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In this paper, we analyze the stability of the family of iterative methods designed by Jarratt using complex dynamics tools. Tis
allows us to conclude whether the scheme known as Jarratt’s method is the most stable among all the elements of the family. We
deduce that classical Jarratt’s scheme is not the only stable element of the family.We also obtain information about themembers of
the class with chaotical behavior. Some numerical results are presented for confrming the convergence and stability results.

1. Introduction

Te solution of nonlinear equations and systems of equa-
tions is among the most important problems, both from
a theoretical and a practical point of view, in applied
mathematics and other sciences, see for example [1]. Due to
the lack of analytical methods for solving such problems,
iterative methods are becoming increasingly necessary for
approximating the solutions of these equations.

In addition to the classical methods such as Newton,
Chebyshev, and Halley among the so-called one-point
methods, and multipoint algorithms such as Traub, Jar-
ratt, and Ostrowski, numerous papers have been published
in recent years trying to overcome the convergence order of
these schemes as well as their stability. In all of them, the
authors construct iterative procedures for approximating
simple roots α of a nonlinear equation f(x) � 0, where
f: I⊆R⟶ R is a real function defned on an open interval
I. In the books [2, 3], we can found good overviews of this
area of numerical analysis.

Te dynamical analysis of an iterative method or a family
of schemes is a valuable tool for classifying the diferent
iterative formulas, not only in terms of their order of
convergence but also in terms of their behavior in terms of
the chosen of initial guesses. Tis study also provides useful

information on the stability and reliability of the iterative
methods. See, for example, [4–6].

In this paper, we present a dynamical study of the
parametric Jarratt family, a set of fourth-order iterative
methods for approximating simple roots α of a nonlinear
equation f(x) � 0. In [7], Jarratt designed a fourth-order
formula for solving nonlinear equations which require three
functional evaluations per iteration, one of f and two of f′.
Its expression is as follows:

xk+1 � xk − ϕ1 xk( 􏼁 − ϕ2 xk( 􏼁, (1)

where

ϕ1 xk( 􏼁 � a1w1(x) + a2w2(x),

ϕ2 xk( 􏼁 �
f(x)

b1f
′
(x) + b2f

′
x + cw1(x)􏼂 􏼃

,
(2)

being

w1(x) �
f xk( 􏼁

f
′

xk( 􏼁
,

w2(x) �
f xk( 􏼁

f
′

xk + cw1(x)􏼂 􏼃
,

(3)
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and a1, a2, b1, b2, and c real or complex parameters.
Using Taylor’s series expansion around a simple zero α of

f(x) � 0, Jarratt obtained values of some of the previous

parameters to reach fourth-order convergence. Taking θ �

b2/b1 + b2 and c � − 2/3 and expressing Jarratt’s class in two
steps, we obtain

yk � xk −
2
3

f xk( 􏼁

f
′

xk( 􏼁
,

xk+1 � xk −
2θ − 3
8θ

􏼠 􏼡w1(x) −
6θ − 9
8(θ − 1)

􏼢 􏼣w2(x) −
θf xk( 􏼁

b2(1 − θ)f
′

xk( 􏼁 + θb2f
′

yk( 􏼁
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where w1(xk) � f(xk)/f′(xk), w2(xk) � f(xk)/f′(yk),
k � 0, 1, 2, . . ., b2 � 8θ2/3(θ − 1), and θ is an arbitrary pa-
rameter that can take real or complex values. θ≠ 0, 1, oth-
erwise the method is not defned. Tis parametric family
includes the so-called Jarratt’s method, for θ � 3/2, whose
iterative expression is as follows:

yk � xk −
2
3

f xk( 􏼁

f
′

xk( 􏼁
,

xk+1 � xk −
1
2
3f
′

yk( 􏼁 + f
′

xk( 􏼁

3f
′

yk( 􏼁 − f
′

xk( 􏼁

f xk( 􏼁

f
′

xk( 􏼁
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

1.1. Dynamical Concepts. We are going to analyze the sta-
bility of members of family (4). For it, we apply complex
dynamics tools to the rational operator obtained when this
class is applied on an arbitrary second degree polynomial
p(x). We recall some concepts of complex dynamics that we
use in this work. For a more general understanding of these
concepts, see, for example, [8, 9].

Given a rational operator R: 􏽢C⟶ 􏽢C defned on the
Riemann sphere, 􏽢C, the orbit of a point x0 is the sequence of
points.

x0, R x0( 􏼁, R
2

x0( 􏼁, . . . , R
n

x0( 􏼁, . . .􏽮 􏽯. (6)

A fxed point x0 of operator R is a point such that
R(x0) � x0. If a fxed point is not a root of polynomial p(x),
then it is called a strange fxed point. Fixed points can be
classifed according to the behavior of the derivative oper-
ator on them. Terefore, a fxed point x0 is an attracting
point if |R′(x0)|< 1, superattracting if |R′(x0)| � 0, re-
pulsing if |R′(x0)|> 1 and parabolic or neutral if
|R′(x0)| � 1.

