(v))dv





� 
1

0
G(u, v)[Υ(v, h(v)) − Υ(v, g(v))]dv





≤ 
1

0
G(u, v)|Υ(v, h(v)) − Υ(v, g(v))|dv

≤ 
1

0
G(u, v)(α|h(v) − A(g(v))| + α|g(v) − A(h(v))|

+(1 − 2α)|g(v) − h(v)|) dv

≤ (α||h(v)) − A(g(v))‖ + α‖g(v) − A(h(v))‖ +(1 − 2α)

· ‖g(v) − h(v)‖) 
1

0
G(u, v)dv 

≤ α‖h(v)) − A(g v( ))‖ + α‖g(v) − A(h(v))‖

+(1 − 2α)‖g(v) − h(v)‖.

(31)

Consequently, we get
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‖Ah − Ag‖≤ α‖h − Ag‖ + α‖g − Ah‖ +(1 − 2α)‖g − h‖.

(32)

Hence,A is generalized α-nonexpansive mapping. In the
view of Teorem 4, the sequence of K∗ iterates converges to
a fxed point of A and hence to the solution of the given
equation. □

4. Numerical Example

First, we construct a novel example of generalized α-non-
expansive mappings on closed convex subset of a UCBS.
Using this example, we perform a comparative numerical
experiment using our K∗ and other iterative processes of the
literature.

Example 1. Let C � [0, 6] and a self-map on C by the
following rule:

Aa �

a + 15
4

, if 0≤ a≤ 5,

4, if 5< a≤ 6.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(33)

In this case, we prove that A is generalized 1/3-non-
expansive but does not satisfy the condition (C).

Proof. Let a, a′ ∈ A, then following are the all possible
cases:

Case I. If 5< a, a′ ≤ 6, we have
1
3

a − Aa
′



 +
1
3

a
′
− Aa



 + 1 − 2
1
3

   a − a
′





≥ 0 � Aa − Aa
′



.

(34)

Case II. If 0< a, a′ ≤ 5, we have
1
3

a − Aa
′



 +
1
3

a
′
− Aa



 + 1 − 2
1
3

   a − a
′





�
1
3

a −
a
′
+ 15
4

⎛⎝ ⎞⎠




+
1
3

a
′



−
a + 15

4


+
1
3

a − a
′



≥
1
4

a − a
′





� Aa − Aa
′



.

(35)

Case III. If 0< a≤ 5 and 5< a′ ≤ 6, we have

1
3

a − Aa
′



 +
1
3

a
′
− Aa



 + 1 − 2
1
3

   a − a
′



 �
1
3

|a − 4| +
1
3

a
′
−

a + 15
4

 





+
1
3

a − a
′



≥
1
4

|a − 1| � Aa − Aa
′



.

(36)

Hence, |Aa − Aa′|≤ 1/3|a − Aa′| + 1/3|a′ − Aa|+ (1 − 2
(1/3)) |a − a′| for every two points a, a′ ∈ C. Now let a � 5
and a′ � 11/2, then 1/2|a − Aa|≤ |a − a′|⇒|Aa − Aa′|>
|a − a′|. Tus, A does not satisfy condition (C). □

To show the high accuracy of the proposed K∗ iteration,
we compare it with the one-stepMann iteration [7], two-step
Ishikawa [9], leading two-stepS-iteration of Agarwal [11]
and a leading iterative scheme studied by Takur [18]. We
may take αn � 0.85 and βn � 0.65. Table 1 shows some values
for the initial value of x1 � 4.9. Additionally, Figure 1 ofers
detail on the behavior of the diferent schemes. Moreover, if
‖xn − 0‖< 10− 4, then further comparison is given in Table 2.
For generalized α-nonexpansive mapping it is evident that
the K∗ iterative method performs better than the other
methods.

We fnish this section with an example. Tis example
uses a subset of a two-dimensional Euclidian space.

Example 2. Let C � [0, 1] × [0, 1] and set a self-map on A

by the following rule:

A a, a
′

  �

a

2
,
a
′

3
⎛⎝ ⎞⎠, if a, a′  ∈ 0,

1
2

  × 0,
1
2

 ,

a

4
,
a
′

5
⎛⎝ ⎞⎠, if a, a′  ∈

1
2
, 1  ×

1
2
, 1 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

HereA is a generalized α-nonexpansive mapping with fxed
point (0, 0). Te numerical results are shown in Table 3.
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Table 1: Comparison of various iterative processes.

n K∗ Takur S Ishikawa Mann
1 4.9 4.9 4.9 4.9 4.9
2 4.99883887 4.99633984 4.98535938 4.97410938 4.96375000
3 4.99998652 4.99986603 4.99785652 4.99329676 4.98685938
4 4.99999984 4.99999510 4.99968618 4.99826449 4.99523652
5 5 4.99999982 4.99995405 4.99955067 4.99827324
6 5 4.99999999 4.99999327 4.99988366 4.99937405
7 5 5 4.99999902 4.99996988 4.99977309
8 5 5 4.99999986 4.9999922 4.99991775
9 5 5 4.99999998 4.99999798 4.99997018
10 5 5 5 4.99999948 4.99998919
11 5 5 5 4.99999986 4.99999608
12 5 5 5 4.99999996 4.99999858
13 5 5 5 4.99999999 4.99999940
14 5 5 5 5 4.99999981
15 5 5 5 5 4.99999993
16 5 5 5 5 4.99999998
17 5 5 5 5 4.99999999
18 5 5 5 5 5

4.9980

4.9985

4.9990

4.9995

5.0000

V
al

ue
 o

f x
n

5 10 150
Number of iteration

K*
Thakur
S

Ishikawa
Mann

Figure 1: Graphical comparison of various iterative processes.

Table 2: Comparison of the iterates for diferent choice of parameters and initial points.

Iterations
Initial points

0.2 1.2 2.2 3.2 4.2 4.9
For αn � n/(n + 1)10/9, βn � 1/(n + 3)2/3

Mann 14 13 13 12 9 9
Ishikawa 13 12 12 12 11 8
S 6 6 6 6 5 9
Takur 4 4 4 5 5 5
K∗   4 4 4 4

Discrete Dynamics in Nature and Society 7



In this case, it is also clear that our K∗ iterative scheme is
moving fast to the fxed point (0, 0).

5. Conclusions

In this research, we obtained the following new fnding:

(i) We studied the K∗ iterative scheme of Ullah and
Arshad for approximating fxed points of general-
ized α-nonexpansive mappings.

(ii) We successfully carried out some weak and strong
convergence results under various mild conditions.

(iii) We carried out an application of our main outcome
for solution of a FBVP in a Banach space setting.

(iv) A new example of generalized α-nonexpansive
mappings is constructed and proved that it exceeds
properly the class of mappings with condition (C).

(v) Using our new example, we showed that the K∗

iterative scheme is more efective and suggests very
high accurate numerical results in the setting of
generalized α-nonexpansive mappings in the setting
of generalized α-nonexpansive mappings.

(vi) Accordingly, our main outcome improved some
recent results of Ullah and Arshad [19] form the case
of mappings with condition (C) to the general case
of mappings called generalized α-nonexpansive
mappings. In a similar way, our results are the
improvement and refnements of the results due to
Agarwal [11], Abbas [16], Takur [18], and many
others from the setting of nonexpansive and Suzuki
mappings to the general setting of generalized
α-nonexpansive mappings.
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