A critical point of operator R is a point x0 where the
derivative of R cancels out, that is, R′(x0) � 0. Critical points
that do not coincide with the roots of the polynomial are
called free critical points.

Te basin of attraction of an attractor α is defned as the
set of preimages of any order that satisfy the following
equation:

A(α) � x0 ∈ 􏽢C: R
n

x0( 􏼁⟶ α, n⟶∞􏽮 􏽯. (7)

Te rest of the paper is organized as follows. In Section 2,
the convergence order of the parametric family (4) is ana-
lyzed. Te dynamical behavior of this family as a function of
parameter θ is studied in Section 3. First, we determine the
rational operator associated with the family and analyze the
stability of the corresponding fxed points and critical points
of that operator. Te parameter planes of the free critical
points are drawning, which allows visualizing the parameter
values that make the method stable or unstable. Finally, the
dynamical planes are generated, in which the basins of at-
traction of fxed or periodic points of the method can be
visualized for some particular value of the parameter. In
Section 4, some numerical tests are presented to compare the
family of methods studied with other schemes. Te paper
ends with some conclusions, which are presented in Section
5 along with the references used.

2. Convergence of Jarratt Parametric Family

In this section, the convergence analysis of the Jarratt
parametric family is studied.We present an alternative proof
to that given by Jarratt. From the error equation, we can
observe that all the members of uniparametric family (4)
have fourth-order convergence, with independence of pa-
rameter θ.

Theorem 1. Let f: I ⊂ R⟶ R be a sufciently diferen-
tiable function at each point of the open interval I such that
α ∈ I is a simple root of f(x) � 0. If we choose an initial
estimate x0 sufciently close to α, sequence xk􏼈 􏼉k ≥ 0 obtained
using iterative expression (4), converges to α, with order of
convergence p � 4, being the error equation.

ek+1 �
1
9

(21 − 8θ)C
3
2 − 9C2C3 + C4􏼐 􏼑e

4
k + O e

5
k􏼐 􏼑, (8)
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where Cj � 1/j!f(j)(α)/f′(α), j � 2, 3, . . . y ek � xk − α,
∀k ∈ N.

Proof. Using Taylor’s series expansion of the function f(xk)

and f′(xk) around α, we have

f xk( 􏼁 � f
′
(α)ek + f

′
(α)C2e

2
k + f
′
(α)C3e

3
k + f
′
(α)C4e

4
k + O e

5
k􏼐 􏼑, (9)

f
′

xk( 􏼁 � 2f
′
(α)C2ek + 3f

′
(α)C3e

2
k + 4f

′
(α)C4e

3
k + O e

4
k􏼐 􏼑. (10)

Calculating the quotient w1(xk) � f(xk)/f′(xk),

w1 xk( 􏼁 � ek − C2e
2
k + 2C

2
2 − 2C3􏼐 􏼑e

3
k + − 4C

3
2 + 7C2C3 − 3C4􏼐 􏼑e

4
k + O e

5
k􏼐 􏼑. (11)

From the equations (3)–(5) and the frst step of the it-
erative scheme (4), we have

yk − α �
ek

3
+
2C2e

2
k

3
−
4
3

C
2
2 − C3􏼐 􏼑e

3
k +

2
3

4C
3
2 − 7C2C3 + 3C4􏼐 􏼑e

4
k + O e

5
k􏼐 􏼑. (12)

Te Taylor’s series expansion of f(yk) is as follows:

f yk( 􏼁 �
f
′
(α)ek

3
+
7
9
f
′
(α)C2e

2
k + −

8
9
f
′
(α)C

2
2 +

37f
′
(α)C3

27
⎛⎝ ⎞⎠e

3
k

+
1
81

f
′
(α) 180C

3
2 − 288C2C3 + 163C4􏼐 􏼑e

4
+ O e

5
􏼐 􏼑,

(13)

and the derivative of function f(yk) is as follows:

f
′

yk( 􏼁 � f
′
(α) +

2
3
f
′
(α)C2ek +

1
3
f
′
(α) 4C

2
2 + C3􏼐 􏼑e

2
k +

4
27

f
′
(α) − 18C

3
2 + 27C2C3 + C4􏼐 􏼑e

3
k + O e

4
k􏼐 􏼑. (14)

Calculating the quotient w2(xk) � f(xk)/f′(yk),

w2 xk( 􏼁 � ek +
C2e

2
k

3
+ −

14C
2
2

9
+
2C3

3
􏼠 􏼡e

3
k +

112C
3
2

27
+ C2 −

8C
2
2

9
−

C3

3
􏼠 􏼡 −

38C2C3

9
+
23C4

27
􏼠 􏼡e

4
k + O e

5
k􏼐 􏼑. (15)

Substituting equations (11) and (15) in the second step of
the iterative expression (4) yields error equation for Jarratt
parametric family as follows:

ek+1 �
1
9

(21 − 8θ)C
3
2 − 9C2C3 + C4􏼐 􏼑e

4
k + O e

5
k􏼐 􏼑. (16)

Tis completes the proof.

According to Kung and Traub’s conjecture (see [10]), the
family shown in (4) is optimal. □

3. Complex Dynamical Behavior

In this section, we present a dynamical study of Jarratt’s
family (4). We begin by calculating the rational operator
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associated with the class when it is applied on a quadratic
polynomial and then analyze the stability of the fxed and
critical points of this operator. From the independent critical
points, we generate the parameter spaces, which are graphs
that allow us to visually determine the values of the pa-
rameter for which a member of the family has stable or
unstable behavior.

3.1. Rational Operator. We analyze family (4) on a generic
quadratic polynomial p(x) � (x − a)(x − b), with zeros
a, b ∈ C. Te result is a rational operator, called K, which
depends on a, b, and parameter θ:

Kp,θ(x) � x −
(− a + x)(− b + x)(1 + 3/2θ)

4(− a − b + 2x)

−
(− a + x)(− b + x)

8/3(− a − b + 2x)(1 − θ)(− 1 + θ)θ + 8/3(− a − b + 2(x − (2(− a + x)(− b +x))/(3(− a − b + 2x))))(− 1 + θ)θ2

−
3(− a + x)(− b + x)(1 − 1/(− 2 + 2θ))

4(− a − b + 2(x − (2(− a + x)(− b + x))/(3(− a − b + 2x))))
.

(17)

Proposition  . Let p(x) � (x − a)(x − b) be a generic
quadratic polynomial, with zeros a, b ∈ C. Te rational
function associated to the Jarratt parametric family, after
applying Möbius transformation, is as follows:

Rθ(x) �
x
4
(− 21 − 3x(8 + 3x − 4θ) + 8θ)

− 9 − 3x(8 + 7x) + 4x(3 + 2x)θ
, (18)

where θ ∈ C is an arbitrary parameter. Moreover, if
θ ∈ − 3/2, 3/2, 27/10{ }, the operator is simplifed as follows:

R− 3/2(x) �
x
4
(11 + 3x)

3 + 11x
, (19)

R3/2(x) � x
4
, (20)

R27/10(x) � −
x
4
(1 + 15x)

15 + x
. (21)

For θ � 3/2, we can observe that Cayley’s test is satisfed.

Proof. Let p(x) � (x − a)(x − b) be a generic quadratic
polynomial, with roots a, b ∈ C. Applying the iterative scheme
given in equation (4) on p(x) we obtain the rational function
Kp,θ(x), which depends on roots a, b, and parameter θ ∈ C.
Using Möbius transformation on Kp,θ(x), with

h(x) �
x − a

x − a
, (22)

that satisfes, h(a) � 0, h(b) �∞, we obtain (18).

Rθ(x) �
x
4
(− 21 − 3x(8 + 3x − 4θ) + 8θ)

− 9 − 3x(8 + 7x) + 4x(3 + 2x)θ
, (23)

which only depends on the arbitrary parameter θ ∈ C.
By factoring the numerator and denominator in (18), it

can be proved that for θ ∈ − 3/2, 3/2, 27/10{ } and the operator
Rθ(x) is simplifed as seen in equations (19)–(21), which
completes the proof. □

3.2. Fixed Point Analysis. Solving the equation Rθ(x) � x,
we obtain the fxed points of operator Rθ.

Proposition 3. Te fxed points of the rational function Rθ
are x � 0 and x �∞, which correspond with the roots of
p(x), and the following are strange fxed points:

(i) ex1 � 1, for θ≠ 27/10,
(ii) ex2,3 � A − B∓1/2

�����
C − D

√
,

(iii) ex4,5 � A + B∓1/2
�����
C − D

√
, where

A �
1
12

(− 11 + 4θ),

B �
1
12

�������������

− 23 − 8θ + 16θ2
􏽱

,

C � − 2 +
1
18

(11 − 4θ)
2

+
2
9

(− 27 + 10θ),

D �
3 − 8/3(11 − 4θ) − 1/27(11 − 4θ)

3
− 8/27(11 − 4θ)(− 27 + 10θ)􏼐 􏼑

2
�������������
− 23 − 8θ + 16θ2

􏽰 .

(24)
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Te total number of fxed points of operator Rθ(x) varies
as a function of parameter θ, that is,

(i) If θ ∈ C and θ≠ 27/10, then Rθ(x) has seven fxed
points.

(ii) If θ � 27/10, then ex1 � 1 is not a fxed point and
Rθ(x) has six fxed points.

Pairs of strange fxed points conjugate to each other
satisfy exi − 1/exj � 0 for i≠ j; these are ex2 and ex3, ex4,
and ex5.

According to Proposition 3, there are at most seven and
at least six fxed points for the rational operator Rθ(x). In
addition, we show the existence of two pairs of strange fxed
points conjugate to each other, each pair has the same
stability characteristics, and thus, the stability analysis is
reduced by half.

3.3. Stability of Fixed Points. In order to analyze the stability
of the fxed points, we calculate the frst derivative of op-
erator Rθ(x).

Rθ′(x) �
4x

3 27 (1 + x)
2
(7 + x(10 + 7x)) − 12 6 + x 62 + 39x + 6x

2
􏼐 􏼑􏼐 􏼑􏼐 􏼑θ + 8x(9 + x(22 + 9x))θ2􏼐 􏼑

(− 9 − 3x(8 + 7x) + 4x(3 + 2x)θ)
2 . (25)

It is known that 0 and∞ are superattracting fxed points,
since themethods have order of convergence four, regardless
of the value of the parameter θ; however, the stability of the
strange fxed points depends on the value of θ. Te stability
of strange fxed points ex1 to ex5 is established in the fol-
lowing theorems.

Theorem 4 (Stability of ex1 ).
Te character of the strange point ex1 � 1, for θ≠ 27/10 is

(i) If |θ − 467/154|< 8/77, then ex1 is attracting, and it
is a superattracting if θ � 3.

(ii) If |θ − 467/154| � 8/77, then ex1 is a parabolic point.
(iii) If |θ − 467/154|> 8/77, then ex1 is repulsing.

Proof. From equation (16), we have

Rθ′(1) �
32(− 3 + θ)

− 27 + 10θ
. (26)

Ten,
|32(− 3 + θ)/− 27 + 10θ|≤ 1⇔ |32(− 3 + θ)| ≤ | − 27 + 10θ|.

Let θ � a + bi be an arbitrary complex number. Ten,

322 9 − 6a + a
2

+ b
2

􏼐 􏼑≤ 729 − 540a + 100a
2

+ 100b
2
.

(27)

Simplifying, we have

924a
2

+ 924b
2

− 5604a + 8487≤ 0. (28)

Tus,

a −
467
154

􏼒 􏼓
2

+ b
2 ≤

64
5929

. (29)

Terefore,

Rθ′(1)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 1⟺ θ −
467
154

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
8
77

. (30)

In addition, if θ satisfes |θ − 467/154|> 8/77, then
|Rθ′(1)|> 1, ex1 is repulsing and the proof is fnished.

Te following results can be demonstrated numerically
using the stability functions associated with fxed points. □

Theorem 5 (Stability of ex2 and ex3).
Te stability of strange fxed points ex2 and ex3, for real

values of θ, can be summarized as follows:

(i) If θ ∈ − 1.0369, 1/4 −
�
6

√
/2⌈∪D, where D is the re-

gion of the cone below the cardioid in Figure 1, then
ex2 and ex3 are attractors; if θ ≈ − 0.994035, they
are superattractors.

(ii) If θ ∈ 1/4 ±
�
6

√
/2􏼈 􏼉∪ F, where F is the boundary of

the disk in the region marked in blue in Figure 1, then
ex2 and ex3 are parabolic points.

(iii) If ⌈θ ∈ − ∞, − 1.0369, then ex2 and ex3 are repulsors.

Theorem 6 (Stability of ex4 y ex5).
Stability analysis of strange fxed points ex4 and ex5, for

real values of θ, satisfes the following statements:

(i) If θ ∈ 69/22, 3.33∪D, where D is the region of the
cone below the cardioid in Figure 2, then ex4 and ex5
are attractors; if θ ≈ 1.47521 or θ ≈ 3.23311 they are
superattractors.

(ii) If θ ∈ 1/4 ±
�
6

√
/2􏼈 􏼉∪ 69/22{ }∪F, where F is the

boundary of the disk in the region marked in blue in
Figure 2, then ex4 and ex5 are parabolic points.

(iii) If θ ∈ − 3/2, 1/4 −
�
6

√
/2, then ex4 and ex5 are

repulsors.

Te stability surface of strange fxed point ex1 � 1 in the
complex plane can be seen in Figure 3. In it, the zones of
attraction (blue surface) and repulsion (gray surface) are
shown. Visually, if θ is inside the circumference of the cone,
then it is attracting; if θ is on the circumference, it is par-
abolic and if θ is outside the circumference, it is repulsor.

Te stability surface of strange fxed points ex2 and ex3 is
shown in Figure 1. Te stability surface of strange fxed
points ex4 and ex5 is shown in Figure 2. In these fgures, the
prevalence of repulsion zones over attraction zones is
observed.

Discrete Dynamics in Nature and Society 5



3.4. Analysis of Critical Points. We will calculate the critical
points of the rational operator Rθ(x) given in equation (18).

Fatou and Julia [11, 12] stated that these points are of
special interest, since each basin of attraction has at least one
critical point, so the free critical points could be in a basin of
attraction of some of the solutions of the equation, or be in
the basin of some strange fxed point or attracting
periodic orbit.

Proposition 7. Te critical points of operator Rθ(x) are the
roots of equation Rθ′(x) � 0, that is, x � 0 and x �∞ and
four free critical points depending on parameter θ:

(i) cl1,2(θ) � E − F∓
�
2

√
/3���������������������������

G(− 54(− H) + θ(8397 + I + θJ))
􏽰

,
(ii) cl3,4(θ) � E + F∓

�
2

√
/3������������������������

G(54(H) + θ(8397 − I + K))
􏽰

,where

Imag (θ)

St
3 

(θ
)

Real (θ)

-0.2-0.1 0.0 0.1 0.2
1.0

0.5

0.0
-1.4-1.2

-1.0
-0.8

Figure 1: Stability surface of ex2 and ex3.

Imag (θ)

St
3 

(θ
)

Real (θ)

0.2 0.1 0.0
-0.1 -0.2

2.0

1.5

1.0

0.5

0.0
0.0-0.5-1.0-1.5-2.0

Figure 2: Stability surface of ex4 and ex5.

0.5Imag (θ)

St
3 

(θ
)

Real (θ)

0.0
-0.5
1.0

0.5

0.0
2.8 3.0 3.2

3.4

Figure 3: Stability surface of ex1 � 1 (in blue, the complex region where the point is an attractor, and in gray the surface where it is a repulsor
or parabolic).
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E �
(− 2 + θ)(− 9 + 2θ)

− 21 + 8θ
, F �

����������������������������
81 + θ(18 + θ(45 + 4θ(− 29 + 9θ)))

􏽰

3(21 − 8θ)
,

G �
1

(− 21 + 8θ)
3 ,

H � 189 +(21 − 8θ)
����������������������������
81 + θ(18 + θ(45 + 4θ(− 29 + 9θ)))

􏽰
,

I � 39(21 − 8θ)
����������������������������
81 + θ(18 + θ(45 + 4θ(− 29 + 9θ)))

􏽰
,

J � θ(4θ(3171 + θ(− 773 + 72θ)) − 3(7293 + 2(21 − 8θ)
����������������������������
81 + θ(18 + θ(45 + 4θ(− 29 + 9θ)))

􏽰
)),

K � θ(− 21879 + 4θ(3171 + θ(− 773 + 72θ)) + 6(21 − 8θ)
����������������������������
81 + θ(18 + θ(45 + 4θ(− 29 + 9θ)))

􏽰
).

(31)

Te total number of diferent critical points of operator
Rθ(x) varies as a function of parameter θ:

(i) If θ ∈ C and θ ∉ − 3/2, 3/2, 27/10{ }, then operator
Rθ(x) has six critical points

(ii) If θ � 3/2, then operator Rθ(x) simplifes and has
two critical points

(iii) If θ ∈ − 3/2, 27/10{ }, then operator Rθ(x) simplifes
and has four critical points

Pairs of free critical points conjugate to each other satisfy
cli � 1/clj; for i≠ j; these are: cl1(θ) and cl2(θ), cl3(θ) and
cl4(θ). Tis means that there are only two independent free
critical points.

(i) Te free critical points cl1(θ) and cl2(θ) coincide for
θ � 0,

(ii) Te free critical points cl1(θ) and cl3(θ) coincide for
the following values of parameter θ:

θ �
3
2

,

θ �
1
54

(31 + L + M),

θ �
31
54

−
1
108

(1 + i
�
3

√
)L −

1
108

(1 − i
�
3

√
)M,

θ �
31
54

−
1
108

(1 − i
�
3

√
)L −

1
108

(1 + i
�
3

√
)M.

(32)

(iii) where

L � (208153 − 1296
�����
18951

√
)
1/3

,

M � (208153 + 1296
�����
18951

√
)
1/3

.
(33)

(iv) Te free critical points cl2(θ) and cl4(θ) coincide for
the following values of parameter θ:

θ �
3
2

,

θ �
1
54

(31 + L + M),

θ �
31
54

−
1
108

(1 + i
�
3

√
)L −

1
108

(1 − i
�
3

√
)M,

θ �
31
54

−
1
108

(1 − i
�
3

√
)L −

1
108

(1 + i
�
3

√
)M.

(34)

(v) Te free critical points cl3(θ) and cl4(θ) coincide for
the following values of parameter θ:

θ � −
3
2

,

θ �
27
10

;

θ � 3.

(35)

Proposition 7 states that there is a maximum of six
critical points and a minimum of two critical points. Tere
are two pairs of free critical points conjugate to each other,
each with the same characteristics in terms of stability,
simplifying the dynamical analysis.

Parameter values that reduce the number of free critical
points are interesting for drawing dynamical planes.

3.5. Parameter Spaces. Te dynamical behavior of operator
Rθ(x) depends on the values of parameter θ. Parameter
spaces are graphs of the independent-free critical values for
the method, which allow to visualize parameter values that
make the method stable or unstable [13].

We generate the parameter spaces, taking a free critical
point cl(θ) as initial estimation for operator Rθ(x) and
applying the iterative scheme (4) for all values of the pa-
rameter θ, defned on a mesh of the complex plane with 800
points on each axis. Tese plots have been generated using
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MATLAB R2020b. At a point corresponding to a specifc
value of θ, if a method converges to one of the roots of the
polynomial in less than 200 iterations and with an error
estimate of less than 10− 3, then that point is colored red;
otherwise, the point is colored black.

Te Jarratt parametric family has at most four free
critical points, of which there are two pairs conjugate to each
other (see Proposition 7); that means there are only two
independent free critical points. We then obtain two dif-
ferent parameter spaces: P1 for x � cl1(θ), cl2(θ) and P2 for
x � cl3(θ), cl4(θ), shown in Figure 4.

In P1 parameter space (Figure 4(a)), the all-red surface
means that for any method of the family, in that range of θ
values, the critical point cl1(θ) is only able to converge to one
of the two roots of the polynomial. Tis critical point does
not create its own basin; there is no attracting strange free
point and no attracting periodic orbit, the only attractors are
the roots of the polynomial themselves. Te critical point
cl2(θ) has the same behavior as cl1(θ), being both conjugate
to each other.

In the parameter plane P2 corresponding to the con-
jugate critical points cl3(θ) and cl4(θ), the region marked in
red corresponds to points where the method has stable
behavior, while the regions in black correspond to points
where the method has unstable behavior. Regions where
strange fxed points are attractors and are also unstable and
appear in this parameter space (see Figure 4(b)).

3.6. Dynamical Planes. To study the stability of some
methods for Jarratt parametric family, we use dynamical
planes. Tese plots allow us to extend the information
obtained in the parameter planes; in them, we can visualize
the basins of attraction for fxed or periodic points of the
method, given some particular value of parameter, θ [13].

For the dynamical analysis we select methods of family
(4) corresponding to parameter values located in the stability
zone and in the instability zone of the parameter space, and
from these we will generate the corresponding dynamical
planes, using MATLAB R2020b. In these fgures, a mesh
with 800 points on each axis has been drawn, where each
point represents a diferent initial estimate that is introduced
in the iterative process (see [13]). When a method converges
to a solution, in at most 200 iterations and with a tolerance of
less than 10− 3, then, it is assigned a certain color: orange if it
converges to x � 0 and blue if it converges to x �∞. In case
the initial estimate does not converge to any of the roots of
the polynomial within the maximum number of iterations, it
is assigned the color black; other basins of attraction are
colored green and red.

Figure 5 shows dynamical planes for values of θ in the
stability zone, in which only two basins of attraction corre-
sponding to the roots are observed. Specifcally, some methods
appear with global convergence, which is a key fact in some
applications, such as the fnding of matrix sign functions by
using these iterative methods (see, for example, [14, 15]).

Figure 6 shows dynamical planes for values of θ outside
the stability zone, which can be visually verifed by the
existence of black areas of nonconvergence to the solution
(in the case of Figures 6(a) and 6(b)) and by the presence of
two basins of attraction that do not correspond to roots, but
to conjugate strange fxed points (in the case of Figures 6(c)
and 6(d)).

4. Numerical Results

Te numerical tests in this section have been performed
using variable precision arithmetic, with 2000 digits of
mantissa and a tolerance of 10− 100 in MATLAB R2020b.Te
stopping criterion used is |xk+1 − xk|< 10− 100 or
|f(xk+1)|< 10− 100.

Tables 1–3 summarize the results obtained by applying
four diferent methods of the family, some of them stable
(FJ2(θ � 1.5) and FJ3(θ � 2.75)) and others unstable
(FJ1(θ � − 0.4) and FJ4(θ � 3)), as well as the methods of
Chun [16] and Ostrowski [17], which have order of con-
vergence four. Te test functions used are the following:

(i) f1(x) � ex − 4x2, α ≈ 0.714806
(ii) f2(x) � cos(x) − x, α ≈ 0.739085
(iii) f3(x) � ex − 1.5 − arctan(x), α ≈ 0.767653
(iv) f4(x) � sin(x) − x2 + 1, α ≈ 1.409624.

In order to evaluate the stringency of each implemented
method with respect to the initial estimate to fnd a solution,
we have started the iterations with diferent initial estimates,
named according to their proximity to the solution x0: close
(x0 ≈ α), far (x0 ≈ 10α), and very far (x0 ≈ 100α),
respectively.

For each function, the following items have been cal-
culated: approximate root value, error estimates at the last
iteration: |xk+1 − xk| and |f(xk+1)|, the number of iterations
required to converge to the solution, the approximate
computational convergence order (ACOC), and the elapsed
time (e-time), calculated as the arithmetic mean of 10 runs
for each method.

Table 1 shows that when the initial estimate is close to the
root, the presented methods converge, for a minimum of 5
iterations and a maximum of 6 iterations, even in cases of
those corresponding to parameter values for family (4) lo-
cated in regions of instability.

It can also be observed that the lowest error corresponds
to Chun’s method, followed by the stable FJ3 method. Te
number of iterations is in general the same and the order of
computational convergence obtained for all methods of the
family confrms the theoretical convergence order de-
termined in Section 2

From Tables 2 and 3, we can observe that the presented
methods do not always converge to the solution, supporting
the results found in the dynamical analysis of Section 3. Te
convergence depends on the initial estimation and the
nonlinear function used.
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Figure 5: Dynamical planes for methods within the stability region (orange color corresponds to the 0 basin of attraction, blue color to the
∞ basin). (a) θ� − 0.25. (b) θ� 0.5. (c) θ� 1.5. (d) θ� 2.75.
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Figure 4: Parameter spaces of the free critical points (in red color, the complex area corresponding to the stability region).
(a) P1 forx � cl1(θ), cl2(θ). (b) P2 for x � cl3(θ), cl4(θ).
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Table 2: Numerical performance of iterative methods in nonlinear equations for x0 far from α.

Function Method α |xk+1 − xk| |f(xk+1 − xk)| Iter ACOC e-time

f1
x0 � 6

FJ1θ�− 0.4 4.306585 5.8656 × 10− 107 0 6 4.00 0.21
FJ2θ�1.5 4.306585 0 0 6 4.00 0.13
FJ3θ�2.75 5.285458 5.4014 × 10− 01 2.0311 × 1002 50 0.94 0.47
FJ4θ�3.0 4.306585 7, 1981 × 10− 130 2.8601 × 10− 128 8 4.00 0.23
Ostrowski 4.306585 0 0 6 4.00 0.13
Chun 4.306585 0 0 7 4.00 0.14

f2
x0 � 5

FJ1θ�− 0.4 − 2.8254 × 1019 3.3407 × 1019 6.1661 × 1019 50 0.51 0.62
FJ2θ�1.5 − 1.9303 × 1011 2.7694 × 10+11 4.6998 × 10+11 50 − 0.78 0.38
FJ3θ�2.7 0.739085 8.8637 × 10− 368 1.4835 × 10− 368 10 4.00 0.17
FJ4θ�3.0 0.739085 4.9476 × 10− 209 8.2804 × 10− 209 10 4.00 0.29
Ostrowski 0.739085 1.6478 × 10− 376 2.7579 × 10− 376 8 4.00 0.15
Chun 3.8427 × 1002 1.4659 × 1005 1.4620 × 1005 50 0.91 0.34

f3
x0 � 10

FJ1θ�− 0.4 0.767653 7.7401 × 10− 375 1.1807 × 10− 374 11 4.00 0.27
FJ2θ�1.5 0.767653 0 0 9 4.00 0.16
FJ3θ�2.75 5.249817 1.1877 6.2192 × 1002 50 − 0.54 0.55
FJ4θ�3.0 − 14.101270 0 0 13 4.00 0.21
Ostrowski 0.767653 0 6.045 × 10− 141 9 4.00 0.17
Chun 0.767653 0 0 11 4.00 0.17

f4
x0 � 11

FJ1θ�− 0.4 1.409624 5.6762 × 10− 289 1.5092 × 10− 288 7 4.00 0.16
FJ2θ�1.5 1.409624 0 0 6 4.00 0.12
FJ3θ�2.75 1.409624 0 0 7 4.00 0.15
FJ4θ�3.0 1.409624 0 0 8 4.00 0.22
Ostrowski 1.409624 1.2412 × 10− 364 2.7166 × 10− 369 7 4.00 0.13
Chun 1.409624 2.1129 × 10− 192 5.6178 × 10− 192 7 4.00 0.12

Table 1: Numerical performance of iterative methods in nonlinear equations for x0 close to α.

Function Method α |xk+1 − xk| |f(xk+1 − xk)| Iter ACOC e-time

f1
x0 � 0.6

FJ1θ�− 0.4 0.714806 2.946 × 10− 207 1.0823 × 10− 206 5 4.00 0.20
FJ2θ�1.5 0.714806 9.1492 × 10− 248 3.362 × 10− 247 5 4.00 0.20
FJ3θ�2.75 0.714806 2.3560 × 10− 347 8.6576 × 10− 347 5 4.00 0.19
FJ4θ�3.0 0.714806 1.1911 × 10− 345 4.3769 × 10− 345 5 4.00 0.10
Ostrowski 0.714806 1.2227 × 10− 247 4.4928 × 10− 247 5 4.00 0.18
Chun 0.714806 2.5054 × 10− 181 9.2064 × 10− 181 5 4.00 0.15

f2
x0 � 0.5

FJ1θ�− 0.4 0.739085 3.1924 × 10− 261 5.3428 × 10− 261 5 4.00 0.15
FJ2θ�1.5 0.739085 1.3808 × 10− 288 2.311 × 10− 288 5 4.00 0.13
FJ3θ�2.75 0.739085 3.0484 × 10− 321 5.1037 × 10− 321 5 4.00 0.16
FJ4θ�3.0 0.739085 2.0635 × 10− 332 3.4534 × 10− 332 5 4.00 0.21
Ostrowski 0.739085 8.6024 × 10− 286 1.4397 × 10− 285 5 4.00 0.15
Chun 0.739085 1.5559 × 10− 239 2.6039 × 10− 239 5 4.00 0.18

f3
x0 � 1

FJ1θ�− 0.4 0.767653 2.3863 × 10− 165 3.6403 × 10− 165 5 4.00 0.25
FJ2θ�1.5 0.767653 4.2565 × 10− 200 6.4932 × 10− 200 5 4.00 0.23
FJ3θ�2.75 0.767653 5.7081 × 10− 209 8.7077 × 10− 209 5 4.00 0.17
FJ4θ�3.0 0.767653 2.0361 × 10− 190 3.1061 × 10− 190 5 4.00 0.16
Ostrowski 0.767653 1.6357 × 10− 200 2.4953 × 10− 200 5 4.00 0.17
Chun 0.739085 6.6244 × 10− 146 1.0105 × 10− 145 5 4.00 0.18

f4
x0 � 1.1

FJ1θ�− 0.4 1.409624 1.0809 × 10− 124 2.8739 × 10− 124 5 4.00 0.16
FJ2θ�1.5 1.409624 3.5952 × 10− 177 9.5588 × 10− 177 5 4.00 0.14
FJ3θ�2.75 1.409624 1.739 × 10− 268 4.6237 × 10− 268 5 4.00 0.16
FJ4θ�3.0 1.409624 1.3974 × 10− 261 3.7153 × 10− 261 5 4.00 0.16
Ostrowski 1.409624 6.8618 × 10− 177 1.8244 × 10− 176 5 4.00 0.16
Chun 1.409624 1.5326 × 10− 377 4.0750 × 10− 377 6 4.00 0.18
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When the initial estimate is far or very far from the root,
in general, the FJ1(θ � − 0.4) and FJ4(θ � 3.0) methods
diverge, as expected, since these methods correspond to
parameter values located in the instability zone.

5. Conclusions

In this paper, the dynamical study of a family of fourth-order
iterative methods has been carried out in order to identify
those members of the family that have a better behavior in
terms of stability.

Te dynamical behavior of the Jarratt parametric family
is generally stable. Tis is shown in the parameter spaces,
where the prevalence of the stability regions is observed, and
it is confrmed by numerical tests, which yield favorable
results on the convergence of the studied methods. Te
theoretical order of convergence has been confrmed by
ACOC, which is approximately equal to 4.

For initial estimates close to the solution, all methods
converge. Divergence cases are verifed for initial estimates
far or very far from the solution, especially for methods of
the considered family located in the instability zone.

Terefore, we conclude after the analytic, dynamic, and
numerical studies performed in this manuscript, that clas-
sical Jarratt’s scheme is the best one among all the general
class of iterative methods proposed originally by Jarratt. In
future work, we will extend this scheme to the estimation of
matrix sign functions and other nonlinear matrix equations.
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